aboutsummaryrefslogtreecommitdiff
path: root/src/dotty/tools/backend/sjs/JSCodeGen.scala
blob: 401e017847771a8728fc9721814777fcc5bd3b43 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
package dotty.tools.backend.sjs

import scala.annotation.switch

import scala.collection.mutable

import dotty.tools.FatalError

import dotty.tools.dotc.CompilationUnit
import dotty.tools.dotc.ast.tpd
import dotty.tools.dotc.core.Phases.Phase

import dotty.tools.dotc.core._
import Periods._
import SymDenotations._
import Contexts._
import Decorators._
import Flags._
import dotty.tools.dotc.ast.Trees._
import Types._
import Symbols._
import Denotations._
import Phases._
import StdNames._

import dotty.tools.dotc.transform.Erasure

import org.scalajs.core.ir
import org.scalajs.core.ir.{ClassKind, Position, Trees => js, Types => jstpe}
import js.OptimizerHints

import JSEncoding._
import JSInterop._
import ScopedVar.withScopedVars

/** Main codegen for Scala.js IR.
 *
 *  [[GenSJSIR]] creates one instance of `JSCodeGen` per compilation unit.
 *  The `run()` method processes the whole compilation unit and generates
 *  `.sjsir` files for it.
 *
 *  There are 4 main levels of translation:
 *
 *  - `genCompilationUnit()` iterates through all the type definitions in the
 *    compilation unit. Each generated `js.ClassDef` is serialized to an
 *    `.sjsir` file.
 *  - `genScalaClass()` and other similar methods generate the skeleton of
 *    classes.
 *  - `genMethod()` and similar methods generate the declarations of methods.
 *  - `genStatOrExpr()` and everything else generate the bodies of methods.
 */
class JSCodeGen()(implicit ctx: Context) {
  import tpd._

  private val jsdefn = JSDefinitions.jsdefn
  private val primitives = new JSPrimitives(ctx)

  private val positionConversions = new JSPositions()(ctx)
  import positionConversions.{pos2irPos, implicitPos2irPos}

  // Some state --------------------------------------------------------------

  private val currentClassSym = new ScopedVar[Symbol]
  private val currentMethodSym = new ScopedVar[Symbol]
  private val localNames = new ScopedVar[LocalNameGenerator]
  private val thisLocalVarIdent = new ScopedVar[Option[js.Ident]]
  private val undefinedDefaultParams = new ScopedVar[mutable.Set[Symbol]]

  /** Implicitly materializes the current local name generator. */
  private implicit def implicitLocalNames: LocalNameGenerator = localNames.get

  /* See genSuperCall()
   * TODO Can we avoid this unscoped var?
   */
  private var isModuleInitialized: Boolean = false

  private def currentClassType = encodeClassType(currentClassSym)

  /** Returns a new fresh local identifier. */
  private def freshLocalIdent()(implicit pos: Position): js.Ident =
    localNames.get.freshLocalIdent()

  /** Returns a new fresh local identifier. */
  private def freshLocalIdent(base: String)(implicit pos: Position): js.Ident =
    localNames.get.freshLocalIdent(base)

  // Compilation unit --------------------------------------------------------

  def run(): Unit = {
    genCompilationUnit(ctx.compilationUnit)
  }

  /** Generates the Scala.js IR for a compilation unit
   *  This method iterates over all the class and interface definitions
   *  found in the compilation unit and emits their IR (.sjsir).
   *
   *  Some classes are never actually emitted:
   *  - Classes representing primitive types
   *  - The scala.Array class
   *
   *  TODO Some classes representing anonymous functions are not actually emitted.
   *  Instead, a temporary representation of their `apply` method is built
   *  and recorded, so that it can be inlined as a JavaScript anonymous
   *  function in the method that instantiates it.
   *
   *  Other ClassDefs are emitted according to their nature:
   *  * Scala.js-defined JS class     -> `genScalaJSDefinedJSClass()`
   *  * Other raw JS type (<: js.Any) -> `genRawJSClassData()`
   *  * Interface                     -> `genInterface()`
   *  * Normal class                  -> `genClass()`
   */
  private def genCompilationUnit(cunit: CompilationUnit): Unit = {
    def collectTypeDefs(tree: Tree): List[TypeDef] = {
      tree match {
        case EmptyTree            => Nil
        case PackageDef(_, stats) => stats.flatMap(collectTypeDefs)
        case cd: TypeDef          => cd :: Nil
        case _: ValDef            => Nil // module instance
      }
    }
    val allTypeDefs = collectTypeDefs(cunit.tpdTree)

    val generatedClasses = mutable.ListBuffer.empty[(Symbol, js.ClassDef)]

    // TODO Record anonymous JS function classes

    /* Finally, we emit true code for the remaining class defs. */
    for (td <- allTypeDefs) {
      val sym = td.symbol
      implicit val pos: Position = sym.pos

      /* Do not actually emit code for primitive types nor scala.Array. */
      val isPrimitive =
        sym.isPrimitiveValueClass || sym == defn.ArrayClass

      if (!isPrimitive) {
        withScopedVars(
            currentClassSym := sym
        ) {
          val tree = if (isJSType(sym)) {
            /*assert(!isRawJSFunctionDef(sym),
                s"Raw JS function def should have been recorded: $cd")*/
            if (!sym.is(Trait) && isScalaJSDefinedJSClass(sym))
              genScalaJSDefinedJSClass(td)
            else
              genRawJSClassData(td)
          } else if (sym.is(Trait)) {
            genInterface(td)
          } else {
            genScalaClass(td)
          }

          generatedClasses += ((sym, tree))
        }
      }
    }

    val clDefs = generatedClasses.map(_._2).toList

    for ((sym, tree) <- generatedClasses) {
      val writer = new java.io.PrintWriter(System.err)
      try {
        new ir.Printers.IRTreePrinter(writer).print(tree)
      } finally {
        writer.flush()
      }
      genIRFile(cunit, sym, tree)
    }
  }

  private def genIRFile(cunit: CompilationUnit, sym: Symbol,
      tree: ir.Trees.ClassDef): Unit = {
    val outfile = getFileFor(cunit, sym, ".sjsir")
    val output = outfile.bufferedOutput
    try {
      ir.InfoSerializers.serialize(output, ir.Infos.generateClassInfo(tree))
      ir.Serializers.serialize(output, tree)
    } finally {
      output.close()
    }
  }

  private def getFileFor(cunit: CompilationUnit, sym: Symbol,
      suffix: String) = {
    import scala.reflect.io._

    val outputDirectory: AbstractFile = // TODO Support virtual files
      new PlainDirectory(new Directory(new java.io.File(ctx.settings.d.value)))

    val pathParts = sym.fullName.toString.split("[./]")
    val dir = (outputDirectory /: pathParts.init)(_.subdirectoryNamed(_))

    var filename = pathParts.last
    if (sym.is(ModuleClass))
      filename = filename + nme.MODULE_SUFFIX.toString

    dir fileNamed (filename + suffix)
  }

  // Generate a class --------------------------------------------------------

  /** Gen the IR ClassDef for a Scala class definition (maybe a module class).
   */
  private def genScalaClass(td: TypeDef): js.ClassDef = {
    val sym = td.symbol.asClass
    implicit val pos: Position = sym.pos

    assert(!sym.is(Trait),
        "genScalaClass() must be called only for normal classes: "+sym)
    assert(sym.superClass != NoSymbol, sym)

    /*if (hasDefaultCtorArgsAndRawJSModule(sym)) {
      reporter.error(pos,
          "Implementation restriction: constructors of " +
          "Scala classes cannot have default parameters " +
          "if their companion module is JS native.")
    }*/

    val classIdent = encodeClassFullNameIdent(sym)
    val isHijacked = false //isHijackedBoxedClass(sym)

    // Optimizer hints

    def isStdLibClassWithAdHocInlineAnnot(sym: Symbol): Boolean = {
      val fullName = sym.fullName.toString
      (fullName.startsWith("scala.Tuple") && !fullName.endsWith("$")) ||
      (fullName.startsWith("scala.collection.mutable.ArrayOps$of"))
    }

    val shouldMarkInline = (
        sym.hasAnnotation(jsdefn.InlineAnnot) ||
        (sym.isAnonymousFunction && !sym.isSubClass(defn.PartialFunctionClass)) ||
        isStdLibClassWithAdHocInlineAnnot(sym))

    val optimizerHints = {
      OptimizerHints.empty
        .withInline(shouldMarkInline)
        .withNoinline(sym.hasAnnotation(jsdefn.NoinlineAnnot))
    }

    // Generate members (constructor + methods)

    val generatedMethods = new mutable.ListBuffer[js.MethodDef]
    val exportedSymbols = new mutable.ListBuffer[Symbol]

    val tpl = td.rhs.asInstanceOf[Template]
    for (tree <- tpl.constr :: tpl.body) {
      tree match {
        case EmptyTree => ()

        case _: ValDef =>
          () // fields are added via genClassFields()

        case dd: DefDef =>
          val sym = dd.symbol

          val isExport = false //jsInterop.isExport(sym)
          val isNamedExport = false /*isExport && sym.annotations.exists(
              _.symbol == JSExportNamedAnnotation)*/

          /*if (isNamedExport)
            generatedMethods += genNamedExporterDef(dd)
          else*/
          generatedMethods ++= genMethod(dd)

          if (isExport) {
            // We add symbols that we have to export here. This way we also
            // get inherited stuff that is implemented in this class.
            exportedSymbols += sym
          }

        case _ =>
          throw new FatalError("Illegal tree in body of genScalaClass(): " + tree)
      }
    }

    // Generate fields and add to methods + ctors
    val generatedMembers = genClassFields(td) ++ generatedMethods.toList

    // Generate the exported members, constructors and accessors
    val exports = {
      // Hack to export hello.world
      if (sym.fullName.toString == "hello.world$") {
        List(
          js.ModuleExportDef("hello.world"),
          js.MethodDef(static = false, js.StringLiteral("main"),
              Nil, jstpe.AnyType,
              js.Block(List(
                js.Apply(js.This()(jstpe.ClassType(classIdent.name)), js.Ident("main__V"), Nil)(jstpe.NoType),
                js.Undefined())))(
              OptimizerHints.empty, None))
      } else {
        /*
        // Generate the exported members
        val memberExports = genMemberExports(sym, exportedSymbols.toList)

        // Generate exported constructors or accessors
        val exportedConstructorsOrAccessors =
          if (isStaticModule(sym)) genModuleAccessorExports(sym)
          else genConstructorExports(sym)

        memberExports ++ exportedConstructorsOrAccessors
        */
        Nil
      }
    }

