package dotty.tools.dotc package core import Types._ import Contexts._ import Symbols._ import Decorators._ import util.Stats._ import util.common._ import Names._ import NameOps._ import Flags._ import StdNames.tpnme import typer.Mode import util.Positions.Position import config.Printers._ import collection.mutable import java.util.NoSuchElementException object TypeApplications { /** Assert type is not a TypeBounds instance and return it unchanged */ val noBounds = (tp: Type) => tp match { case tp: TypeBounds => throw new AssertionError("no TypeBounds allowed") case _ => tp } /** If `tp` is a TypeBounds instance return its lower bound else return `tp` */ val boundsToLo = (tp: Type) => tp match { case tp: TypeBounds => tp.lo case _ => tp } /** If `tp` is a TypeBounds instance return its upper bound else return `tp` */ val boundsToHi = (tp: Type) => tp match { case tp: TypeBounds => tp.hi case _ => tp } /** Does the variance of `sym1` conform to the variance of `sym2`? * This is the case if the variances are the same or `sym` is nonvariant. */ def varianceConforms(sym1: TypeSymbol, sym2: TypeSymbol)(implicit ctx: Context) = sym1.variance == sym2.variance || sym2.variance == 0 def variancesConform(syms1: List[TypeSymbol], syms2: List[TypeSymbol])(implicit ctx: Context) = syms1.corresponds(syms2)(varianceConforms) /** Extractor for * * [v1 X1: B1, ..., vn Xn: Bn] -> T * ==> * Lambda$_v1...vn { type $hk_i: B_i, type $Apply = [X_i := this.$Arg_i] T } */ object TypeLambda { def apply(variances: List[Int], argBoundsFns: List[RefinedType => TypeBounds], bodyFn: RefinedType => Type)(implicit ctx: Context): Type = { def argRefinements(parent: Type, i: Int, bs: List[RefinedType => TypeBounds]): Type = bs match { case b :: bs1 => argRefinements(RefinedType(parent, tpnme.hkArg(i), b), i + 1, bs1) case nil => parent } assert(variances.nonEmpty) assert(argBoundsFns.length == variances.length) RefinedType( argRefinements(defn.LambdaTrait(variances).typeRef, 0, argBoundsFns), tpnme.hkApply, bodyFn(_).bounds.withVariance(1)) } def unapply(tp: Type)(implicit ctx: Context): Option[(List[Int], List[TypeBounds], Type)] = tp match { case app @ RefinedType(parent, tpnme.hkApply) => val cls = parent.typeSymbol val variances = cls.typeParams.map(_.variance) def collectBounds(t: Type, acc: List[TypeBounds]): List[TypeBounds] = t match { case t @ RefinedType(p, rname) => assert(rname.isHkArgName) collectBounds(p, t.refinedInfo.bounds :: acc) case TypeRef(_, lname) => assert(lname.isLambdaTraitName) acc } val argBounds = collectBounds(parent, Nil) Some((variances, argBounds, app.refinedInfo.argInfo)) case _ => None } } /** Extractor for * * [v1 X1: B1, ..., vn Xn: Bn] -> C[X1, ..., Xn] * * where v1, ..., vn and B1, ..., Bn are the variances and bounds of the type parameters * of the class C. * * @param tycon C */ object EtaExpansion { def apply(tycon: TypeRef)(implicit ctx: Context) = { assert(tycon.isEtaExpandable) tycon.EtaExpand(tycon.typeParams) } def unapply(tp: Type)(implicit ctx: Context): Option[TypeRef] = { def argsAreForwarders(args: List[Type], n: Int): Boolean = args match { case Nil => n == 0 case TypeRef(RefinedThis(rt), sel) :: args1 => rt.eq(tp) && sel == tpnme.hkArg(n - 1) && argsAreForwarders(args1, n - 1) case _ => false } tp match { case TypeLambda(_, argBounds, AppliedType(fn: TypeRef, args)) if argsAreForwarders(args, tp.typeParams.length) => Some(fn) case _ => None } } } /** Extractor for type application T[U_1, ..., U_n]. This is the refined type * * T { type p_1 v_1= U_1; ...; type p_n v_n= U_n } * * where v_i, p_i are the variances and names of the type parameters of T, * If `T`'s class symbol is a lambda trait, follow the refined type with a * projection * * T { ... } # $Apply */ object AppliedType { def apply(tp: Type, args: List[Type])(implicit ctx: Context): Type = tp.appliedTo(args) def unapply(tp: Type)(implicit ctx: Context): Option[(Type, List[Type])] = tp match { case TypeRef(prefix, tpnme.hkApply) => unapp(prefix) case _ => unapp(tp) match { case Some((tycon: TypeRef, _)) if tycon.symbol.isLambdaTrait => // We are seeing part of a lambda abstraction, not an applied type None case x => x } } private def unapp(tp: Type)(implicit ctx: Context): Option[(Type, List[Type])] = tp match { case _: RefinedType => val tparams = tp.classSymbol.typeParams if (tparams.isEmpty) None else { val argBuf = new mutable.ListBuffer[Type] def stripArgs(tp: Type, n: Int): Type = if (n == 0) tp else tp match { case tp @ RefinedType(parent, pname) if pname == tparams(n - 1).name => val res = stripArgs(parent, n - 1) if (res.exists) argBuf += tp.refinedInfo.argInfo res case _ => NoType } val res = stripArgs(tp, tparams.length) if (res.exists) Some((res, argBuf.toList)) else None } case _ => None } } /** Adapt all arguments to possible higher-kinded type parameters using adaptIfHK */ def adaptArgs(tparams: List[Symbol], args: List[Type])(implicit ctx: Context): List[Type] = if (tparams.isEmpty) args else args.zipWithConserve(tparams)((arg, tparam) => arg.adaptIfHK(tparam.infoOrCompleter)) def argRefs(rt: RefinedType, n: Int)(implicit ctx: Context) = List.range(0, n).map(i => RefinedThis(rt).select(tpnme.hkArg(i))) } import TypeApplications._ /** A decorator that provides methods for modeling type application */ class TypeApplications(val self: Type) extends AnyVal { /** The type parameters of this type are: * For a ClassInfo type, the type parameters of its class. * For a typeref referring to a class, the type parameters of the class. * For a typeref referring to a Lambda class, the type parameters of * its right hand side or upper bound. * For a refinement type, the type parameters of its parent, dropping * any type parameter that is-rebound by the refinement. "Re-bind" means: * The refinement contains a TypeAlias for the type parameter, or * it introduces bounds for the type parameter, and we are not in the * special case of a type Lambda, where a LambdaTrait gets refined * with the bounds on its hk args. See `LambdaAbstract`, where these * types get introduced, and see `isBoundedLambda` below for the test. */ final def typeParams(implicit ctx: Context): List[TypeSymbol] = /*>|>*/ track("typeParams") /*<|<*/ { self match { case self: ClassInfo => self.cls.typeParams case self: TypeRef => val tsym = self.symbol if (tsym.isClass) tsym.typeParams else if (tsym.isAliasType) self.underlying.typeParams else if (tsym.isCompleting) // We are facing a problem when computing the type parameters of an uncompleted // abstract type. We can't access the bounds of the symbol yet because that // would cause a cause a cyclic reference. So we return `Nil` instead // and try to make up for it later. The acrobatics in Scala2Unpicker#readType // for reading a TypeRef show what's neeed. Nil else tsym.info.typeParams case self: RefinedType => // inlined and optimized version of // val sym = self.LambdaTrait // if (sym.exists) return sym.typeParams if (self.refinedName == tpnme.hkApply) { val sym = self.parent.classSymbol if (sym.isLambdaTrait) return sym.typeParams } self.parent.typeParams.filterNot(_.name == self.refinedName) case self: SingletonType => Nil case self: TypeProxy => self.underlying.typeParams case _ => Nil } } /** The Lambda trait underlying a type lambda */ def LambdaTrait(implicit ctx: Context): Symbol = self.stripTypeVar match { case RefinedType(parent, tpnme.hkApply) => val sym = self.classSymbol if (sym.isLambdaTrait) sym else NoSymbol case TypeBounds(lo, hi) => hi.LambdaTrait case _ => NoSymbol } /** Is receiver type higher-kinded (i.e. of kind != "*")? */ def isHK(implicit ctx: Context): Boolean = self.dealias match { case self: TypeRef => self.info.isHK case RefinedType(_, name) => name == tpnme.hkApply case TypeBounds(_, hi) => hi.isHK case _ => false } /** is receiver of the form T#$Apply? */ def isHKApply: Boolean = self match { case TypeRef(_, name) => name == tpnme.hkApply case _ => false } /** True if it can be determined without forcing that the class symbol * of this application exists and is not a lambda trait. * Equivalent to * * self.classSymbol.exists && !self.classSymbol.isLambdaTrait * * but without forcing anything. */ def classNotLambda(implicit ctx: Context): Boolean = self.stripTypeVar match { case self: RefinedType => self.parent.classNotLambda case self: TypeRef => self.denot.exists && { val sym = self.symbol if (sym.isClass) !sym.isLambdaTrait else sym.isCompleted && self.info.isAlias && self.info.bounds.hi.classNotLambda } case _ => false } /** Lambda abstract `self` with given type parameters. Examples: * * type T[X] = U becomes type T = [X] -> U * type T[X] >: L <: U becomes type T >: L <: ([X] -> _ <: U) */ def LambdaAbstract(tparams: List[Symbol])(implicit ctx: Context): Type = { /** Replace references to type parameters with references to hk arguments `this.$hk_i` * Care is needed not to cause cycles, hence `SafeSubstMap`. */ def internalize[T <: Type](tp: T) = (rt: RefinedType) => new ctx.SafeSubstMap(tparams, argRefs(rt, tparams.length)) .apply(tp).asInstanceOf[T] def expand(tp: Type) = { TypeLambda( tparams.map(_.variance), tparams.map(tparam => internalize(self.memberInfo(tparam).bounds)), internalize(tp)) } self match { case self: TypeAlias => self.derivedTypeAlias(expand(self.alias)) case self @ TypeBounds(lo, hi) => self.derivedTypeBounds(lo, expand(TypeBounds.upper(hi))) case _ => expand(self) } } /** A type ref is eta expandable if it refers to a non-lambda class. * In that case we can look for parameterized base types of the type * to eta expand them. */ def isEtaExpandable(implicit ctx: Context) = self match { case self: TypeRef => self.symbol.isClass && !self.name.isLambdaTraitName case _ => false } /** Convert a type constructor `TC` which has type parameters `T1, ..., Tn` * in a context where type parameters `U1,...,Un` are expected to * * LambdaXYZ { Apply = TC[hk$0, ..., hk$n] } * * Here, XYZ corresponds to the variances of * - `U1,...,Un` if the variances of `T1,...,Tn` are pairwise compatible with `U1,...,Un`, * - `T1,...,Tn` otherwise. * v1 is compatible with v2, if v1 = v2 or v2 is non-variant. */ def EtaExpand(tparams: List[TypeSymbol])(implicit ctx: Context): Type = { val tparamsToUse = if (variancesConform(typeParams, tparams)) tparams else typeParams self.appliedTo(tparams map (_.typeRef)).LambdaAbstract(tparamsToUse) //.ensuring(res => res.EtaReduce =:= self, s"res = $res, core = ${res.EtaReduce}, self = $self, hc = ${res.hashCode}") } /** Eta expand the prefix in front of any refinements. * @param tparamsForBottom Type parameters to use if core is a bottom type */ def EtaExpandCore(tparamsForBottom: List[TypeSymbol])(implicit ctx: Context): Type = self.stripTypeVar match { case self: RefinedType => self.derivedRefinedType(self.parent.EtaExpandCore(tparamsForBottom), self.refinedName, self.refinedInfo) case tp: TypeRef if defn.isBottomClass(tp.symbol) => self.LambdaAbstract(tparamsForBottom) case _ => self.EtaExpand(self.typeParams) } /** Adapt argument A to type parameter P in the case P is higher-kinded. * This means: * (1) Make sure that A is a type lambda, if necessary by eta-expanding it. * (2) Make sure the variances of the type lambda * agrees with variances of corresponding higherkinded type parameters. Example: * * class Companion[+CC[X]] * Companion[List] * * with adaptArgs, this will expand to * * Companion[[X] => List[X]] * * instead of * * Companion[[+X] => List[X]] * * even though `List` is covariant. This adaptation is necessary to ignore conflicting * variances in overriding members that have types of hk-type parameters such as `Companion[GenTraversable]` * or `Companion[ListBuffer]`. Without the adaptation we would end up with * * Companion[[+X] => GenTraversable[X]] * Companion[[X] => List[X]] * * and the second is not a subtype of the first. So if we have overridding memebrs of the two * types we get an error. */ def adaptIfHK(bound: Type)(implicit ctx: Context): Type = { val boundLambda = bound.LambdaTrait val hkParams = boundLambda.typeParams if (hkParams.isEmpty) self else self match { case self: TypeRef if self.symbol.isClass && self.typeParams.length == hkParams.length => EtaExpansion(self).adaptIfHK(bound) case _ => def adaptArg(arg: Type): Type = arg match { case arg: TypeRef if arg.symbol.isLambdaTrait && !arg.symbol.typeParams.corresponds(boundLambda.typeParams)(_.variance == _.variance) => arg.prefix.select(boundLambda) case arg: RefinedType => arg.derivedRefinedType(adaptArg(arg.parent), arg.refinedName, arg.refinedInfo) case _ => arg } adaptArg(self) } } /** Encode * * T[U1, ..., Un] * * where * @param self = `T` * @param args = `U1,...,Un` * performing the following simplifications * * 1. If `T` is an eta expansion `[X1,..,Xn] -> C[X1,...,Xn]` of class `C` compute * `C[U1, ..., Un]` instead. * 2. If `T` is some other type lambda `[X1,...,Xn] -> S` none of the arguments * `U1,...,Un` is a wildcard, compute `[X1:=U1, ..., Xn:=Un]S` instead. * 3. If `T` is a polytype, instantiate it to `U1,...,Un`. */ final def appliedTo(args: List[Type])(implicit ctx: Context): Type = /*>|>*/ track("appliedTo") /*<|<*/ { def substHkArgs = new TypeMap { def apply(tp: Type): Type = tp match { case TypeRef(RefinedThis(rt), name) if rt.eq(self) && name.isHkArgName => args(name.hkArgIndex) case _ => mapOver(tp) } } if (args.isEmpty || ctx.erasedTypes) self else self.stripTypeVar match { case EtaExpansion(self1) => self1.appliedTo(args) case TypeLambda(_, _, body) if !args.exists(_.isInstanceOf[TypeBounds]) => substHkArgs(body) case self: PolyType => self.instantiate(args) case _ => appliedTo(args, typeParams) } } /** Encode application `T[U1, ..., Un]` without simplifications, where * @param self = `T` * @param args = `U1, ..., Un` * @param tparams are assumed to be the type parameters of `T`. */ final def appliedTo(args: List[Type], typParams: List[TypeSymbol])(implicit ctx: Context): Type = { def matchParams(t: Type, tparams: List[TypeSymbol], args: List[Type])(implicit ctx: Context): Type = args match { case arg :: args1 => try { val tparam :: tparams1 = tparams matchParams(RefinedType(t, tparam.name, arg.toBounds(tparam)), tparams1, args1) } catch { case ex: MatchError => println(s"applied type mismatch: $self $args, typeParams = $typParams") // !!! DEBUG //println(s"precomplete decls = ${self.typeSymbol.unforcedDecls.toList.map(_.denot).mkString("\n ")}") throw ex } case nil => t } assert(args.nonEmpty) matchParams(self, typParams, args) match { case refined @ RefinedType(_, pname) if pname.isHkArgName => TypeRef(refined, tpnme.hkApply) case refined => refined } } final def appliedTo(arg: Type)(implicit ctx: Context): Type = appliedTo(arg :: Nil) final def appliedTo(arg1: Type, arg2: Type)(implicit ctx: Context): Type = appliedTo(arg1 :: arg2 :: Nil) /** A cycle-safe version of `appliedTo` where computing type parameters do not force * the typeconstructor. Instead, if the type constructor is completing, we make * up hk type parameters matching the arguments. This is needed when unpickling * Scala2 files such as `scala.collection.generic.Mapfactory`. */ final def safeAppliedTo(args: List[Type])(implicit ctx: Context) = { val safeTypeParams = self match { case self: TypeRef if !self.symbol.isClass && self.symbol.isCompleting => // This happens when unpickling e.g. scala$collection$generic$GenMapFactory$$CC ctx.warning(i"encountered F-bounded higher-kinded type parameters for ${self.symbol}; assuming they are invariant") defn.LambdaTrait(args map alwaysZero).typeParams case _ => typeParams } appliedTo(args, safeTypeParams) } /** Turn this type, which is used as an argument for * type parameter `tparam`, into a TypeBounds RHS */ final def toBounds(tparam: Symbol)(implicit ctx: Context): TypeBounds = self match { case self: TypeBounds => // this can happen for wildcard args self case _ => val v = tparam.variance if (v > 0 && !(tparam is Local) && !(tparam is ExpandedTypeParam)) TypeBounds.upper(self) else if (v < 0 && !(tparam is Local) && !(tparam is ExpandedTypeParam)) TypeBounds.lower(self) else TypeAlias(self, v) } /** The type arguments of this type's base type instance wrt. `base`. * Existential types in arguments are returned as TypeBounds instances. */ final def baseArgInfos(base: Symbol)(implicit ctx: Context): List[Type] = if (self derivesFrom base) base.typeParams map (param => self.member(param.name).info.argInfo) else Nil /** The type arguments of this type's base type instance wrt.`base`. * Existential types in arguments are disallowed. */ final def baseArgTypes(base: Symbol)(implicit ctx: Context): List[Type] = baseArgInfos(base) mapConserve noBounds /** The type arguments of this type's base type instance wrt.`base`. * Existential types in arguments are approximated by their lower bound. */ final def baseArgTypesLo(base: Symbol)(implicit ctx: Context): List[Type] = baseArgInfos(base) mapConserve boundsToLo /** The type arguments of this type's base type instance wrt.`base`. * Existential types in arguments are approximated by their upper bound. */ final def baseArgTypesHi(base: Symbol)(implicit ctx: Context): List[Type] = baseArgInfos(base) mapConserve boundsToHi /** The first type argument of the base type instance wrt `base` of this type */ final def firstBaseArgInfo(base: Symbol)(implicit ctx: Context): Type = base.typeParams match { case param :: _ if self derivesFrom base => self.member(param.name).info.argInfo case _ => NoType } /** The base type including all type arguments and applicable refinements * of this type. Refinements are applicable if they refine a member of * the parent type which furthermore is not a name-mangled type parameter. * Existential types in arguments are returned as TypeBounds instances. */ final def baseTypeWithArgs(base: Symbol)(implicit ctx: Context): Type = ctx.traceIndented(s"btwa ${self.show} wrt $base", core, show = true) { def default = self.baseTypeRef(base).appliedTo(baseArgInfos(base)) self match { case tp: TypeRef => tp.info match { case TypeBounds(_, hi) => hi.baseTypeWithArgs(base) case _ => default } case tp @ RefinedType(parent, name) if !tp.member(name).symbol.is(ExpandedTypeParam) => tp.wrapIfMember(parent.baseTypeWithArgs(base)) case tp: TermRef => tp.underlying.baseTypeWithArgs(base) case AndType(tp1, tp2) => tp1.baseTypeWithArgs(base) & tp2.baseTypeWithArgs(base) case OrType(tp1, tp2) => tp1.baseTypeWithArgs(base) | tp2.baseTypeWithArgs(base) case _ => default } } /** Translate a type of the form From[T] to To[T], keep other types as they are. * `from` and `to` must be static classes, both with one type parameter, and the same variance. * Do the same for by name types => From[T] and => To[T] */ def translateParameterized(from: ClassSymbol, to: ClassSymbol)(implicit ctx: Context): Type = self match { case self @ ExprType(tp) => self.derivedExprType(tp.translateParameterized(from, to)) case _ => if (self.derivesFrom(from)) if (ctx.erasedTypes) to.typeRef else RefinedType(to.typeRef, to.typeParams.head.name, self.member(from.typeParams.head.name).info) else self } /** If this is repeated parameter type, its underlying Seq type, * or, if isJava is true, Array type, else the type itself. */ def underlyingIfRepeated(isJava: Boolean)(implicit ctx: Context): Type = if (self.isRepeatedParam) { val seqClass = if (isJava) defn.ArrayClass else defn.SeqClass translateParameterized(defn.RepeatedParamClass, seqClass) } else self /** If this is an encoding of a (partially) applied type, return its arguments, * otherwise return Nil. * Existential types in arguments are returned as TypeBounds instances. */ final def argInfos(implicit ctx: Context): List[Type] = self match { case AppliedType(tycon, args) => args case _ => Nil } /** Argument types where existential types in arguments are disallowed */ def argTypes(implicit ctx: Context) = argInfos mapConserve noBounds /** Argument types where existential types in arguments are approximated by their lower bound */ def argTypesLo(implicit ctx: Context) = argInfos mapConserve boundsToLo /** Argument types where existential types in arguments are approximated by their upper bound */ def argTypesHi(implicit ctx: Context) = argInfos mapConserve boundsToHi /** The core type without any type arguments. * @param `typeArgs` must be the type arguments of this type. */ final def withoutArgs(typeArgs: List[Type]): Type = typeArgs match { case _ :: typeArgs1 => val RefinedType(tycon, _) = self tycon.withoutArgs(typeArgs1) case nil => self } final def typeConstructor(implicit ctx: Context): Type = self.stripTypeVar match { case AppliedType(tycon, _) => tycon case self => self } /** If this is the image of a type argument; recover the type argument, * otherwise NoType. */ final def argInfo(implicit ctx: Context): Type = self match { case self: TypeAlias => self.alias case self: TypeBounds => self case _ => NoType } /** If this is a type alias, its underlying type, otherwise the type itself */ def dropAlias(implicit ctx: Context): Type = self match { case TypeAlias(alias) => alias case _ => self } /** The element type of a sequence or array */ def elemType(implicit ctx: Context): Type = self match { case defn.ArrayOf(elemtp) => elemtp case JavaArrayType(elemtp) => elemtp case _ => firstBaseArgInfo(defn.SeqClass) } /** Does this type contain RefinedThis type with `target` as its underling * refinement type? */ def containsRefinedThis(target: Type)(implicit ctx: Context): Boolean = { def recur(tp: Type): Boolean = tp.stripTypeVar match { case RefinedThis(tp) => tp eq target case tp: NamedType => if (tp.symbol.isClass) !tp.symbol.isStatic && recur(tp.prefix) else tp.info match { case TypeAlias(alias) => recur(alias) case _ => recur(tp.prefix) } case tp: RefinedType => recur(tp.refinedInfo) || recur(tp.parent) case tp: TypeBounds => recur(tp.lo) || recur(tp.hi) case tp: AnnotatedType => recur(tp.underlying) case tp: AndOrType => recur(tp.tp1) || recur(tp.tp2) case _ => false } recur(self) } }