package dotty.tools.dotc package core import Types._ import Contexts._ import Symbols._ import Decorators._ import util.Stats._ import util.common._ import Names._ import NameOps._ import Flags._ import StdNames.tpnme import typer.Mode import util.Positions.Position import config.Printers._ import collection.mutable import java.util.NoSuchElementException object TypeApplications { /** Assert type is not a TypeBounds instance and return it unchanged */ val noBounds = (tp: Type) => tp match { case tp: TypeBounds => throw new AssertionError("no TypeBounds allowed") case _ => tp } /** If `tp` is a TypeBounds instance return its lower bound else return `tp` */ val boundsToLo = (tp: Type) => tp match { case tp: TypeBounds => tp.lo case _ => tp } /** If `tp` is a TypeBounds instance return its upper bound else return `tp` */ val boundsToHi = (tp: Type) => tp match { case tp: TypeBounds => tp.hi case _ => tp } /** Does the variance of `sym1` conform to the variance of `sym2`? * This is the case if the variances are the same or `sym` is nonvariant. */ def varianceConforms(sym1: TypeSymbol, sym2: TypeSymbol)(implicit ctx: Context) = sym1.variance == sym2.variance || sym2.variance == 0 def variancesConform(syms1: List[TypeSymbol], syms2: List[TypeSymbol])(implicit ctx: Context) = syms1.corresponds(syms2)(varianceConforms) /** Extractor for * * [v1 X1: B1, ..., vn Xn: Bn] -> T * ==> * Lambda$_v1...vn { type $hk_i: B_i, type $Apply = [X_i := this.$Arg_i] T } */ object TypeLambda { def apply(variances: List[Int], argBoundsFns: List[RefinedType => TypeBounds], bodyFn: RefinedType => Type)(implicit ctx: Context): Type = { def argRefinements(parent: Type, i: Int, bs: List[RefinedType => TypeBounds]): Type = bs match { case b :: bs1 => argRefinements(RefinedType(parent, tpnme.hkArg(i), b), i + 1, bs1) case nil => parent } assert(variances.nonEmpty) assert(argBoundsFns.length == variances.length) RefinedType( argRefinements(defn.LambdaTrait(variances).typeRef, 0, argBoundsFns), tpnme.hkApply, bodyFn(_).bounds.withVariance(1)) } def unapply(tp: Type)(implicit ctx: Context): Option[(List[Int], List[TypeBounds], Type)] = tp match { case app @ RefinedType(prefix, tpnme.hkApply) => val cls = prefix.typeSymbol val variances = cls.typeParams.map(_.variance) val argBounds = prefix.argInfos.map(_.bounds) Some((variances, argBounds, app.refinedInfo.argInfo)) case _ => None } } /** Extractor for * * [v1 X1: B1, ..., vn Xn: Bn] -> C[X1, ..., Xn] * * where v1, ..., vn and B1, ..., Bn are the variances and bounds of the type parameters * of the class C. * * @param tycon C */ object EtaExpansion { def apply(tycon: TypeRef)(implicit ctx: Context) = { assert(tycon.isEtaExpandable) tycon.EtaExpand(tycon.typeParams) } def unapply(tp: Type)(implicit ctx: Context): Option[TypeRef] = { def argsAreForwarders(args: List[Type], n: Int): Boolean = args match { case Nil => n == 0 case TypeRef(RefinedThis(rt), sel) :: args1 => rt.eq(tp) && sel == tpnme.hkArg(n - 1) && argsAreForwarders(args1, n - 1) case _ => false } tp match { case TypeLambda(_, argBounds, AppliedType(fn: TypeRef, args)) if argsAreForwarders(args, tp.typeParams.length) => Some(fn) //case TypeLambda(_, argBounds, AppliedType(fn: TypeRef, args)) => // println(i"eta expansion failed because args $args are not forwarders for ${tp.toString}") // None //case TypeLambda(_, argBounds, _) => // println(i"eta expansion failed because body is not applied type") // None case _ => None } } } /** Extractor for type application T[U_1, ..., U_n]. This is the refined type * * T { type p_1 v_1= U_1; ...; type p_n v_n= U_n } * * where v_i, p_i are the variances and names of the type parameters of T, * If `T`'s class symbol is a lambda trait, follow the refined type with a * projection * * T { ... } # $Apply */ object AppliedType { def apply(tp: Type, args: List[Type])(implicit ctx: Context): Type = tp.appliedTo(args) def unapply(tp: Type)(implicit ctx: Context): Option[(Type, List[Type])] = tp match { case