    // Hashed definitions of the class
    val hashedDefs =
      ir.Hashers.hashDefs(generatedMembers ++ exports)

    // The complete class definition
    val kind =
      if (isStaticModule(sym)) ClassKind.ModuleClass
      else if (isHijacked) ClassKind.HijackedClass
      else ClassKind.Class

    val classDefinition = js.ClassDef(
        classIdent,
        kind,
        Some(encodeClassFullNameIdent(sym.superClass)),
        genClassInterfaces(sym),
        None,
        hashedDefs)(
        optimizerHints)

    classDefinition
  }

  /** Gen the IR ClassDef for a Scala.js-defined JS class. */
  private def genScalaJSDefinedJSClass(td: TypeDef): js.ClassDef = {
    ???
  }

  /** Gen the IR ClassDef for a raw JS class or trait.
   */
  private def genRawJSClassData(td: TypeDef): js.ClassDef = {
    val sym = td.symbol.asClass
    implicit val pos: Position = sym.pos

    val classIdent = encodeClassFullNameIdent(sym)
    val superClass =
      if (sym.is(Trait)) None
      else Some(encodeClassFullNameIdent(sym.superClass))
    val jsName =
      if (sym.is(Trait) || sym.is(ModuleClass)) None
      else Some(fullJSNameOf(sym))

    js.ClassDef(classIdent, ClassKind.RawJSType,
        superClass,
        genClassInterfaces(sym),
        jsName,
        Nil)(
        OptimizerHints.empty)
  }

  /** Gen the IR ClassDef for an interface definition.
   */
  private def genInterface(td: TypeDef): js.ClassDef = {
    val sym = td.symbol.asClass
    implicit val pos: Position = sym.pos

    val classIdent = encodeClassFullNameIdent(sym)

    val generatedMethods = new mutable.ListBuffer[js.MethodDef]

    val tpl = td.rhs.asInstanceOf[Template]
    for (tree <- tpl.constr :: tpl.body) {
      tree match {
        case EmptyTree  => ()
        case dd: DefDef => generatedMethods ++= genMethod(dd)
        case _ =>
          throw new FatalError("Illegal tree in gen of genInterface(): " + tree)
      }
    }

    val superInterfaces = genClassInterfaces(sym)

    // Hashed definitions of the interface
    val hashedDefs =
      ir.Hashers.hashDefs(generatedMethods.toList)

    js.ClassDef(classIdent, ClassKind.Interface, None, superInterfaces, None,
        hashedDefs)(OptimizerHints.empty)
  }

  private def genClassInterfaces(sym: ClassSymbol)(
      implicit pos: Position): List[js.Ident] = {
    import dotty.tools.dotc.transform.SymUtils._
    for {
      intf <- sym.directlyInheritedTraits
    } yield {
      encodeClassFullNameIdent(intf)
    }
  }

  // Generate the fields of a class ------------------------------------------

  /** Gen definitions for the fields of a class.
   */
  private def genClassFields(td: TypeDef): List[js.FieldDef] = {
    val classSym = td.symbol.asClass
    assert(currentClassSym.get == classSym,
        "genClassFields called with a ClassDef other than the current one")

    // Non-method term members are fields
    (for {
      f <- classSym.info.decls
      if !f.is(Method) && f.isTerm
    } yield {
      implicit val pos: Position = f.pos

      val name =
        /*if (isExposed(f)) js.StringLiteral(jsNameOf(f))
        else*/ encodeFieldSym(f)

      val irTpe = //if (!isScalaJSDefinedJSClass(classSym)) {
        toIRType(f.info)
      /*} else {
        val tpeEnteringPosterasure =
          enteringPhase(currentRun.posterasurePhase)(f.tpe)
        tpeEnteringPosterasure match {
          case tpe: ErasedValueType =>
            /* Here, we must store the field as the boxed representation of
             * the value class. The default value of that field, as
             * initialized at the time the instance is created, will
             * therefore be null. This will not match the behavior we would
             * get in a Scala class. To match the behavior, we would need to
             * initialized to an instance of the boxed representation, with
             * an underlying value set to the zero of its type. However we
             * cannot implement that, so we live with the discrepancy.
             * Anyway, scalac also has problems with uninitialized value
             * class values, if they come from a generic context.
             *
             * TODO Evaluate how much of this needs to be adapted for dotc,
             * which unboxes `null` to the zero of their underlying.
             */
            jstpe.ClassType(encodeClassFullName(tpe.valueClazz))

          case _ if f.tpe.typeSymbol == CharClass =>
            /* Will be initialized to null, which will unbox to '\0' when
             * read.
             */
            jstpe.ClassType(ir.Definitions.BoxedCharacterClass)

          case _ =>
            /* Other types are not boxed, so we can initialized them to
             * their true zero.
             */
            toIRType(f.tpe)
        }
      }*/

      js.FieldDef(name, irTpe, f.is(Mutable))
    }).toList
  }

  // Generate a method -------------------------------------------------------

  private def genMethod(dd: DefDef): Option[js.MethodDef] = {
    withScopedVars(
        localNames := new LocalNameGenerator
    ) {
      genMethodWithCurrentLocalNameScope(dd)
    }
  }

  /** Gen JS code for a method definition in a class or in an impl class.
   *  On the JS side, method names are mangled to encode the full signature
   *  of the Scala method, as described in `JSEncoding`, to support
   *  overloading.
   *
   *  Some methods are not emitted at all:
   *  - Primitives, since they are never actually called
   *  - Constructors of hijacked classes
   *
   *  Constructors are emitted by generating their body as a statement.
   *
   *  Other (normal) methods are emitted with `genMethodBody()`.
   */
  private def genMethodWithCurrentLocalNameScope(dd: DefDef): Option[js.MethodDef] = {
    implicit val pos: Position = dd.pos
    val sym = dd.symbol
    val vparamss = dd.vparamss
    val rhs = dd.rhs

    isModuleInitialized = false

    withScopedVars(
        currentMethodSym       := sym,
        undefinedDefaultParams := mutable.Set.empty,
        thisLocalVarIdent      := None
    ) {
      assert(vparamss.isEmpty || vparamss.tail.isEmpty,
          "Malformed parameter list: " + vparamss)
      val params = if (vparamss.isEmpty) Nil else vparamss.head.map(_.symbol)

      val isJSClassConstructor =
        sym.isClassConstructor && isScalaJSDefinedJSClass(currentClassSym)

      val methodName: js.PropertyName = encodeMethodSym(sym)

      def jsParams = for (param <- params) yield {
        implicit val pos: Position = param.pos
        js.ParamDef(encodeLocalSym(param), toIRType(param.info),
            mutable = false, rest = false)
      }

      /*if (primitives.isPrimitive(sym)) {
        None
      } else*/ if (sym.is(Deferred)) {
        Some(js.MethodDef(static = false, methodName,
            jsParams, toIRType(patchedResultType(sym)), js.EmptyTree)(
            OptimizerHints.empty, None))
      } else /*if (isJSNativeCtorDefaultParam(sym)) {
        None
      } else if (sym.isClassConstructor && isHijackedBoxedClass(sym.owner)) {
        None
      } else*/ {
        /*def isTraitImplForwarder = dd.rhs match {
          case app: Apply => foreignIsImplClass(app.symbol.owner)
          case _          => false
        }*/

        val shouldMarkInline = {
          sym.hasAnnotation(jsdefn.InlineAnnot) ||
          sym.isAnonymousFunction
        }

        val shouldMarkNoinline = {
          sym.hasAnnotation(jsdefn.NoinlineAnnot) /*&&
          !isTraitImplForwarder*/
        }

        val optimizerHints = {
          OptimizerHints.empty
            .withInline(shouldMarkInline)
            .withNoinline(shouldMarkNoinline)
        }

        val methodDef = {
          /*if (isJSClassConstructor) {
            val body0 = genStat(rhs)
            val body1 =
              if (!sym.isPrimaryConstructor) body0
              else moveAllStatementsAfterSuperConstructorCall(body0)
            js.MethodDef(static = false, methodName,
                jsParams, jstpe.NoType, body1)(optimizerHints, None)
          } else*/ if (sym.isConstructor) {
            js.MethodDef(static = false, methodName,
                jsParams, jstpe.NoType,
                genStat(rhs))(optimizerHints, None)
          } else {
            val resultIRType = toIRType(patchedResultType(sym))
            genMethodDef(static = false, methodName,
                params, resultIRType, rhs, optimizerHints)
          }
        }

        Some(methodDef)
      }
    }
  }

  /** Generates the MethodDef of a (non-constructor) method
   *
   *  Most normal methods are emitted straightforwardly. If the result
   *  type is Unit, then the body is emitted as a statement. Otherwise, it is
   *  emitted as an expression.
   *
   *  Methods Scala.js-defined JS classes are compiled as static methods taking
   *  an explicit parameter for their `this` value.
   */
  private def genMethodDef(static: Boolean, methodName: js.PropertyName,
      paramsSyms: List[Symbol], resultIRType: jstpe.Type,
      tree: Tree, optimizerHints: OptimizerHints): js.MethodDef = {
    implicit val pos: Position = tree.pos

    ctx.debuglog("genMethod " + methodName.name)
    ctx.debuglog("")

    val jsParams = for (param <- paramsSyms) yield {
      implicit val pos: Position = param.pos
      js.ParamDef(encodeLocalSym(param), toIRType(param.info),
          mutable = false, rest = false)
    }

    def genBody() =
      if (resultIRType == jstpe.NoType) genStat(tree)
      else genExpr(tree)

    //if (!isScalaJSDefinedJSClass(currentClassSym)) {
      js.MethodDef(static, methodName, jsParams, resultIRType, genBody())(
          optimizerHints, None)
    /*} else {
      assert(!static, tree.pos)

      withScopedVars(
        thisLocalVarIdent := Some(freshLocalIdent("this"))
      ) {
        val thisParamDef = js.ParamDef(thisLocalVarIdent.get.get,
            jstpe.AnyType, mutable = false, rest = false)

        js.MethodDef(static = true, methodName, thisParamDef :: jsParams,
            resultIRType, genBody())(
            optimizerHints, None)
      }
    }*/
  }

  // Generate statements and expressions -------------------------------------

  /** Gen JS code for a tree in statement position (in the IR).
   */
  private def genStat(tree: Tree): js.Tree = {
    exprToStat(genStatOrExpr(tree, isStat = true))
  }

  /** Turn a JavaScript expression of type Unit into a statement */
  private def exprToStat(tree: js.Tree): js.Tree = {
    /* Any JavaScript expression is also a statement, but at least we get rid
     * of some pure expressions that come from our own codegen.
     */
    implicit val pos: Position = tree.pos
    tree match {
      case js.Block(stats :+ expr)  => js.Block(stats :+ exprToStat(expr))
      case _:js.Literal | js.This() => js.Skip()
      case _                        => tree
    }
  }

  /** Gen JS code for a tree in expression position (in the IR).
   */
  private def genExpr(tree: Tree): js.Tree = {
    val result = genStatOrExpr(tree, isStat = false)
    assert(result.tpe != jstpe.NoType,
        s"genExpr($tree) returned a tree with type NoType at pos ${tree.pos}")
    result
  }

  /** Gen JS code for a tree in statement or expression position (in the IR).
   *
   *  This is the main transformation method. Each node of the Scala AST
   *  is transformed into an equivalent portion of the JS AST.
   */
  private def genStatOrExpr(tree: Tree, isStat: Boolean): js.Tree = {
    implicit val pos: Position = tree.pos

    ctx.debuglog("  " + tree)
    ctx.debuglog("")

    tree match {
      /** LabelDefs (for while and do..while loops) */
      /*case lblDf: LabelDef =>
        genLabelDef(lblDf)*/

      /** Local val or var declaration */
      case tree @ ValDef(name, _, _) =>
        /* Must have been eliminated by the tail call transform performed
         * by genMethodBody(). */
        assert(name != nme.THIS,
            s"ValDef(_, nme.THIS, _, _) found at ${tree.pos}")

        val sym = tree.symbol
        val rhs = tree.rhs
        val rhsTree = genExpr(rhs)

        rhsTree match {
          case js.UndefinedParam() =>
            /* This is an intermediate assignment for default params on a
             * js.Any. Add the symbol to the corresponding set to inform
             * the Ident resolver how to replace it and don't emit the symbol.
             */
            undefinedDefaultParams += sym
            js.Skip()
          case _ =>
            js.VarDef(encodeLocalSym(sym),
                toIRType(sym.info), sym.is(Mutable), rhsTree)
        }

      case If(cond, thenp, elsep) =>
        js.If(genExpr(cond), genStatOrExpr(thenp, isStat),
            genStatOrExpr(elsep, isStat))(toIRType(tree.tpe))

      case Return(expr, from) =>
        // TODO Need to consider `from`?
        js.Return(toIRType(expr.tpe) match {
          case jstpe.NoType => js.Block(genStat(expr), js.Undefined())
          case _            => genExpr(expr)
        })

      /*case t: Try =>
        genTry(t, isStat)*/

      case app: Apply =>
        genApply(app, isStat)

      case app: TypeApply =>
        genTypeApply(app)

      /*case app: ApplyDynamic =>
        genApplyDynamic(app)*/

      case tree: This =>
        if (tree.symbol == currentClassSym.get) {
          genThis()
        } else {
          assert(tree.symbol.is(Module),
              "Trying to access the this of another class: " +
              "tree.symbol = " + tree.symbol +
              ", class symbol = " + currentClassSym.get +
              " pos:" + pos)
          genLoadModule(tree.symbol)
        }

      case Select(qualifier, _) =>
        val sym = tree.symbol
        if (sym.is(Module)) {
          assert(!sym.is(Package), "Cannot use package as value: " + tree)
          genLoadModule(sym)
        } else if (sym.is(JavaStatic)) {
          genLoadStaticField(sym)
        } else /*if (paramAccessorLocals contains sym) {
          paramAccessorLocals(sym).ref
        } else if (isScalaJSDefinedJSClass(sym.owner)) {
          val genQual = genExpr(qualifier)
          val boxed = if (isExposed(sym))
            js.JSBracketSelect(genQual, js.StringLiteral(jsNameOf(sym)))
          else
            js.JSDotSelect(genQual, encodeFieldSym(sym))
          fromAny(boxed,
              enteringPhase(currentRun.posterasurePhase)(sym.tpe))
        } else*/ {
          js.Select(genExpr(qualifier),
              encodeFieldSym(sym))(toIRType(sym.info))
        }

      case tree: Ident =>
        desugarIdent(tree).fold[js.Tree] {
          val sym = tree.symbol
          assert(!sym.is(Package), "Cannot use package as value: " + tree)
          if (sym.is(Module)) {
            genLoadModule(sym)
          } else if (undefinedDefaultParams.contains(sym)) {
            /* This is a default parameter whose assignment was moved to
             * a local variable. Put an undefined param instead.
             */
            js.UndefinedParam()(toIRType(sym.info))
          } else {
            js.VarRef(encodeLocalSym(sym))(toIRType(sym.info))
          }
        } { select =>
          genStatOrExpr(select, isStat)
        }

      case Literal(value) =>
        import Constants._
        value.tag match {
          case UnitTag =>
            js.Skip()
          case BooleanTag =>
            js.BooleanLiteral(value.booleanValue)
          case ByteTag | ShortTag | CharTag | IntTag =>
            js.IntLiteral(value.intValue)
          case LongTag =>
            js.LongLiteral(value.longValue)
          case FloatTag =>
            js.FloatLiteral(value.floatValue)
          case DoubleTag =>
            js.DoubleLiteral(value.doubleValue)
          case StringTag =>
            js.StringLiteral(value.stringValue)
          case NullTag =>
            js.Null()
          case ClazzTag =>
            genClassConstant(value.typeValue)
          /*case EnumTag =>
            genStaticMember(value.symbolValue)*/
        }

      case Block(stats, expr) =>
        js.Block(stats.map(genStat) :+ genStatOrExpr(expr, isStat))

      case Typed(expr, _) =>
        expr match {
          case _: Super => genThis()
          case _        => genExpr(expr)
        }

      case Assign(lhs0, rhs) =>
        val sym = lhs0.symbol
        if (sym.is(JavaStaticTerm))
          throw new FatalError(s"Assignment to static member ${sym.fullName} not supported")
        val genRhs = genExpr(rhs)
        val lhs = lhs0 match {
          case lhs: Ident => desugarIdent(lhs).getOrElse(lhs)
          case lhs => lhs
        }
        lhs match {
          case lhs: Select =>
            val qualifier = lhs.qualifier

            def ctorAssignment = (
                currentMethodSym.get.name == nme.CONSTRUCTOR &&
                currentMethodSym.get.owner == qualifier.symbol &&
                qualifier.isInstanceOf[This]
            )
            if (!sym.is(Mutable) && !ctorAssignment)
              throw new FatalError(s"Assigning to immutable field ${sym.fullName} at $pos")

            val genQual = genExpr(qualifier)

            /*if (isScalaJSDefinedJSClass(sym.owner)) {
              val genLhs = if (isExposed(sym))
                js.JSBracketSelect(genQual, js.StringLiteral(jsNameOf(sym)))
              else
                js.JSDotSelect(genQual, encodeFieldSym(sym))
              val boxedRhs =
                ensureBoxed(genRhs,
                    enteringPhase(currentRun.posterasurePhase)(rhs.tpe))
              js.Assign(genLhs, boxedRhs)
            } else {*/
              js.Assign(
                  js.Select(genQual, encodeFieldSym(sym))(toIRType(sym.info)),
                  genRhs)
            //}
          case _ =>
            js.Assign(
                js.VarRef(encodeLocalSym(sym))(toIRType(sym.info)),
                genRhs)
        }

      /** Array constructor */
      case javaSeqLiteral: JavaSeqLiteral =>
        genJavaSeqLiteral(javaSeqLiteral)

      /** A Match reaching the backend is supposed to be optimized as a switch */
      /*case mtch: Match =>
        genMatch(mtch, isStat)*/

      case tree: Closure =>
        genClosure(tree)

      /*case EmptyTree =>
        js.Skip()*/

      case _ =>
        throw new FatalError("Unexpected tree in genExpr: " +
            tree + "/" + tree.getClass + " at: " + (tree.pos: Position))
    }
  } // end of genStatOrExpr()

  // !!! DUPLICATE code with DottyBackendInterface
  private def desugarIdent(i: Ident): Option[Select] = {
    i.tpe match {
      case TermRef(prefix: TermRef, name) =>
        Some(tpd.ref(prefix).select(i.symbol))
      case TermRef(prefix: ThisType, name) =>
        Some(tpd.This(prefix.cls).select(i.symbol))
      /*case TermRef(NoPrefix, name) =>
        if (i.symbol is Method) Some(This(i.symbol.topLevelClass).select(i.symbol)) // workaround #342 todo: remove after fixed
        else None*/
      case _ =>
        None
    }
  }

  private def qualifierOf(fun: Tree): Tree = fun match {
    case fun: Ident =>
      fun.tpe match {
        case TermRef(prefix: TermRef, _) => tpd.ref(prefix)
        case TermRef(prefix: ThisType, _) => tpd.This(prefix.cls)
      }
    case Select(qualifier, _) =>
      qualifier
    case TypeApply(fun, _) =>
      qualifierOf(fun)
  }

  /** Gen JS this of the current class.
   *  Normally encoded straightforwardly as a JS this.
   *  But must be replaced by the `thisLocalVarIdent` local variable if there
   *  is one.
   */
  private def genThis()(implicit pos: Position): js.Tree = {
    /*if (tryingToGenMethodAsJSFunction) {
      throw new CancelGenMethodAsJSFunction(
          "Trying to generate `this` inside the body")
    }*/

    thisLocalVarIdent.fold[js.Tree] {
      js.This()(currentClassType)
    } { thisLocalIdent =>
      js.VarRef(thisLocalIdent)(currentClassType)
    }
  }

  /** Gen JS code for an Apply node (method call)
   *
   *  There's a whole bunch of varieties of Apply nodes: regular method
   *  calls, super calls, constructor calls, isInstanceOf/asInstanceOf,
   *  primitives, JS calls, etc. They are further dispatched in here.
   */
  private def genApply(tree: Apply, isStat: Boolean): js.Tree = {
    implicit val pos: Position = tree.pos
    val args = tree.args
    val sym = tree.fun.symbol

    val fun = tree.fun match {
      case fun: Ident => desugarIdent(fun).getOrElse(fun)
      case fun => fun
    }

    fun match {
      case _ if isJSDefaultParam(sym) =>
        js.UndefinedParam()(toIRType(sym.info.finalResultType))

      case Select(Super(_, _), _) =>
        genSuperCall(tree, isStat)

      case Select(New(_), nme.CONSTRUCTOR) =>
        genApplyNew(tree)

      case _ =>
        /*if (sym.isLabel) {
          genLabelApply(tree)
        } else*/ if (primitives.isPrimitive(tree)) {
          genPrimitiveOp(tree, isStat)
        } else if (Erasure.Boxing.isBox(sym)) {
          // Box a primitive value (cannot be Unit)
          val arg = args.head
          makePrimitiveBox(genExpr(arg), arg.tpe)
        } else if (Erasure.Boxing.isUnbox(sym)) {
          // Unbox a primitive value (cannot be Unit)
          val arg = args.head
          makePrimitiveUnbox(genExpr(arg), tree.tpe)
        } else {
          genNormalApply(tree, isStat)
        }
    }
  }

  /** Gen JS code for a super call, of the form Class.super[mix].fun(args).
   *
   *  This does not include calls defined in mixin traits, as these are
   *  already desugared by the 'mixin' phase. Only calls to super classes
   *  remain.
   *
   *  Since a class has exactly one direct superclass, and calling a method
   *  two classes above the current one is invalid in Scala, the `mix` item is
   *  irrelevant.
   */
  private def genSuperCall(tree: Apply, isStat: Boolean): js.Tree = {
    implicit val pos: Position = tree.pos
    val Apply(fun @ Select(sup @ Super(_, mix), _), args) = tree
    val sym = fun.symbol

    if (sym == defn.Any_getClass) {
      // The only primitive that is also callable as super call
      js.GetClass(genThis())
    } else /*if (isScalaJSDefinedJSClass(currentClassSym)) {
      genJSSuperCall(tree, isStat)
    } else*/ {
      val superCall = genApplyMethodStatically(
          genThis()(sup.pos), sym, genActualArgs(sym, args))

      // Initialize the module instance just after the super constructor call.
      if (isStaticModule(currentClassSym) && !isModuleInitialized &&
          currentMethodSym.get.isClassConstructor) {
        isModuleInitialized = true
        val thisType = jstpe.ClassType(encodeClassFullName(currentClassSym))
        val initModule = js.StoreModule(thisType, js.This()(thisType))
        js.Block(superCall, initModule)
      } else {
        superCall
      }
    }
  }

  /** Gen JS code for a constructor call (new).
   *  Further refined into:
   *  * new String(...)
   *  * new of a hijacked boxed class
   *  * new of an anonymous function class that was recorded as JS function
   *  * new of a raw JS class
   *  * new Array
   *  * regular new
   */
  private def genApplyNew(tree: Apply): js.Tree = {
    implicit val pos: Position = tree.pos

    val Apply(fun @ Select(New(tpt), nme.CONSTRUCTOR), args) = tree
    val ctor = fun.symbol
    val tpe = tpt.tpe

    assert(ctor.isClassConstructor,
        "'new' call to non-constructor: " + ctor.name)

    if (tpe.isRef(defn.StringClass)) {
      genNewString(ctor, genActualArgs(ctor, args))
    } else /*if (isHijackedBoxedClass(tpe.typeSymbol)) {
      genNewHijackedBoxedClass(tpe.typeSymbol, ctor, args map genExpr)
    } else if (translatedAnonFunctions contains tpe.typeSymbol) {
      val functionMaker = translatedAnonFunctions(tpe.typeSymbol)
      functionMaker(args map genExpr)
    } else*/ if (isJSType(tpe.widenDealias.typeSymbol)) {
      val clsSym = tpe.widenDealias.typeSymbol
      if (clsSym == jsdefn.JSObjectClass && args.isEmpty) js.JSObjectConstr(Nil)
      else if (clsSym == jsdefn.JSArrayClass && args.isEmpty) js.JSArrayConstr(Nil)
      else js.JSNew(genLoadJSConstructor(clsSym), genActualJSArgs(ctor, args))
    } else {
      toIRType(tpe) match {
        case cls: jstpe.ClassType =>
          js.New(cls, encodeMethodSym(ctor), genActualArgs(ctor, args))

        case other =>
          throw new FatalError(s"Non ClassType cannot be instantiated: $other")
      }
    }
  }

  /** Gen JS code for a primitive method call. */
  private def genPrimitiveOp(tree: Apply, isStat: Boolean): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._

    implicit val pos: Position = tree.pos

    val Apply(fun, args) = tree
    val receiver = qualifierOf(fun)

    val code = primitives.getPrimitive(tree, receiver.tpe)

    if (isArithmeticOp(code) || isLogicalOp(code) || isComparisonOp(code))
      genSimpleOp(tree, receiver :: args, code)
    else if (code == CONCAT)
      genStringConcat(tree, receiver, args)
    else if (code == HASH)
      genScalaHash(tree, receiver)
    else if (isArrayOp(code))
      genArrayOp(tree, code)
    else if (code == SYNCHRONIZED)
      genSynchronized(tree, isStat)
    else if (isCoercion(code))
      genCoercion(tree, receiver, code)
    else if (code == JSPrimitives.THROW)
      genThrow(tree, args)
    else /*if (primitives.isJSPrimitive(code))
      genJSPrimitive(tree, receiver, args, code)
    else*/
      throw new FatalError(s"Unknown primitive: ${tree.symbol.fullName} at: $pos")
  }

  /** Gen JS code for a simple operation (arithmetic, logical, or comparison) */
  private def genSimpleOp(tree: Apply, args: List[Tree], code: Int): js.Tree = {
    args match {
      case List(arg)      => genSimpleUnaryOp(tree, arg, code)
      case List(lhs, rhs) => genSimpleBinaryOp(tree, lhs, rhs, code)
      case _              => throw new FatalError("Incorrect arity for primitive")
    }
  }

  /** Gen JS code for a simple unary operation. */
  private def genSimpleUnaryOp(tree: Apply, arg: Tree, code: Int): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._

    implicit val pos: Position = tree.pos

    val genArg = genExpr(arg)
    val resultIRType = toIRType(tree.tpe)

    (code: @switch) match {
      case POS =>
        genArg

      case NEG =>
        (resultIRType: @unchecked) match {
          case jstpe.IntType =>
            js.BinaryOp(js.BinaryOp.Int_-, js.IntLiteral(0), genArg)
          case jstpe.LongType =>
            js.BinaryOp(js.BinaryOp.Long_-, js.LongLiteral(0), genArg)
          case jstpe.FloatType =>
            js.BinaryOp(js.BinaryOp.Float_-, js.FloatLiteral(0.0f), genArg)
          case jstpe.DoubleType =>
            js.BinaryOp(js.BinaryOp.Double_-, js.DoubleLiteral(0), genArg)
        }

      case NOT =>
        (resultIRType: @unchecked) match {
          case jstpe.IntType =>
            js.BinaryOp(js.BinaryOp.Int_^, js.IntLiteral(-1), genArg)
          case jstpe.LongType =>
            js.BinaryOp(js.BinaryOp.Long_^, js.LongLiteral(-1), genArg)
        }

      case ZNOT =>
        js.UnaryOp(js.UnaryOp.Boolean_!, genArg)

      case _ =>
        throw new FatalError("Unknown unary operation code: " + code)
    }
  }

  /** Gen JS code for a simple binary operation. */
  private def genSimpleBinaryOp(tree: Apply, lhs: Tree, rhs: Tree, code: Int): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._
    import js.UnaryOp._

    /* Codes for operation types, in an object so that they can be 'final val'
     * and be used in switch-matches.
     */
    object OpTypes {
      final val DoubleOp = 1
      final val FloatOp = 2
      final val LongOp = 3
      final val IntOp = 4
      final val BooleanOp = 5
      final val AnyOp = 6
    }
    import OpTypes._

    implicit val pos: Position = tree.pos

    val lhsIRType = toIRType(lhs.tpe)
    val rhsIRType = toIRType(rhs.tpe)

    val opType = (lhsIRType, rhsIRType) match {
      case (jstpe.DoubleType, _) | (_, jstpe.DoubleType) => DoubleOp
      case (jstpe.FloatType, _) | (_, jstpe.FloatType)   => FloatOp
      case (jstpe.LongType, _) | (_, jstpe.LongType)     => LongOp
      case (jstpe.IntType, _) | (_, jstpe.IntType)       => IntOp
      case (jstpe.BooleanType, jstpe.BooleanType)        => BooleanOp
      case _                                             => AnyOp
    }

    if (opType == AnyOp && isUniversalEqualityOp(code)) {
      genUniversalEqualityOp(lhs, rhs, code)
    } else if (code == ZOR) {
      js.If(genExpr(lhs), js.BooleanLiteral(true), genExpr(rhs))(jstpe.BooleanType)
    } else if (code == ZAND) {
      js.If(genExpr(lhs), genExpr(rhs), js.BooleanLiteral(false))(jstpe.BooleanType)
    } else {
      import js.BinaryOp._

      def coerce(tree: js.Tree, opType: Int): js.Tree = (opType: @switch) match {
        case DoubleOp =>
          if (tree.tpe == jstpe.LongType) js.UnaryOp(LongToDouble, tree)
          else tree

        case FloatOp =>
          if (tree.tpe == jstpe.FloatType || tree.tpe == jstpe.IntType) tree
          else js.UnaryOp(DoubleToFloat, coerce(tree, DoubleOp))

        case LongOp =>
          if (tree.tpe == jstpe.LongType) tree
          else {
            assert(tree.tpe == jstpe.IntType)
            js.UnaryOp(IntToLong, tree)
          }

        case IntOp =>
          if (tree.tpe == jstpe.IntType) tree
          else {
            assert(tree.tpe == jstpe.LongType)
            js.UnaryOp(LongToInt, tree)
          }

        case BooleanOp | AnyOp =>
          tree
      }

      val rhsOpType = code match {
        case LSL | LSR | ASR => IntOp
        case _               => opType
      }

      val genLhs = coerce(genExpr(lhs), opType)
      val genRhs = coerce(genExpr(rhs), rhsOpType)

      val op = (opType: @switch) match {
        case IntOp =>
          (code: @switch) match {
            case ADD => Int_+
            case SUB => Int_-
            case MUL => Int_*
            case DIV => Int_/
            case MOD => Int_%
            case OR  => Int_|
            case AND => Int_&
            case XOR => Int_^
            case LSL => Int_<<
            case LSR => Int_>>>
            case ASR => Int_>>

            case EQ => Num_==
            case NE => Num_!=
            case LT => Num_<
            case LE => Num_<=
            case GT => Num_>
            case GE => Num_>=
          }

        case FloatOp =>
          (code: @switch) match {
            case ADD => Float_+
            case SUB => Float_-
            case MUL => Float_*
            case DIV => Float_/
            case MOD => Float_%

            case EQ => Num_==
            case NE => Num_!=
            case LT => Num_<
            case LE => Num_<=
            case GT => Num_>
            case GE => Num_>=
          }

        case DoubleOp =>
          (code: @switch) match {
            case ADD => Double_+
            case SUB => Double_-
            case MUL => Double_*
            case DIV => Double_/
            case MOD => Double_%

            case EQ => Num_==
            case NE => Num_!=
            case LT => Num_<
            case LE => Num_<=
            case GT => Num_>
            case GE => Num_>=
          }

        case LongOp =>
          (code: @switch) match {
            case ADD => Long_+
            case SUB => Long_-
            case MUL => Long_*
            case DIV => Long_/
            case MOD => Long_%
            case OR  => Long_|
            case XOR => Long_^
            case AND => Long_&
            case LSL => Long_<<
            case LSR => Long_>>>
            case ASR => Long_>>

            case EQ => Long_==
            case NE => Long_!=
            case LT => Long_<
            case LE => Long_<=
            case GT => Long_>
            case GE => Long_>=
          }

        case BooleanOp =>
          (code: @switch) match {
            case EQ  => Boolean_==
            case NE  => Boolean_!=
            case OR  => Boolean_|
            case AND => Boolean_&
            case XOR => Boolean_!=
          }

        case AnyOp =>
          /* No @switch because some 2.11 version erroneously report a warning
           * for switches with less than 3 non-default cases.
           */
          code match {
            case ID => ===
            case NI => !==
          }
      }

      js.BinaryOp(op, genLhs, genRhs)
    }
  }

  /** Gen JS code for a universal equality test. */
  private def genUniversalEqualityOp(lhs: Tree, rhs: Tree, code: Int)(
      implicit pos: Position): js.Tree = {

    import scala.tools.nsc.backend.ScalaPrimitives._

    val genLhs = genExpr(lhs)
    val genRhs = genExpr(rhs)

    val bypassEqEq = {
      // Do not call equals if we have a literal null at either side.
      genLhs.isInstanceOf[js.Null] ||
      genRhs.isInstanceOf[js.Null]
    }

    if (bypassEqEq) {
      js.BinaryOp(
          if (code == EQ) js.BinaryOp.=== else js.BinaryOp.!==,
          genLhs, genRhs)
    } else {
      val body = genEqEqPrimitive(lhs.tpe, rhs.tpe, genLhs, genRhs)
      if (code == EQ) body
      else js.UnaryOp(js.UnaryOp.Boolean_!, body)
    }
  }

  private lazy val externalEqualsNumNum: Symbol =
    defn.BoxesRunTimeModule.requiredMethod(nme.equalsNumNum)
  private lazy val externalEqualsNumChar: Symbol =
    NoSymbol // ctx.requiredMethod(BoxesRunTimeTypeRef, nme.equalsNumChar) // this method is private
  private lazy val externalEqualsNumObject: Symbol =
    defn.BoxesRunTimeModule.requiredMethod(nme.equalsNumObject)
  private lazy val externalEquals: Symbol =
    defn.BoxesRunTimeClass.info.decl(nme.equals_).suchThat(toDenot(_).info.firstParamTypes.size == 2).symbol

  /** Gen JS code for a call to Any.== */
  private def genEqEqPrimitive(ltpe: Type, rtpe: Type, lsrc: js.Tree, rsrc: js.Tree)(
      implicit pos: Position): js.Tree = {
    ctx.debuglog(s"$ltpe == $rtpe")
    val lsym = ltpe.widenDealias.typeSymbol.asClass
    val rsym = rtpe.widenDealias.typeSymbol.asClass

    /* True if the equality comparison is between values that require the
     * use of the rich equality comparator
     * (scala.runtime.BoxesRunTime.equals).
     * This is the case when either side of the comparison might have a
     * run-time type subtype of java.lang.Number or java.lang.Character,
     * **which includes when either is a JS type**.
     * When it is statically known that both sides are equal and subtypes of
     * Number or Character, not using the rich equality is possible (their
     * own equals method will do ok.)
     */
    val mustUseAnyComparator: Boolean = {
      isJSType(lsym) || isJSType(rsym) || {
        val p = ctx.platform
        val areSameFinals = lsym.is(Final) && rsym.is(Final) && (ltpe =:= rtpe)
        !areSameFinals && p.isMaybeBoxed(lsym) && p.isMaybeBoxed(rsym)
      }
    }

    if (mustUseAnyComparator) {
      val equalsMethod: Symbol = {
        // scalastyle:off line.size.limit
        val ptfm = ctx.platform
        if (lsym.derivesFrom(defn.BoxedNumberClass)) {
          if (rsym.derivesFrom(defn.BoxedNumberClass)) externalEqualsNumNum
          else if (rsym.derivesFrom(defn.BoxedCharClass)) externalEqualsNumObject // will be externalEqualsNumChar in 2.12, SI-9030
          else externalEqualsNumObject
        } else externalEquals
        // scalastyle:on line.size.limit
      }
      genModuleApplyMethod(equalsMethod, List(lsrc, rsrc))
    } else {
      // if (lsrc eq null) rsrc eq null else lsrc.equals(rsrc)
      if (lsym == defn.StringClass) {
        // String.equals(that) === (this eq that)
        js.BinaryOp(js.BinaryOp.===, lsrc, rsrc)
      } else {
        /* This requires to evaluate both operands in local values first.
         * The optimizer will eliminate them if possible.
         */
        val ltemp = js.VarDef(freshLocalIdent(), lsrc.tpe, mutable = false, lsrc)
        val rtemp = js.VarDef(freshLocalIdent(), rsrc.tpe, mutable = false, rsrc)
        js.Block(
            ltemp,
            rtemp,
            js.If(js.BinaryOp(js.BinaryOp.===, ltemp.ref, js.Null()),
                js.BinaryOp(js.BinaryOp.===, rtemp.ref, js.Null()),
                genApplyMethod(ltemp.ref, defn.Any_equals, List(rtemp.ref)))(
                jstpe.BooleanType))
      }
    }
  }

  /** Gen JS code for string concatenation.
   */
  private def genStringConcat(tree: Apply, receiver: Tree,
      args: List[Tree]): js.Tree = {
    implicit val pos: Position = tree.pos

    val arg = args.head

    /* Primitive number types such as scala.Int have a
     *   def +(s: String): String
     * method, which is why we have to box the lhs sometimes.
     * Otherwise, both lhs and rhs are already reference types (Any or String)
     * so boxing is not necessary (in particular, rhs is never a primitive).
     */
    assert(!isPrimitiveValueType(receiver.tpe) || arg.tpe.isRef(defn.StringClass))
    assert(!isPrimitiveValueType(arg.tpe))

    val genLhs = {
      val genLhs0 = genExpr(receiver)
      // Box the receiver if it is a primitive value
      if (!isPrimitiveValueType(receiver.tpe)) genLhs0
      else makePrimitiveBox(genLhs0, receiver.tpe)
    }

    val genRhs = genExpr(arg)

    js.BinaryOp(js.BinaryOp.String_+, genLhs, genRhs)
  }

  /** Gen JS code for a call to Any.## */
  private def genScalaHash(tree: Apply, receiver: Tree): js.Tree = {
    implicit val pos: Position = tree.pos

    genModuleApplyMethod(defn.ScalaRuntimeModule.requiredMethod(nme.hash_),
        List(genExpr(receiver)))
  }

  /** Gen JS code for an array operation (get, set or length) */
  private def genArrayOp(tree: Tree, code: Int): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._

    implicit val pos: Position = tree.pos

    val Apply(fun, args) = tree
    val arrayObj = qualifierOf(fun)

    val genArray = genExpr(arrayObj)
    val genArgs = args.map(genExpr)

    def elementType: Type = arrayObj.tpe.widenDealias match {
      case defn.ArrayOf(el)  => el
      case JavaArrayType(el) => el
      case tpe =>
        ctx.error(s"expected Array $tpe")
        ErrorType
    }

    def genSelect(): js.Tree =
      js.ArraySelect(genArray, genArgs(0))(toIRType(elementType))

    if (isArrayGet(code)) {
      // get an item of the array
      assert(args.length == 1,
          s"Array get requires 1 argument, found ${args.length} in $tree")
      genSelect()
    } else if (isArraySet(code)) {
      // set an item of the array
      assert(args.length == 2,
          s"Array set requires 2 arguments, found ${args.length} in $tree")
      js.Assign(genSelect(), genArgs(1))
    } else {
      // length of the array
      js.ArrayLength(genArray)
    }
  }

  /** Gen JS code for a call to AnyRef.synchronized */
  private def genSynchronized(tree: Apply, isStat: Boolean): js.Tree = {
    /* JavaScript is single-threaded, so we can drop the
     * synchronization altogether.
     */
    val Apply(fun, List(arg)) = tree
    val receiver = qualifierOf(fun)

    val genReceiver = genExpr(receiver)
    val genArg = genStatOrExpr(arg, isStat)

    genReceiver match {
      case js.This() =>
        // common case for which there is no side-effect nor NPE
        genArg
      case _ =>
        implicit val pos: Position = tree.pos
        /* TODO Check for a null receiver?
         * In theory, it's UB, but that decision should be left for link time.
         */
        js.Block(genReceiver, genArg)
    }
  }

  /** Gen JS code for a coercion */
  private def genCoercion(tree: Apply, receiver: Tree, code: Int): js.Tree = {
    import scala.tools.nsc.backend.ScalaPrimitives._

    implicit val pos: Position = tree.pos

    val source = genExpr(receiver)

    def source2int = (code: @switch) match {
      case F2C | D2C | F2B | D2B | F2S | D2S | F2I | D2I =>
        js.UnaryOp(js.UnaryOp.DoubleToInt, source)
      case L2C | L2B | L2S | L2I =>
        js.UnaryOp(js.UnaryOp.LongToInt, source)
      case _ =>
        source
    }

    (code: @switch) match {
      // To Char, need to crop at unsigned 16-bit
      case B2C | S2C | I2C | L2C | F2C | D2C =>
        js.BinaryOp(js.BinaryOp.Int_&, source2int, js.IntLiteral(0xffff))

      // To Byte, need to crop at signed 8-bit
      case C2B | S2B | I2B | L2B | F2B | D2B =>
        // note: & 0xff would not work because of negative values
        js.BinaryOp(js.BinaryOp.Int_>>,
            js.BinaryOp(js.BinaryOp.Int_<<, source2int, js.IntLiteral(24)),
            js.IntLiteral(24))

      // To Short, need to crop at signed 16-bit
      case C2S | I2S | L2S | F2S | D2S =>
        // note: & 0xffff would not work because of negative values
        js.BinaryOp(js.BinaryOp.Int_>>,
            js.BinaryOp(js.BinaryOp.Int_<<, source2int, js.IntLiteral(16)),
            js.IntLiteral(16))

      // To Int, need to crop at signed 32-bit
      case L2I | F2I | D2I =>
        source2int

      // Any int to Long
      case C2L | B2L | S2L | I2L =>
        js.UnaryOp(js.UnaryOp.IntToLong, source)

      // Any double to Long
      case F2L | D2L =>
        js.UnaryOp(js.UnaryOp.DoubleToLong, source)

      // Long to Double
      case L2D =>
        js.UnaryOp(js.UnaryOp.LongToDouble, source)

      // Any int, or Double, to Float
      case C2F | B2F | S2F | I2F | D2F =>
        js.UnaryOp(js.UnaryOp.DoubleToFloat, source)

      // Long to Float === Long to Double to Float
      case L2F =>
        js.UnaryOp(js.UnaryOp.DoubleToFloat,
            js.UnaryOp(js.UnaryOp.LongToDouble, source))

      // Identities and IR upcasts
      case C2C | B2B | S2S | I2I | L2L | F2F | D2D |
           C2I | C2D |
           B2S | B2I | B2D |
           S2I | S2D |
           I2D |
           F2D =>
        source
    }
  }

  /** Gen a call to the special `throw` method. */
  private def genThrow(tree: Apply, args: List[Tree]): js.Tree = {
    implicit val pos: Position = tree.pos
    val exception = args.head
    val genException = genExpr(exception)
    js.Throw {
      if (exception.tpe.widenDealias.typeSymbol.derivesFrom(jsdefn.JavaScriptExceptionClass)) {
        genModuleApplyMethod(
            jsdefn.RuntimePackage_unwrapJavaScriptException,
            List(genException))
      } else {
        genException
      }
    }
  }

  /** Gen a "normal" apply (to a true method).
   *
   *  But even these are further refined into:
   *  * Methods of java.lang.String, which are redirected to the
   *    RuntimeString trait implementation.
   *  * Calls to methods of raw JS types (Scala.js -> JS interop)
   *  * Calls to methods in impl classes of Scala2 traits.
   *  * Regular method call
   */
  private def genNormalApply(tree: Apply, isStat: Boolean): js.Tree = {
    implicit val pos: Position = tree.pos

    val fun = tree.fun match {
      case fun: Ident => desugarIdent(fun).get
      case fun: Select => fun
    }
    val receiver = fun.qualifier
    val args = tree.args
    val sym = fun.symbol

    def isStringMethodFromObject: Boolean = sym.name match {
      case nme.toString_ | nme.equals_ | nme.hashCode_ => true
      case _                                           => false
    }

    if (sym.owner == defn.StringClass && !isStringMethodFromObject) {
      genApplyMethodOfString(genExpr(receiver), sym, genActualArgs(sym, args))
    } else if (isJSType(sym.owner)) {
      //if (!isScalaJSDefinedJSClass(sym.owner) || isExposed(sym))
        genApplyJSMethodGeneric(tree, sym, genExpr(receiver), genActualJSArgs(sym, args), isStat)
      /*else
        genApplyJSClassMethod(genExpr(receiver), sym, genActualArgs(sym, args))*/
    } else if (foreignIsImplClass(sym.owner)) {
      genTraitImplApply(sym, args.map(genExpr))
    } else if (sym.isClassConstructor) {
      // Calls to constructors are always statically linked
      genApplyMethodStatically(genExpr(receiver), sym, genActualArgs(sym, args))
    } else {
      genApplyMethod(genExpr(receiver), sym, genActualArgs(sym, args))
    }
  }

  /** Gen JS code for a call to a JS method (of a subclass of `js.Any`).
   *
   *  Basically it boils down to calling the method as a `JSBracketSelect`,
   *  without name mangling. But other aspects come into play:
   *
   *  - Operator methods are translated to JS operators (not method calls)
   *  - `apply` is translated as a function call, i.e., `o()` instead of `o.apply()`
   *  - Scala varargs are turned into JS varargs (see `genPrimitiveJSArgs()`)
   *  - Getters and parameterless methods are translated as `JSBracketSelect`
   *  - Setters are translated to `Assign` to `JSBracketSelect`
   */
  private def genApplyJSMethodGeneric(tree: Tree, sym: Symbol,
      receiver: js.Tree, args: List[js.Tree], isStat: Boolean,
      superIn: Option[Symbol] = None)(
      implicit pos: Position): js.Tree = {

    implicit val pos: Position = tree.pos

    def noSpread = !args.exists(_.isInstanceOf[js.JSSpread])
    val argc = args.size // meaningful only for methods that don't have varargs

    def requireNotSuper(): Unit = {
      if (superIn.isDefined)
        ctx.error("Illegal super call in Scala.js-defined JS class", tree.pos)
    }

    def hasExplicitJSEncoding = {
      sym.hasAnnotation(jsdefn.JSNameAnnot) ||
      sym.hasAnnotation(jsdefn.JSBracketAccessAnnot) ||
      sym.hasAnnotation(jsdefn.JSBracketCallAnnot)
    }

    val boxedResult = sym.name match {
      case JSUnaryOpMethodName(code) if argc == 0 =>
        requireNotSuper()
        js.JSUnaryOp(code, receiver)

      case JSBinaryOpMethodName(code) if argc == 1 =>
        requireNotSuper()
        js.JSBinaryOp(code, receiver, args.head)

      case nme.apply if !hasExplicitJSEncoding =>
        requireNotSuper()
        if (jsdefn.isJSThisFunctionClass(sym.owner))
          js.JSBracketMethodApply(receiver, js.StringLiteral("call"), args)
        else
          js.JSFunctionApply(receiver, args)

      case _ =>
        def jsFunName = js.StringLiteral(jsNameOf(sym))

        def genSuperReference(propName: js.Tree): js.Tree = {
          superIn.fold[js.Tree] {
            js.JSBracketSelect(receiver, propName)
          } { superInSym =>
            js.JSSuperBracketSelect(
                jstpe.ClassType(encodeClassFullName(superInSym)),
                receiver, propName)
          }
        }

        def genSelectGet(propName: js.Tree): js.Tree =
          genSuperReference(propName)

        def genSelectSet(propName: js.Tree, value: js.Tree): js.Tree =
          js.Assign(genSuperReference(propName), value)

        def genCall(methodName: js.Tree, args: List[js.Tree]): js.Tree = {
          superIn.fold[js.Tree] {
            js.JSBracketMethodApply(
                receiver, methodName, args)
          } { superInSym =>
            js.JSSuperBracketCall(
                jstpe.ClassType(encodeClassFullName(superInSym)),
                receiver, methodName, args)
          }
        }

        if (isJSGetter(sym)) {
          assert(noSpread && argc == 0)
          genSelectGet(jsFunName)
        } else if (isJSSetter(sym)) {
          assert(noSpread && argc == 1)
          genSelectSet(jsFunName, args.head)
        } else if (isJSBracketAccess(sym)) {
          assert(noSpread && (argc == 1 || argc == 2),
              s"@JSBracketAccess methods should have 1 or 2 non-varargs arguments")
          args match {
            case List(keyArg) =>
              genSelectGet(keyArg)
            case List(keyArg, valueArg) =>
              genSelectSet(keyArg, valueArg)
          }
        } else if (isJSBracketCall(sym)) {
          val (methodName, actualArgs) = extractFirstArg(args)
          genCall(methodName, actualArgs)
        } else {
          genCall(jsFunName, args)
        }
    }

    if (isStat) {
      boxedResult
    } else {
      val tpe = ctx.atPhase(ctx.elimErasedValueTypePhase) { implicit ctx =>
        sym.info.finalResultType
      }
      unbox(boxedResult, tpe)
    }
  }

  private object JSUnaryOpMethodName {
    private val map = Map(
      nme.UNARY_+ -> js.JSUnaryOp.+,
      nme.UNARY_- -> js.JSUnaryOp.-,
      nme.UNARY_~ -> js.JSUnaryOp.~,
      nme.UNARY_! -> js.JSUnaryOp.!
    )

    def unapply(name: Names.TermName): Option[js.JSUnaryOp.Code] =
      map.get(name)
  }

  private object JSBinaryOpMethodName {
    private val map = Map(
      nme.ADD -> js.JSBinaryOp.+,
      nme.SUB -> js.JSBinaryOp.-,
      nme.MUL -> js.JSBinaryOp.*,
      nme.DIV -> js.JSBinaryOp./,
      nme.MOD -> js.JSBinaryOp.%,

      nme.LSL -> js.JSBinaryOp.<<,
      nme.ASR -> js.JSBinaryOp.>>,
      nme.LSR -> js.JSBinaryOp.>>>,
      nme.OR  -> js.JSBinaryOp.|,
      nme.AND -> js.JSBinaryOp.&,
      nme.XOR -> js.JSBinaryOp.^,

      nme.LT -> js.JSBinaryOp.<,
      nme.LE -> js.JSBinaryOp.<=,
      nme.GT -> js.JSBinaryOp.>,
      nme.GE -> js.JSBinaryOp.>=,

      nme.ZAND -> js.JSBinaryOp.&&,
      nme.ZOR  -> js.JSBinaryOp.||
    )

    def unapply(name: Names.TermName): Option[js.JSBinaryOp.Code] =
      map.get(name)
  }

  /** Extract the first argument in a list of actual arguments.
   *
   *  This is nothing else than decomposing into head and tail, except that
   *  we assert that the first element is not a JSSpread.
   */
  private def extractFirstArg(args: List[js.Tree]): (js.Tree, List[js.Tree]) = {
    assert(args.nonEmpty,
        "Trying to extract the first argument of an empty argument list")
    val firstArg = args.head
    assert(!firstArg.isInstanceOf[js.JSSpread],
        "Trying to extract the first argument of an argument list starting " +
        "with a Spread argument: " + firstArg)
    (firstArg, args.tail)
  }

  /** Gen JS code for a call to a polymorphic method.
   *
   *  The only methods that reach the back-end as polymorphic are
   *  `isInstanceOf` and `asInstanceOf`.
   *
   *  (Well, in fact `DottyRunTime.newRefArray` too, but it is handled as a
   *  primitive instead.)
   */
  private def genTypeApply(tree: TypeApply): js.Tree = {
    implicit val pos: Position = tree.pos

    val TypeApply(fun, targs) = tree

    val sym = fun.symbol
    val receiver = qualifierOf(fun)

    val to = targs.head.tpe

    assert(!isPrimitiveValueType(receiver.tpe),
        s"Found receiver of type test with primitive type ${receiver.tpe} at $pos")
    assert(!isPrimitiveValueType(to),
        s"Found target type of type test with primitive type ${receiver.tpe} at $pos")

    val genReceiver = genExpr(receiver)

    if (sym == defn.Any_asInstanceOf) {
      genAsInstanceOf(genReceiver, to)
    } else if (sym == defn.Any_isInstanceOf) {
      genIsInstanceOf(tree, genReceiver, to)
    } else {
      throw new FatalError(
          s"Unexpected type application $fun with symbol ${sym.fullName}")
    }
  }

  /** Gen JS code for a Java Seq literal. */
  private def genJavaSeqLiteral(tree: JavaSeqLiteral): js.Tree = {
    implicit val pos: Position = tree.pos

    val genElems = tree.elems.map(genExpr)
    val arrayType = toReferenceType(tree.tpe).asInstanceOf[jstpe.ArrayType]
    js.ArrayValue(arrayType, genElems)
  }

  /** Gen JS code for a closure.
   *
   *  Input: a `Closure` tree of the form
   *  {{{
   *  Closure(env, call, functionalInterface)
   *  }}}
   *  representing the pseudo-syntax
   *  {{{
   *  { (p1, ..., pm) => call(env1, ..., envn, p1, ..., pm) }: functionInterface
   *  }}}
   *  where `envi` are identifiers in the local scope. The qualifier of `call`
   *  is also implicitly captured.
   *
   *  Output: a `js.Closure` tree of the form
   *  {{{
   *  js.Closure(formalCaptures, formalParams, body, actualCaptures)
   *  }}}
   *  representing the pseudo-syntax
   *  {{{
   *  lambda<formalCapture1 = actualCapture1, ..., formalCaptureN = actualCaptureN>(
   *      formalParam1, ..., formalParamM) = body
   *  }}}
   *  where the `actualCaptures` and `body` are, in general, arbitrary
   *  expressions. But in this case, `actualCaptures` will be identifiers from
   *  `env`, and the `body` will be of the form
   *  {{{
   *  call(formalCapture1.ref, ..., formalCaptureN.ref,
   *      formalParam1.ref, ...formalParamM.ref)
   *  }}}
   *
   *  When the `js.Closure` node is evaluated, i.e., when the closure value is
   *  created, the expressions of the `actualCaptures` are evaluated, and the
   *  results of those evaluations is "stored" in the environment of the
   *  closure as the corresponding `formalCapture`.
   *
   *  When we later *call* the closure, the `formalCaptures` already have their
   *  values from the environment, and they are available in the `body`. The
   *  `formalParams` of the created closure receive their values from the
   *  actual arguments at the call-site of the closure, and they are also
   *  available in the `body`.
   */
  private def genClosure(tree: Closure): js.Tree = {
    implicit val pos: Position = tree.pos
    val Closure(env, call, functionalInterface) = tree

    val envSize = env.size

    val (fun, args) = call match {
      // case Apply(fun, args) => (fun, args) // Conjectured not to happen
      case t @ Select(_, _) => (t, Nil)
      case t @ Ident(_) => (t, Nil)
    }
    val sym = fun.symbol

    val qualifier = qualifierOf(fun)
    val allCaptureValues = qualifier :: env

    val (formalCaptures, actualCaptures) = allCaptureValues.map { value =>
      implicit val pos: Position = value.pos
      val formalIdent = value match {
        case Ident(name) => freshLocalIdent(name.toString)
        case This(_)     => freshLocalIdent("this")
        case _           => freshLocalIdent()
      }
      val formalCapture =
        js.ParamDef(formalIdent, toIRType(value.tpe), mutable = false, rest = false)
      val actualCapture = genExpr(value)
      (formalCapture, actualCapture)
    }.unzip

    val formalParamNames = sym.info.paramNamess.flatten.drop(envSize)
    val formalParamTypes = sym.info.paramTypess.flatten.drop(envSize)
    val (formalParams, actualParams) = formalParamNames.zip(formalParamTypes).map {
      case (name, tpe) =>
        val formalParam = js.ParamDef(freshLocalIdent(name.toString),
            jstpe.AnyType, mutable = false, rest = false)
        val actualParam = unbox(formalParam.ref, tpe)
        (formalParam, actualParam)
    }.unzip

    val genBody = {
      val thisCaptureRef :: argCaptureRefs = formalCaptures.map(_.ref)
      val call = genApplyMethod(thisCaptureRef, sym, argCaptureRefs ::: actualParams)
      box(call, sym.info.finalResultType)
    }

    val closure = js.Closure(formalCaptures, formalParams, genBody, actualCaptures)
    ctx.debuglog(closure.toString)

    val funInterfaceSym = functionalInterface.tpe.widenDealias.typeSymbol
    if (jsdefn.isJSFunctionClass(funInterfaceSym)) {
      closure
    } else {
      assert(!funInterfaceSym.exists || defn.isFunctionClass(funInterfaceSym),
          s"Invalid functional interface $funInterfaceSym reached the back-end")
      val cls = "sjsr_AnonFunction" + formalParams.size
      val ctor = js.Ident("init___sjs_js_Function" + formalParams.size)
      js.New(jstpe.ClassType(cls), ctor, List(closure))
    }
  }

  /** Boxes a value of the given type before `elimErasedValueType`.
   *
   *  This should be used when sending values to a JavaScript context, which
   *  is erased/boxed at the IR level, although it is not erased at the
   *  dotty/JVM level.
   *
   *  @param expr Tree to be boxed if needed.
   *  @param tpeEnteringElimErasedValueType The type of `expr` as it was
   *    entering the `elimErasedValueType` phase.
   */
  private def box(expr: js.Tree, tpeEnteringElimErasedValueType: Type)(
      implicit pos: Position): js.Tree = {

    tpeEnteringElimErasedValueType match {
      case tpe if isPrimitiveValueType(tpe) =>
        makePrimitiveBox(expr, tpe)

      /*case tpe: ErasedValueType =>
        val boxedClass = tpe.valueClazz
        val ctor = boxedClass.primaryConstructor
        genNew(boxedClass, ctor, List(expr))*/

      case _ =>
        expr
    }
  }

  /** Unboxes a value typed as Any to the given type before `elimErasedValueType`.
   *
   *  This should be used when receiving values from a JavaScript context,
   *  which is erased/boxed at the IR level, although it is not erased at the
   *  dotty/JVM level.
   *
   *  @param expr Tree to be extracted.
   *  @param tpeEnteringElimErasedValueType The type of `expr` as it was
   *    entering the `elimErasedValueType` phase.
   */
  private def unbox(expr: js.Tree, tpeEnteringElimErasedValueType: Type)(
      implicit pos: Position): js.Tree = {

    tpeEnteringElimErasedValueType match {
      case tpe if isPrimitiveValueType(tpe) =>
        makePrimitiveUnbox(expr, tpe)

      /*case tpe: ErasedValueType =>
        val boxedClass = tpe.valueClazz
        val unboxMethod = boxedClass.derivedValueClassUnbox
        val content = genApplyMethod(
            genAsInstanceOf(expr, tpe), unboxMethod, Nil)
        if (unboxMethod.tpe.resultType <:< tpe.erasedUnderlying)
          content
        else
          fromAny(content, tpe.erasedUnderlying)*/

      case tpe =>
        genAsInstanceOf(expr, tpe)
    }
  }

  /** Gen JS code for an asInstanceOf cast (for reference types only) */
  private def genAsInstanceOf(value: js.Tree, to: Type)(
      implicit pos: Position): js.Tree = {

    val sym = to.widenDealias.typeSymbol

    if (sym == defn.ObjectClass || isJSType(sym)) {
      /* asInstanceOf[Object] always succeeds, and
       * asInstanceOf to a raw JS type is completely erased.
       */
      value
    } else {
      js.AsInstanceOf(value, toReferenceType(to))
    }
  }

  /** Gen JS code for an isInstanceOf test (for reference types only) */
  private def genIsInstanceOf(tree: Tree, value: js.Tree, to: Type): js.Tree = {
    implicit val pos: Position = tree.pos
    val sym = to.widenDealias.typeSymbol

    if (sym == defn.ObjectClass) {
      js.BinaryOp(js.BinaryOp.!==, value, js.Null())
    } else if (isJSType(sym)) {
      if (sym.is(Trait)) {
        ctx.error(
            s"isInstanceOf[${sym.fullName}] not supported because it is a JS trait",
            tree.pos)
        js.BooleanLiteral(true)
      } else {
        js.Unbox(js.JSBinaryOp(
            js.JSBinaryOp.instanceof, value, genLoadJSConstructor(sym)), 'Z')
      }
    } else {
      js.IsInstanceOf(value, toReferenceType(to))
    }
  }

  /** Gen a dynamically linked call to a Scala method. */
  private def genApplyMethod(receiver: js.Tree,
      methodSym: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    js.Apply(receiver, encodeMethodSym(methodSym), arguments)(
        toIRType(patchedResultType(methodSym)))
  }

  /** Gen a statically linked call to an instance method. */
  private def genApplyMethodStatically(receiver: js.Tree, method: Symbol,
      arguments: List[js.Tree])(implicit pos: Position): js.Tree = {
    val className = encodeClassFullName(method.owner)
    val methodIdent = encodeMethodSym(method)
    val resultType = toIRType(patchedResultType(method))
    js.ApplyStatically(receiver, jstpe.ClassType(className),
        methodIdent, arguments)(resultType)
  }

  /** Gen a call to a static method. */
  private def genApplyStatic(method: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    val cls = jstpe.ClassType(encodeClassFullName(method.owner))
    val methodIdent = encodeMethodSym(method)
    js.ApplyStatic(cls, methodIdent, arguments)(
        toIRType(patchedResultType(method)))
  }

  /** Gen a call to a Scala2 impl class method. */
  private def genTraitImplApply(method: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    genApplyStatic(method, arguments)
  }

  /** Gen a call to a non-exposed method of a non-native JS class. */
  private def genApplyJSClassMethod(receiver: js.Tree, method: Symbol,
      arguments: List[js.Tree])(implicit pos: Position): js.Tree = {
    genApplyStatic(method, receiver :: arguments)
  }

  /** Gen a call to a method of a Scala top-level module. */
  private def genModuleApplyMethod(methodSym: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    genApplyMethod(genLoadModule(methodSym.owner), methodSym, arguments)
  }

  /** Gen JS code for `new java.lang.String(...)`.
   *
   *  Rewires the instantiation to calling the appropriate overload of
   *  `newString` in the object `scala.scalajs.runtime.RuntimeString`.
   */
  private def genNewString(ctor: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    js.Apply(
        genLoadModule(jsdefn.RuntimeStringModuleClass),
        encodeRTStringCtorSym(ctor), arguments)(
        jstpe.ClassType(ir.Definitions.StringClass))
  }

  /** Gen a dynamically linked call to a method of java.lang.String.
   *
   *  Forwards the call to the module scala.scalajs.runtime.RuntimeString.
   */
  private def genApplyMethodOfString(receiver: js.Tree,
      methodSym: Symbol, arguments: List[js.Tree])(
      implicit pos: Position): js.Tree = {
    js.Apply(
        genLoadModule(jsdefn.RuntimeStringModuleClass),
        encodeRTStringMethodSym(methodSym),
        receiver :: arguments)(
        toIRType(patchedResultType(methodSym)))
  }

  /** Gen a boxing operation (tpe is the primitive type) */
  private def makePrimitiveBox(expr: js.Tree, tpe: Type)(
      implicit pos: Position): js.Tree = {
    toReferenceType(tpe) match {
      case jstpe.ClassType(cls) if ir.Definitions.isPrimitiveClass(cls) =>
        assert(cls.length == 1)
        (cls.charAt(0): @switch) match {
          case 'V' =>
            // must be handled at least for JS interop
            js.Block(expr, js.Undefined())
          case 'C' =>
            genModuleApplyMethod(jsdefn.BoxesRunTime_boxToCharacter, List(expr))
          case _ =>
            expr // box is identity for all non-Char types
        }

      case _ =>
        throw new FatalError(
            s"makePrimitiveBox requires a primitive type, found $tpe at $pos")
    }
  }

  /** Gen an unboxing operation (tpe is the primitive type) */
  private def makePrimitiveUnbox(expr: js.Tree, tpe: Type)(
      implicit pos: Position): js.Tree = {
    toReferenceType(tpe) match {
      case jstpe.ClassType(cls) if ir.Definitions.isPrimitiveClass(cls) =>
        assert(cls.length == 1)
        (cls.charAt(0): @switch) match {
          case 'V' =>
            // must be handled at least for JS interop
            expr
          case 'C' =>
            genModuleApplyMethod(jsdefn.BoxesRunTime_unboxToChar, List(expr))
          case primitiveCharCode =>
            js.Unbox(expr, primitiveCharCode)
        }

      case _ =>
        throw new FatalError(
            s"makePrimitiveUnbox requires a primitive type, found $tpe at $pos")
    }
  }

  /** Gen actual actual arguments to Scala method call.
   *  Returns a list of the transformed arguments.
   *
   *  This tries to optimize repeated arguments (varargs) by turning them
   *  into js.WrappedArray instead of Scala wrapped arrays.
   */
  private def genActualArgs(sym: Symbol, args: List[Tree])(
      implicit pos: Position): List[js.Tree] = {
    args.map(genExpr)
    /*val wereRepeated = exitingPhase(currentRun.typerPhase) {
      sym.tpe.params.map(p => isScalaRepeatedParamType(p.tpe))
    }

    if (wereRepeated.size > args.size) {
      // Should not happen, but let's not crash
      args.map(genExpr)
    } else {
      /* Arguments that are in excess compared to the type signature after
       * erasure are lambda-lifted arguments. They cannot be repeated, hence
       * the extension to `false`.
       */
      for ((arg, wasRepeated) <- args.zipAll(wereRepeated, EmptyTree, false)) yield {
        if (wasRepeated) {
          tryGenRepeatedParamAsJSArray(arg, handleNil = false).fold {
            genExpr(arg)
          } { genArgs =>
            genNew(WrappedArrayClass, WrappedArray_ctor,
                List(js.JSArrayConstr(genArgs)))
          }
        } else {
          genExpr(arg)
        }
      }
    }*/
  }

  /** Gen actual actual arguments to a JS method call.
   *  Returns a list of the transformed arguments.
   *
   *  - TODO Repeated arguments (varargs) are expanded
   *  - Default arguments are omitted or replaced by undefined
   *  - All arguments are boxed
   *
   *  Repeated arguments that cannot be expanded at compile time (i.e., if a
   *  Seq is passed to a varargs parameter with the syntax `seq: _*`) will be
   *  wrapped in a [[js.JSSpread]] node to be expanded at runtime.
   */
  private def genActualJSArgs(sym: Symbol, args: List[Tree])(
      implicit pos: Position): List[js.Tree] = {

    def paramNamesAndTypes(implicit ctx: Context): List[(Names.TermName, Type)] =
      sym.info.paramNamess.flatten.zip(sym.info.paramTypess.flatten)

    val wereRepeated = ctx.atPhase(ctx.elimRepeatedPhase) { implicit ctx =>
      for ((name, tpe) <- paramNamesAndTypes)
        yield (name -> tpe.isRepeatedParam)
    }.toMap

    val paramTypes = ctx.atPhase(ctx.elimErasedValueTypePhase) { implicit ctx =>
      paramNamesAndTypes
    }.toMap

    var reversedArgs: List[js.Tree] = Nil

    for ((arg, (paramName, paramType)) <- args.zip(paramNamesAndTypes)) {
      val wasRepeated = wereRepeated.getOrElse(paramName, false)
      if (wasRepeated) {
        reversedArgs =
          genJSRepeatedParam(arg) reverse_::: reversedArgs
      } else {
        val unboxedArg = genExpr(arg)
        val boxedArg = unboxedArg match {
          case js.UndefinedParam() =>
            unboxedArg
          case _ =>
            val tpe = paramTypes.getOrElse(paramName, paramType)
            box(unboxedArg, tpe)
        }
        reversedArgs ::= boxedArg
      }
    }

    /* Remove all consecutive js.UndefinedParam's at the end of the argument
     * list. No check is performed whether they may be there, since they will
     * only be placed where default arguments can be anyway.
     */
    reversedArgs = reversedArgs.dropWhile(_.isInstanceOf[js.UndefinedParam])

    /* Find remaining js.UndefinedParam and replace by js.Undefined. This can
     * happen with named arguments or with multiple argument lists.
     */
    reversedArgs = reversedArgs map {
      case js.UndefinedParam() => js.Undefined()
      case arg                 => arg
    }

    reversedArgs.reverse
  }

  /** Gen JS code for a repeated param of a JS method.
   *
   *  In this case `arg` has type `Seq[T]` for some `T`, but the result should
   *  be an expanded list of the elements in the sequence. So this method
   *  takes care of the conversion.
   *
   *  It is specialized for the shapes of tree generated by the desugaring
   *  of repeated params in Scala, so that these are actually expanded at
   *  compile-time.
   *
   *  Otherwise, it returns a `JSSpread` with the `Seq` converted to a
   *  `js.Array`.
   */
  private def genJSRepeatedParam(arg: Tree): List[js.Tree] = {
    tryGenRepeatedParamAsJSArray(arg, handleNil = true).getOrElse {
      /* Fall back to calling runtime.genTraversableOnce2jsArray
       * to perform the conversion to js.Array, then wrap in a Spread
       * operator.
       */
      implicit val pos: Position = arg.pos
      val jsArrayArg = genModuleApplyMethod(
          jsdefn.RuntimePackage_genTraversableOnce2jsArray,
          List(genExpr(arg)))
      List(js.JSSpread(jsArrayArg))
    }
  }

  /** Try and expand an actual argument to a repeated param `(xs: T*)`.
   *
   *  This method recognizes the shapes of tree generated by the desugaring
   *  of repeated params in Scala, and expands them.
   *  If `arg` does not have the shape of a generated repeated param, this
   *  method returns `None`.
   */
  private def tryGenRepeatedParamAsJSArray(arg: Tree,
      handleNil: Boolean): Option[List[js.Tree]] = {
    implicit val pos: Position = arg.pos

    // Given a method `def foo(args: T*)`
    arg match {
      // foo(arg1, arg2, ..., argN) where N > 0
      case MaybeAsInstanceOf(WrapArray(MaybeAsInstanceOf(array: JavaSeqLiteral))) =>
        /* Value classes in arrays are already boxed, so no need to use
         * the type before erasure.
         * TODO Is this true in dotty?
         */
        Some(array.elems.map(e => box(genExpr(e), e.tpe)))

      // foo()
      case Ident(_) if handleNil && arg.symbol == defn.NilModule =>
        Some(Nil)

      // foo(argSeq: _*) - cannot be optimized
      case _ =>
        None
    }
  }

  private object MaybeAsInstanceOf {
    def unapply(tree: Tree): Some[Tree] = tree match {
      case TypeApply(asInstanceOf_? @ Select(base, _), _)
          if asInstanceOf_?.symbol == defn.Any_asInstanceOf =>
        Some(base)
      case _ =>
        Some(tree)
    }
  }

  private object WrapArray {
    lazy val isWrapArray: Set[Symbol] = {
      val names = {
        defn.ScalaValueClasses().map(sym => nme.wrapXArray(sym.name)) ++
        Set(nme.wrapRefArray, nme.genericWrapArray)
      }
      names.map(defn.ScalaPredefModule.requiredMethod(_)).toSet
    }

    def unapply(tree: Apply): Option[Tree] = tree match {
      case Apply(wrapArray_?, List(wrapped)) if isWrapArray(wrapArray_?.symbol) =>
        Some(wrapped)
      case _ =>
        None
    }
  }

  /** Gen JS code for loading a Java static field.
   */
  private def genLoadStaticField(sym: Symbol)(implicit pos: Position): js.Tree = {
    /* Actually, there is no static member in Scala.js. If we come here, that
     * is because we found the symbol in a Java-emitted .class in the
     * classpath. But the corresponding implementation in Scala.js will
     * actually be a val in the companion module.
     */

    if (sym == defn.BoxedUnit_UNIT) {
      js.Undefined()
    } else {
      val instance = genLoadModule(sym.owner)
      val method = encodeStaticMemberSym(sym)
      js.Apply(instance, method, