package dotty.tools.dotc package transform import TreeTransforms._ import core.DenotTransformers._ import core.Symbols._ import core.Contexts._ import core.Types._ import core.Flags._ import core.Decorators._ import core.StdNames.nme import core.Names._ import core.NameOps._ import core.Phases._ import ast.Trees._ import SymUtils._ import ExplicitOuter.outer import util.Attachment import util.NameTransformer import util.Positions._ import collection.{ mutable, immutable } import collection.mutable.{ HashMap, HashSet, LinkedHashMap, LinkedHashSet, TreeSet } object LambdaLift { private val NJ = NameTransformer.NAME_JOIN_STRING private class NoPath extends Exception } class LambdaLift extends MiniPhase with IdentityDenotTransformer { thisTransform => import LambdaLift._ import ast.tpd._ /** the following two members override abstract members in Transform */ val phaseName: String = "lambdaLift" val treeTransform = new LambdaLifter override def relaxedTyping = true override def runsAfter: Set[Class[_ <: Phase]] = Set(classOf[Constructors]) // Constructors has to happen before LambdaLift because the lambda lift logic // becomes simpler if it can assume that parameter accessors have already been // converted to parameters in super calls. Without this it is very hard to get // lambda lift for super calls right. Witness the implementation restrictions to // this effect in scalac. class LambdaLifter extends TreeTransform { override def phase = thisTransform private type SymSet = TreeSet[Symbol] /** A map storing free variables of functions and classes */ private val free = new LinkedHashMap[Symbol, SymSet] /** A map storing the free variable proxies of functions and classes. * For every function and class, this is a map from the free variables * of that function or class to the proxy symbols accessing them. */ private val proxyMap = new LinkedHashMap[Symbol, Map[Symbol, Symbol]] /** A hashtable storing calls between functions */ private val called = new LinkedHashMap[Symbol, SymSet] /** Symbols that are called from an inner class. */ private val calledFromInner = new HashSet[Symbol] /** A map from local methods and classes to the owners to which they will be lifted as members. * For methods and classes that do not have any dependencies this will be the enclosing package. * symbols with packages as lifted owners will subsequently represented as static * members of their toplevel class, unless their enclosing class was already static. */ private val liftedOwner = new HashMap[Symbol, Symbol] /** Buffers for lifted out classes and methods, indexed by owner */ private val liftedDefs = new HashMap[Symbol, mutable.ListBuffer[Tree]] /** A flag to indicate whether new free variables have been found */ private var changedFreeVars: Boolean = _ /** A flag to indicate whether lifted owners have changed */ private var changedLiftedOwner: Boolean = _ private val ord: Ordering[Symbol] = Ordering.by((_: Symbol).id) // Dotty deviation: Type annotation needed. TODO: figure out why private def newSymSet = TreeSet.empty[Symbol](ord) private def symSet(f: LinkedHashMap[Symbol, SymSet], sym: Symbol): SymSet = f.getOrElseUpdate(sym, newSymSet) def proxies(sym: Symbol): List[Symbol] = { val pm: Map[Symbol, Symbol] = proxyMap.getOrElse(sym, Map.empty) // Dotty deviation: Type annotation needed. TODO: figure out why free.getOrElse(sym, Nil).toList.map(pm) } /** Set `liftedOwner(sym)` to `owner` if `owner` is more deeply nested * than the previous value of `liftedowner(sym)`. */ def narrowLiftedOwner(sym: Symbol, owner: Symbol)(implicit ctx: Context) = { if (sym.maybeOwner.isTerm && owner.isProperlyContainedIn(liftedOwner(sym)) && owner != sym) { ctx.log(i"narrow lifted $sym to $owner") changedLiftedOwner = true liftedOwner(sym) = owner } } /** Mark symbol `sym` as being free in `enclosure`, unless `sym` is defined * in `enclosure` or there is an intermediate class properly containing `enclosure` * in which `sym` is also free. Also, update `liftedOwner` of `enclosure` so * that `enclosure` can access `sym`, or its proxy in an intermediate class. * This means: * * 1. If there is an intermediate class in which `sym` is free, `enclosure` * must be contained in that class (in order to access the `sym proxy stored * in the class). * * 2. If there is no intermediate class, `enclosure` must be contained * in the class enclosing `sym`. * * Return the closest enclosing intermediate class between `enclosure` and * the owner of sym, or NoSymbol if none exists. * * pre: sym.owner.isTerm, (enclosure.isMethod || enclosure.isClass) * * The idea of `markFree` is illustrated with an example: * * def f(x: int) = { * class C { * class D { * val y = x * } * } * } * * In this case `x` is free in the primary constructor of class `C`. * but it is not free in `D`, because after lambda lift the code would be transformed * as follows: * * def f(x$0: int) { * class C(x$0: int) { * val x$1 = x$0 * class D { * val y = outer.x$1 * } * } * } */ private def markFree(sym: Symbol, enclosure: Symbol)(implicit ctx: Context): Symbol = try { if (!enclosure.exists) throw new NoPath if (enclosure == sym.enclosure) NoSymbol else { ctx.log(i"mark free: ${sym.showLocated} with owner ${sym.maybeOwner} marked free in $enclosure") ctx.debuglog(i"$enclosure != ${sym.enclosure}") val intermediate = if (enclosure.is(PackageClass)) enclosure else markFree(sym, enclosure.skipConstructor.enclosure) // `enclosure` might be a constructor, in which case we want the enclosure // of the enclosing class, so skipConstructor is needed here. if (intermediate.exists) { narrowLiftedOwner(enclosure, intermediate) intermediate } else { narrowLiftedOwner(enclosure, sym.enclosingClass) val ss = symSet(free, enclosure) if (!ss(sym)) { ss += sym changedFreeVars = true ctx.debuglog(i"$sym is free in $enclosure") } if (enclosure.isClass) enclosure else NoSymbol } } } catch { case ex: NoPath => println(i"error lambda lifting ${ctx.compilationUnit}: $sym is not visible from $enclosure") throw ex } private def markCalled(callee: Symbol, caller: Symbol)(implicit ctx: Context): Unit = { ctx.debuglog(i"mark called: $callee of ${callee.owner} is called by $caller") assert(callee.skipConstructor.owner.isTerm) symSet(called, caller) += callee if (callee.enclosingClass != caller.enclosingClass) calledFromInner += callee } private class CollectDependencies extends EnclosingMethodTraverser { def traverse(enclMeth: Symbol, tree: Tree)(implicit ctx: Context) = try { //debug val enclosure = enclMeth.skipConstructor val sym = tree.symbol def narrowTo(thisClass: ClassSymbol) = { val enclClass = enclosure.enclosingClass narrowLiftedOwner(enclosure, if (enclClass.isContainedIn(thisClass)) thisClass else enclClass) // unknown this reference, play it safe and assume the narrowest possible owner } tree match { case tree: Ident => if (sym.maybeOwner.isTerm) { if (sym is Label) assert(enclosure == sym.enclosure, i"attempt to refer to label $sym from nested $enclosure") else if (sym is Method) markCalled(sym, enclosure) else if (sym.isTerm) markFree(sym, enclosure) } else if (sym.maybeOwner.isClass) narrowTo(sym.owner.asClass) case tree: Select => if (sym.isConstructor && sym.owner.owner.isTerm) markCalled(sym, enclosure) case tree: This => narrowTo(tree.symbol.asClass) case tree: DefDef => if (sym.owner.isTerm && !sym.is(Label)) liftedOwner(sym) = sym.enclosingClass.topLevelClass // this will make methods in supercall constructors of top-level classes owned // by the enclosing package, which means they will be static. // On the other hand, all other methods will be indirectly owned by their // top-level class. This avoids possible deadlocks when a static method // has to access its enclosing object from the outside. else if (sym.isPrimaryConstructor && sym.owner.owner.isTerm) symSet(called, sym) += sym.owner case tree: TypeDef => if (sym.owner.isTerm) liftedOwner(sym) = sym.topLevelClass.owner case tree: Template => liftedDefs(tree.symbol.owner) = new mutable.ListBuffer case _ => } foldOver(enclosure, tree) } catch { //debug case ex: Exception => println(i"$ex while traversing $tree") throw ex } } /** Compute final free variables map `fvs by closing over caller dependencies. */ private def computeFreeVars()(implicit ctx: Context): Unit = do { changedFreeVars = false for { caller <- called.keys callee <- called(caller) fvs <- free get callee fv <- fvs } markFree(fv, caller) } while (changedFreeVars) /** Compute final liftedOwner map by closing over caller dependencies */ private def computeLiftedOwners()(implicit ctx: Context): Unit = do { changedLiftedOwner = false for { caller <- called.keys callee <- called(caller) } narrowLiftedOwner(caller, liftedOwner(callee.skipConstructor)) } while (changedLiftedOwner) private def newName(sym: Symbol)(implicit ctx: Context): Name = { def freshen(prefix: String): Name = { val fname = ctx.freshName(prefix) if (sym.isType) fname.toTypeName else fname.toTermName } if (sym.isAnonymousFunction && sym.owner.is(Method, butNot = Label)) freshen(sym.name.toString ++ NJ ++ sym.owner.name ++ NJ) else if (sym is ModuleClass) freshen(sym.sourceModule.name.toString ++ NJ).moduleClassName else freshen(sym.name.toString ++ NJ) } private def generateProxies()(implicit ctx: Context): Unit = for ((owner, freeValues) <- free.toIterator) { val newFlags = Synthetic | (if (owner.isClass) ParamAccessor | Private else Param) ctx.debuglog(i"free var proxy: ${owner.showLocated}, ${freeValues.toList}%, %") proxyMap(owner) = { for (fv <- freeValues.toList) yield { val proxyName = newName(fv) val proxy = ctx.newSymbol(owner, proxyName.asTermName, newFlags, fv.info, coord = fv.coord) if (owner.isClass) proxy.enteredAfter(thisTransform) (fv, proxy) } }.toMap } private def liftedInfo(local: Symbol)(implicit ctx: Context): Type = local.info match { case mt @ MethodType(pnames, ptypes) => val ps = proxies(local.skipConstructor) MethodType( ps.map(_.name.asTermName) ++ pnames, ps.map(_.info) ++ ptypes, mt.resultType) case info => info } private def liftLocals()(implicit ctx: Context): Unit = { for ((local, lOwner) <- liftedOwner) { val (newOwner, maybeStatic) = if (lOwner is Package) { val encClass = local.enclosingClass val topClass = local.topLevelClass // member of a static object if (encClass.isStatic && encClass.isProperlyContainedIn(topClass)) { // though the second condition seems weird, it's not true for symbols which are defined in some // weird combinations of super calls. (encClass, EmptyFlags) } else (topClass, JavaStatic) } else (lOwner, EmptyFlags) local.copySymDenotation( owner = newOwner, name = newName(local), initFlags = local.flags &~ InSuperCall | Private | maybeStatic, info = liftedInfo(local)).installAfter(thisTransform) if (local.isClass) for (member <- local.asClass.info.decls) if (member.isConstructor) { val linfo = liftedInfo(member) if (linfo ne member.info) member.copySymDenotation(info = linfo).installAfter(thisTransform) } } } private def init(implicit ctx: Context) = { (new CollectDependencies).traverse(NoSymbol, ctx.compilationUnit.tpdTree) computeFreeVars() computeLiftedOwners() generateProxies()(ctx.withPhase(thisTransform.next)) liftLocals()(ctx.withPhase(thisTransform.next)) } override def prepareForUnit(tree: Tree)(implicit ctx: Context) = { val lifter = new LambdaLifter lifter.init(ctx.withPhase(thisTransform)) lifter } private def currentEnclosure(implicit ctx: Context) = ctx.owner.enclosingMethod.skipConstructor private def inCurrentOwner(sym: Symbol)(implicit ctx: Context) = sym.enclosure == currentEnclosure private def proxy(sym: Symbol)(implicit ctx: Context): Symbol = { def searchIn(enclosure: Symbol): Symbol = { if (!enclosure.exists) { def enclosures(encl: Symbol): List[Symbol] = if (encl.exists) encl :: enclosures(encl.enclosure) else Nil throw new IllegalArgumentException(i"Could not find proxy for ${sym.showDcl} in ${sym.ownersIterator.toList}, encl = $currentEnclosure, owners = ${currentEnclosure.ownersIterator.toList}%, %; enclosures = ${enclosures(currentEnclosure)}%, %") } ctx.debuglog(i"searching for $sym(${sym.owner}) in $enclosure") proxyMap get enclosure match { case Some(pmap) => pmap get sym match { case Some(proxy) => return proxy case none => } case none => } searchIn(enclosure.enclosure) } if (inCurrentOwner(sym)) sym else searchIn(currentEnclosure) } private def memberRef(sym: Symbol)(implicit ctx: Context, info: TransformerInfo): Tree = { val clazz = sym.enclosingClass val qual = if (clazz.isStaticOwner) singleton(clazz.thisType) else outer.path(clazz) transformFollowingDeep(qual.select(sym)) } private def proxyRef(sym: Symbol)(implicit ctx: Context, info: TransformerInfo): Tree = { val psym = proxy(sym)(ctx.withPhase(thisTransform)) transformFollowingDeep(if (psym.owner.isTerm) ref(psym) else memberRef(psym)) } private def addFreeArgs(sym: Symbol, args: List[Tree])(implicit ctx: Context, info: TransformerInfo) = free get sym match { case Some(fvs) => fvs.toList.map(proxyRef(_)) ++ args case _ => args } private def addFreeParams(tree: Tree, proxies: List[Symbol])(implicit ctx: Context, info: TransformerInfo): Tree = proxies match { case Nil => tree case proxies => val sym = tree.symbol val ownProxies = if (!sym.isConstructor) proxies else proxies.map(_.copy(owner = sym, flags = Synthetic | Param)) val freeParamDefs = ownProxies.map(proxy => transformFollowingDeep(ValDef(proxy.asTerm).withPos(tree.pos)).asInstanceOf[ValDef]) def proxyInit(field: Symbol, param: Symbol) = transformFollowingDeep(ref(field).becomes(ref(param))) def copyParams(rhs: Tree) = { ctx.log(i"copy params ${proxies.map(_.showLocated)}%, %, own = ${ownProxies.map(_.showLocated)}%, %") seq((proxies, ownProxies).zipped.map(proxyInit), rhs) } tree match { case tree: DefDef => cpy.DefDef(tree)( vparamss = tree.vparamss.map(freeParamDefs ++ _), rhs = if (sym.isPrimaryConstructor) copyParams(tree.rhs) else tree.rhs) case tree: Template => cpy.Template(tree)(body = freeParamDefs ++ tree.body) } } private def liftDef(tree: MemberDef)(implicit ctx: Context, info: TransformerInfo): Tree = { val buf = liftedDefs(tree.symbol.owner) transformFollowing(rename(tree, tree.symbol.name)).foreachInThicket(buf += _) EmptyTree } private def needsLifting(sym: Symbol) = liftedOwner contains sym override def transformIdent(tree: Ident)(implicit ctx: Context, info: TransformerInfo) = { val sym = tree.symbol tree.tpe match { case tpe @ TermRef(prefix, _) => if (prefix eq NoPrefix) if (sym.enclosure != currentEnclosure && !sym.isStatic) (if (sym is Method) memberRef(sym) else proxyRef(sym)).withPos(tree.pos) else if (sym.owner.isClass) // sym was lifted out ref(sym).withPos(tree.pos) else tree else if (!prefixIsElidable(tpe)) ref(tpe) else tree case _ => tree } } override def transformApply(tree: Apply)(implicit ctx: Context, info: TransformerInfo) = cpy.Apply(tree)(tree.fun, addFreeArgs(tree.symbol.skipConstructor, tree.args)).withPos(tree.pos) override def transformClosure(tree: Closure)(implicit ctx: Context, info: TransformerInfo) = cpy.Closure(tree)(env = addFreeArgs(tree.meth.symbol, tree.env)) override def transformDefDef(tree: DefDef)(implicit ctx: Context, info: TransformerInfo) = { val sym = tree.symbol val proxyHolder = sym.skipConstructor if (needsLifting(proxyHolder)) { val paramsAdded = addFreeParams(tree, proxies(proxyHolder)).asInstanceOf[DefDef] if (sym.isConstructor) paramsAdded else liftDef(paramsAdded) } else tree } override def transformReturn(tree: Return)(implicit ctx: Context, info: TransformerInfo) = tree.expr match { case Block(stats, value) => Block(stats, Return(value, tree.from)).withPos(tree.pos) case _ => tree } override def transformTemplate(tree: Template)(implicit ctx: Context, info: TransformerInfo) = { val cls = ctx.owner val impl = addFreeParams(tree, proxies(cls)).asInstanceOf[Template] cpy.Template(impl)(body = impl.body ++ liftedDefs.remove(cls).get) } override def transformTypeDef(tree: TypeDef)(implicit ctx: Context, info: TransformerInfo) = if (needsLifting(tree.symbol)) liftDef(tree) else tree } }