TypeRef(prefix, tpnme.hkApply) => unapp(prefix) case _ => unapp(tp) match { case Some((tycon: TypeRef, _)) if tycon.symbol.isLambdaTrait => // We are seeing part of a lambda abstraction, not an applied type None case x => x } } private def unapp(tp: Type)(implicit ctx: Context): Option[(Type, List[Type])] = tp match { case _: RefinedType => val tparams = tp.classSymbol.typeParams if (tparams.isEmpty) None else { val argBuf = new mutable.ListBuffer[Type] def stripArgs(tp: Type, n: Int): Type = if (n == 0) tp else tp match { case tp @ RefinedType(parent, pname) if pname == tparams(n - 1).name => val res = stripArgs(parent, n - 1) if (res.exists) argBuf += tp.refinedInfo.argInfo res case _ => NoType } val res = stripArgs(tp, tparams.length) if (res.exists) Some((res, argBuf.toList)) else None } case _ => None } } /** Adapt all arguments to possible higher-kinded type parameters using adaptIfHK */ def adaptArgs(tparams: List[Symbol], args: List[Type])(implicit ctx: Context): List[Type] = if (tparams.isEmpty) args else args.zipWithConserve(tparams)((arg, tparam) => arg.adaptIfHK(tparam.infoOrCompleter)) def argRefs(rt: RefinedType, n: Int)(implicit ctx: Context) = List.range(0, n).map(i => RefinedThis(rt).select(tpnme.hkArg(i))) } import TypeApplications._ /** A decorator that provides methods for modeling type application */ class TypeApplications(val self: Type) extends AnyVal { /** The type parameters of this type are: * For a ClassInfo type, the type parameters of its class. * For a typeref referring to a class, the type parameters of the class. * For a typeref referring to a Lambda class, the type parameters of * its right hand side or upper bound. * For a refinement type, the type parameters of its parent, dropping * any type parameter that is-rebound by the refinement. "Re-bind" means: * The refinement contains a TypeAlias for the type parameter, or * it introduces bounds for the type parameter, and we are not in the * special case of a type Lambda, where a LambdaTrait gets refined * with the bounds on its hk args. See `LambdaAbstract`, where these * types get introduced, and see `isBoundedLambda` below for the test. */ final def typeParams(implicit ctx: Context): List[TypeSymbol] = /*>|>*/ track("typeParams") /*<|<*/ { self match { case self: ClassInfo => self.cls.typeParams case self: TypeRef => val tsym = self.symbol if (tsym.isClass) tsym.typeParams else if (tsym.isAliasType) self.underlying.typeParams else if (tsym.isCompleting) // We are facing a problem when computing the type parameters of an uncompleted // abstract type. We can't access the bounds of the symbol yet because that // would cause a cause a cyclic reference. So we return `Nil` instead // and try to make up for it later. The acrobatics in Scala2Unpicker#readType // for reading a TypeRef show what's neeed. Nil else tsym.info.typeParams case self: RefinedType => val hkParams = self.hkTypeParams if (hkParams.nonEmpty) hkParams else self.parent.typeParams.filterNot(_.name == self.refinedName) case self: SingletonType => Nil case self: TypeProxy => self.underlying.typeParams case _ => Nil } } /** The higherkinded type parameters in case this is a type lambda * * [X1, ..., Xn] -> T * * These are the parameters of the underlying lambda class. * Returns `Nil` for all other types. */ final def hkTypeParams(implicit ctx: Context): List[TypeSymbol] = self.LambdaTrait.typeParams /** The Lambda trait underlying a type lambda */ def LambdaTrait(implicit ctx: Context): Symbol = self.stripTypeVar match { case RefinedType(parent, tpnme.hkApply) => val sym = self.classSymbol if (sym.isLambdaTrait) sym else NoSymbol case TypeBounds(lo, hi) => hi.LambdaTrait case _ => NoSymbol } /** A type ref is eta expandable if it refers to a non-lambda class. * In that case we can look for parameterized base types fo the type * to eta expand them. */ def isEtaExpandable(implicit ctx: Context) = self match { case self: TypeRef => self.symbol.isClass && !self.name.isLambdaTraitName case _ => false } /** Lambda abstract `self` with given type parameters. Examples: * * type T[X] = U becomes type T = [X] -> U * type T[X] >: L <: U becomes type T >: L <: ([X] -> _ <: U) */ def LambdaAbstract(tparams: List[Symbol])(implicit ctx: Context): Type = { def internalize[T <: Type](tp: T) = (rt: RefinedType) => new ctx.SafeSubstMap(tparams, argRefs(rt, tparams.length)) .apply(tp).asInstanceOf[T] def expand(tp: Type) = { TypeLambda( tparams.map(_.variance), tparams.map(tparam => internalize(self.memberInfo(tparam).bounds)), internalize(tp)) } self match { case self: TypeAlias => self.derivedTypeAlias(expand(self.alias)) case self @ TypeBounds(lo, hi) => self.derivedTypeBounds(lo, expand(TypeBounds.upper(hi))) case _ => expand(self) } } /* def betaReduce(implicit ctx: Context): Type = self.stripTypeVar match { case TypeRef(prefix, tpnme.hkApply) => prefix.betaReduce case self @ RefinedType(parent, tpnme.hkArg) if parent.isTypeLambda => HKApplication(parent, self.refinedInfo.dropAlias) } */ /** Adapt argument A to type parameter P in the case P is higher-kinded. * This means: * (1) Make sure that A is a type lambda, if necessary by eta-expanding it. * (2) Make sure the variances of the type lambda * agrees with variances of corresponding higherkinded type parameters. Example: * * class Companion[+CC[X]] * Companion[List] * * with adaptArgs, this will expand to * * Companion[[X] => List[X]] * * instead of * * Companion[[+X] => List[X]] * * even though `List` is covariant. This adaptation is necessary to ignore conflicting * variances in overriding members that have types of hk-type parameters such as `Companion[GenTraversable]` * or `Companion[ListBuffer]`. Without the adaptation we would end up with * * Companion[[+X] => GenTraversable[X]] * Companion[[X] => List[X]] * * and the second is not a subtype of the first. So if we have overridding memebrs of the two * types we get an error. */ def adaptIfHK(bound: Type)(implicit ctx: Context): Type = { val boundLambda = bound.LambdaTrait val hkParams = boundLambda.typeParams if (hkParams.isEmpty) self else self match { case self: TypeRef if self.symbol.isClass && self.typeParams.length == hkParams.length => EtaExpansion(self).adaptIfHK(bound) case _ => def adaptArg(arg: Type): Type = arg match { case arg: TypeRef if arg.symbol.isLambdaTrait && !arg.symbol.typeParams.corresponds(boundLambda.typeParams)(_.variance == _.variance) => arg.prefix.select(boundLambda) case arg: RefinedType => arg.derivedRefinedType(adaptArg(arg.parent), arg.refinedName, arg.refinedInfo) case _ => arg } adaptArg(self) } } /* /** If type `self` is equal, aliased-to, or upperbounded-by a type of the form * `LambdaXYZ { ... }`, the class symbol of that type, otherwise NoSymbol. * symbol of that type, otherwise NoSymbol. * @param forcing if set, might force completion. If not, never forces * but returns NoSymbol when it would have to otherwise. */ def LambdaClass(forcing: Boolean)(implicit ctx: Context): Symbol = track("LambdaClass") { self.stripTypeVar match { case self: TypeRef => val sym = self.symbol if (sym.isLambdaTrait) sym else if (sym.isClass || sym.isCompleting && !forcing) NoSymbol else self.info.LambdaClass(forcing) case self: TypeProxy => self.underlying.LambdaClass(forcing) case _ => NoSymbol }} /** Is type `self` equal, aliased-to, or upperbounded-by a type of the form * `LambdaXYZ { ... }`? */ def isLambda(implicit ctx: Context): Boolean = LambdaClass(forcing = true).exists /** Same is `isLambda`, except that symbol denotations are not forced * Symbols in completion count as not lambdas. */ def isSafeLambda(implicit ctx: Context): Boolean = LambdaClass(forcing = false).exists /** Is type `self` a Lambda with all hk$i fields fully instantiated? */ def isInstantiatedLambda(implicit ctx: Context): Boolean = isSafeLambda && typeParams.isEmpty */ /** Is receiver type higher-kinded (i.e. of kind != "*")? */ def isHK(implicit ctx: Context): Boolean = self.dealias match { case self: TypeRef => self.info.isHK case RefinedType(_, name) => name == tpnme.hkApply case TypeBounds(_, hi) => hi.isHK case _ => false } /** is receiver of the form T#$apply? */ def isHKApply: Boolean = self match { case TypeRef(_, name) => name == tpnme.hkApply case _ => false } /** True if it can be determined without forcing that the class symbol * of this application exists and is not a lambda trait. * Equivalent to * * self.classSymbol.exists && !self.classSymbol.isLambdaTrait * * but without forcing anything. */ def classNotLambda(implicit ctx: Context): Boolean = self.stripTypeVar match { case self: RefinedType => self.parent.classNotLambda case self: TypeRef => self.denot.exists && { val sym = self.symbol if (sym.isClass) !sym.isLambdaTrait else sym.isCompleted && self.info.isAlias && self.info.bounds.hi.classNotLambda } case _ => false } /** Encode the type resulting from applying this type to given arguments */ final def appliedTo(args: List[Type])(implicit ctx: Context): Type = /*>|>*/ track("appliedTo") /*<|<*/ { def substHkArgs = new TypeMap { def apply(tp: Type): Type = tp match { case TypeRef(RefinedThis(rt), name) if rt.eq(self) && name.isHkArgName => args(name.hkArgIndex) case _ => mapOver(tp) } } if (args.isEmpty || ctx.erasedTypes) self else self.stripTypeVar match { case EtaExpansion(self1) => self1.appliedTo(args) case TypeLambda(_, _, body) if !args.exists(_.isInstanceOf[TypeBounds]) => substHkArgs(body) case self: PolyType => self.instantiate(args) case _ => appliedTo(args, typeParams) } } def appliedTo(args: List[Type], typParams: List[TypeSymbol])(implicit ctx: Context): Type = { def matchParams(t: Type, tparams: List[TypeSymbol], args: List[Type])(implicit ctx: Context): Type = args match { case arg :: args1 => try { val tparam :: tparams1 = tparams matchParams(RefinedType(t, tparam.name, arg.toBounds(tparam)), tparams1, args1) } catch { case ex: MatchError => println(s"applied type mismatch: $self $args, typeParams = $typParams") // !!! DEBUG //println(s"precomplete decls = ${self.typeSymbol.unforcedDecls.toList.map(_.denot).mkString("\n ")}") throw ex } case nil => t } assert(args.nonEmpty) matchParams(self, typParams, args) match { case refined @ RefinedType(_, pname) if pname.isHkArgName => TypeRef(refined, tpnme.hkApply) case refined => refined } } final def appliedTo(arg: Type)(implicit ctx: Context): Type = appliedTo(arg :: Nil) final def appliedTo(arg1: Type, arg2: Type)(implicit ctx: Context): Type = appliedTo(arg1 :: arg2 :: Nil) final def safeAppliedTo(args: List[Type])(implicit ctx: Context) = { val safeTypeParams = self match { case self: TypeRef if !self.symbol.isClass && self.symbol.isCompleting => // This happens when unpickling e.g. scala$collection$generic$GenMapFactory$$CC ctx.warning(i"encountered F-bounded higher-kinded type parameters for ${self.symbol}; assuming they are invariant") defn.LambdaTrait(args map alwaysZero).typeParams case _ => typeParams } appliedTo(args, safeTypeParams) } /* /** Simplify a fully instantiated type of the form `LambdaX{... type Apply = T } # Apply` to `T`. */ def simplifyApply(implicit ctx: Context): Type = self match { case self @ TypeRef(prefix, tpnme.hkApply) if prefix.isInstantiatedLambda => prefix.member(tpnme.hkApply).info match { case TypeAlias(alias) => alias case _ => self } case _ => self } */ /** Turn this type, which is used as an argument for * type parameter `tparam`, into a TypeBounds RHS */ final def toBounds(tparam: Symbol)(implicit ctx: Context): TypeBounds = self match { case self: TypeBounds => // this can happen for wildcard args self case _ => val v = tparam.variance if (v > 0 && !(tparam is Local) && !(tparam is ExpandedTypeParam)) TypeBounds.upper(self) else if (v < 0 && !(tparam is Local) && !(tparam is ExpandedTypeParam)) TypeBounds.lower(self) else TypeAlias(self, v) } /** The type arguments of this type's base type instance wrt.`base`. * Existential types in arguments are returned as TypeBounds instances. */ final def baseArgInfos(base: Symbol)(implicit ctx: Context): List[Type] = if (self derivesFrom base) base.typeParams map (param => self.member(param.name).info.argInfo) else Nil /** The type arguments of this type's base type instance wrt.`base`. * Existential types in arguments are disallowed. */ final def baseArgTypes(base: Symbol)(implicit ctx: Context): List[Type] = baseArgInfos(base) mapConserve noBounds /** The type arguments of this type's base type instance wrt.`base`. * Existential types in arguments are approximated by their lower bound. */ final def baseArgTypesLo(base: Symbol)(implicit ctx: Context): List[Type] = baseArgInfos(base) mapConserve boundsToLo /** The type arguments of this type's base type instance wrt.`base`. * Existential types in arguments are approximated by their upper bound. */ final def baseArgTypesHi(base: Symbol)(implicit ctx: Context): List[Type] = baseArgInfos(base) mapConserve boundsToHi /** The first type argument of the base type instance wrt `base` of this type */ final def firstBaseArgInfo(base: Symbol)(implicit ctx: Context): Type = base.typeParams match { case param :: _ if self derivesFrom base => self.member(param.name).info.argInfo case _ => NoType } /** The base type including all type arguments and applicable refinements * of this type. Refinements are applicable if they refine a member of * the parent type which furthermore is not a name-mangled type parameter. * Existential types in arguments are returned as TypeBounds instances. */ final def baseTypeWithArgs(base: Symbol)(implicit ctx: Context): Type = ctx.traceIndented(s"btwa ${self.show} wrt $base", core, show = true) { def default = self.baseTypeRef(base).appliedTo(baseArgInfos(base)) self match { case tp: TypeRef => tp.info match { case TypeBounds(_, hi) => hi.baseTypeWithArgs(base) case _ => default } case tp @ RefinedType(parent, name) if !tp.member(name).symbol.is(ExpandedTypeParam) => tp.wrapIfMember(parent.baseTypeWithArgs(base)) case tp: TermRef => tp.underlying.baseTypeWithArgs(base) case AndType(tp1, tp2) => tp1.baseTypeWithArgs(base) & tp2.baseTypeWithArgs(base) case OrType(tp1, tp2) => tp1.baseTypeWithArgs(base) | tp2.baseTypeWithArgs(base) case _ => default } } /** Translate a type of the form From[T] to To[T], keep other types as they are. * `from` and `to` must be static classes, both with one type parameter, and the same variance. * Do the same for by name types => From[T] and => To[T] */ def translateParameterized(from: ClassSymbol, to: ClassSymbol)(implicit ctx: Context): Type = self match { case self @ ExprType(tp) => self.derivedExprType(tp.translateParameterized(from, to)) case _ => if (self.derivesFrom(from)) if (ctx.erasedTypes) to.typeRef else RefinedType(to.typeRef, to.typeParams.head.name, self.member(from.typeParams.head.name).info) else self } /** If this is repeated parameter type, its underlying Seq type, * or, if isJava is true, Array type, else the type itself. */ def underlyingIfRepeated(isJava: Boolean)(implicit ctx: Context): Type = if (self.isRepeatedParam) { val seqClass = if (isJava) defn.ArrayClass else defn.SeqClass translateParameterized(defn.RepeatedParamClass, seqClass) } else self /** If this is an encoding of a (partially) applied type, return its arguments, * otherwise return Nil. * Existential types in arguments are returned as TypeBounds instances. */ final def argInfos(implicit ctx: Context): List[Type] = self match { case AppliedType(tycon, args) => args case _ => Nil } /** Argument types where existential types in arguments are disallowed */ def argTypes(implicit ctx: Context) = argInfos mapConserve noBounds /** Argument types where existential types in arguments are approximated by their lower bound */ def argTypesLo(implicit ctx: Context) = argInfos mapConserve boundsToLo /** Argument types where existential types in arguments are approximated by their upper bound */ def argTypesHi(implicit ctx: Context) = argInfos mapConserve boundsToHi /** The core type without any type arguments. * @param `typeArgs` must be the type arguments of this type. */ final def withoutArgs(typeArgs: List[Type]): Type = typeArgs match { case _ :: typeArgs1 => val RefinedType(tycon, _) = self tycon.withoutArgs(typeArgs1) case nil => self } final def typeConstructor(implicit ctx: Context): Type = self.stripTypeVar match { case AppliedType(tycon, _) => tycon case self => self } /** If this is the image of a type argument; recover the type argument, * otherwise NoType. */ final def argInfo(implicit ctx: Context): Type = self match { case self: TypeAlias => self.alias case self: TypeBounds => self case _ => NoType } def dropAlias(implicit ctx: Context): Type = self match { case TypeAlias(alias) => alias case _ => self } /** The element type of a sequence or array */ def elemType(implicit ctx: Context): Type = self match { case defn.ArrayOf(elemtp) => elemtp case JavaArrayType(elemtp) => elemtp case _ => firstBaseArgInfo(defn.SeqClass) } def containsRefinedThis(target: Type)(implicit ctx: Context): Boolean = { def recur(tp: Type): Boolean = tp.stripTypeVar match { case RefinedThis(tp) => tp eq target case tp: NamedType => if (tp.symbol.isClass) !tp.symbol.isStatic && recur(tp.prefix) else tp.info match { case TypeAlias(alias) => recur(alias) case _ => recur(tp.prefix) } case tp: RefinedType => recur(tp.refinedInfo) || recur(tp.parent) case tp: TypeBounds => recur(tp.lo) || recur(tp.hi) case tp: AnnotatedType => recur(tp.underlying) case tp: AndOrType => recur(tp.tp1) || recur(tp.tp2) case _ => false } recur(self) } /* /** The typed lambda abstraction of this type `T` relative to `boundSyms`. * This is: * * LambdaXYZ{ bounds }{ type Apply = toHK(T) } * * where * - XYZ reflects the variances of the bound symbols, * - `bounds` consists of type declarations `type hk$i >: toHK(L) <: toHK(U), * one for each type parameter in `T` with non-trivial bounds L,U. * - `toHK` is a substitution that replaces every bound symbol sym_i by * `this.hk$i`. * * TypeBounds are lambda abstracting by lambda abstracting their upper bound. * * @param cycleParanoid If `true` don't force denotation of a TypeRef unless * its name matches one of `boundSyms`. Needed to avoid cycles * involving F-boundes hk-types when reading Scala2 collection classes * with new hk-scheme. */ def LambdaAbstract(boundSyms: List[Symbol], cycleParanoid: Boolean = false)(implicit ctx: Context): Type = { def expand(tp: Type): Type = { val lambda = defn.LambdaTrait(boundSyms.map(_.variance)) def toHK(tp: Type) = (rt: RefinedType) => { val argRefs = boundSyms.indices.toList.map(i => RefinedThis(rt).select(tpnme.hkArg(i))) val substituted = if (cycleParanoid) new ctx.SafeSubstMap(boundSyms, argRefs).apply(tp) else tp.subst(boundSyms, argRefs) substituted.bounds.withVariance(1) } val boundNames = new mutable.ListBuffer[Name] val boundss = new mutable.ListBuffer[TypeBounds] for (sym <- boundSyms) { val bounds = sym.info.bounds if (!(TypeBounds.empty frozen_<:< bounds)) { boundNames += sym.name boundss += bounds } } val lambdaWithBounds = RefinedType.make(lambda.typeRef, boundNames.toList, boundss.toList.map(toHK)) RefinedType(lambdaWithBounds, tpnme.hkApply, toHK(tp)) } self match { case self @ TypeBounds(lo, hi) => self.derivedTypeBounds(lo, expand(TypeBounds.upper(hi))) case _ => expand(self) } } */ /** Convert a type constructor `TC` which has type parameters `T1, ..., Tn` * in a context where type parameters `U1,...,Un` are expected to * * LambdaXYZ { Apply = TC[hk$0, ..., hk$n] } * * Here, XYZ corresponds to the variances of * - `U1,...,Un` if the variances of `T1,...,Tn` are pairwise compatible with `U1,...,Un`, * - `T1,...,Tn` otherwise. * v1 is compatible with v2, if v1 = v2 or v2 is non-variant. */ def EtaExpand(tparams: List[TypeSymbol])(implicit ctx: Context): Type = { val tparamsToUse = if (variancesConform(typeParams, tparams)) tparams else typeParams self.appliedTo(tparams map (_.typeRef)).LambdaAbstract(tparamsToUse) //.ensuring(res => res.EtaReduce =:= self, s"res = $res, core = ${res.EtaReduce}, self = $self, hc = ${res.hashCode}") } /* /** Eta expand if `bound` is a higher-kinded type */ def EtaExpandIfHK(bound: Type)(implicit ctx: Context): Type = if (bound.isHK && !isHK && self.typeSymbol.isClass && typeParams.nonEmpty) EtaExpand(bound.typeParams) else self */ /** Eta expand the prefix in front of any refinements. */ def EtaExpandCore(implicit ctx: Context): Type = self.stripTypeVar match { case self: RefinedType => self.derivedRefinedType(self.parent.EtaExpandCore, self.refinedName, self.refinedInfo) case _ => self.EtaExpand(self.typeParams) } /* /** If `self` is a (potentially partially instantiated) eta expansion of type T, return T, * otherwise NoType. More precisely if `self` is of the form * * T { type $apply = U[T1, ..., Tn] } * * where * * - hk$0, ..., hk${m-1} are the type parameters of T * - a sublist of the arguments Ti_k (k = 0,...,m_1) are of the form T{...}.this.hk$i_k * * rewrite `self` to * * U[T'1,...T'j] * * where * * T'j = _ >: Lj <: Uj if j is in the i_k list defined above * where Lj and Uj are the bounds of hk$j mapped using `fromHK`. * = fromHK(Tj) otherwise. * * `fromHK` is the function that replaces every occurrence of `.this.hk$i` by the * corresponding parameter reference in `U[T'1,...T'j]` */ def EtaReduce(implicit ctx: Context): Type = { def etaCore(tp: Type, tparams: List[Symbol]): Type = tparams match { case Nil => tp case tparam :: otherParams => tp match { case tp: RefinedType => tp.refinedInfo match { case TypeAlias(TypeRef(RefinedThis(rt), rname)) if (rname == tparam.name) && (rt eq self) => // we have a binding T = Lambda$XYZ{...}.this.hk$i where hk$i names the current `tparam`. val pcore = etaCore(tp.parent, otherParams) val hkBounds = self.member(rname).info.bounds if (TypeBounds.empty frozen_<:< hkBounds) pcore else tp.derivedRefinedType(pcore, tp.refinedName, hkBounds) case _ => val pcore = etaCore(tp.parent, tparams) if (pcore.exists) tp.derivedRefinedType(pcore, tp.refinedName, tp.refinedInfo) else NoType } case _ => NoType } } // Map references `Lambda$XYZ{...}.this.hk$i to corresponding parameter references of the reduced core. def fromHK(reduced: Type) = reduced match { case reduced: RefinedType => new TypeMap { def apply(tp: Type): Type = tp match { case TypeRef(RefinedThis(binder), name) if binder eq self => assert(name.isHkArgName) RefinedThis(reduced).select(reduced.typeParams.apply(name.hkArgIndex)) case _ => mapOver(tp) } }.apply(reduced) case _ => reduced } self match { case self @ RefinedType(parent, tpnme.hkApply) => val lc = parent.LambdaClass(forcing = false) self.refinedInfo match { case TypeAlias(alias) if lc.exists => fromHK(etaCore(alias, lc.typeParams.reverse)) case _ => NoType } case _ => NoType } } /** Test whether this type has a base type of the form `B[T1, ..., Tn]` where * the type parameters of `B` match one-by-one the variances of `tparams`, * and where the lambda abstracted type * * LambdaXYZ { type Apply = B[hk$0, ..., hk${n-1}] } * { type hk$0 = T1; ...; type hk${n-1} = Tn } * * satisfies predicate `p`. Try base types in the order of their occurrence in `baseClasses`. * A type parameter matches a variance V if it has V as its variance or if V == 0. * @param classBounds A hint to bound the search. Only types that derive from one of the * classes in classBounds are considered. */ def testLifted(tparams: List[Symbol], p: Type => Boolean, classBounds: List[ClassSymbol] = Nil)(implicit ctx: Context): Boolean = { def recur(bcs: List[ClassSymbol]): Boolean = bcs match { case bc :: bcs1 => val baseRef = self.baseTypeRef(bc) def variancesMatch(param1: Symbol, param2: Symbol) = param2.variance == param2.variance || param2.variance == 0 (classBounds.exists(bc.derivesFrom) && baseRef.typeParams.corresponds(tparams)(variancesMatch) && p(baseRef.appliedTo(self.baseArgInfos(bc))) || recur(bcs1)) case nil => false } classBounds.nonEmpty && recur(self.baseClasses) } */ }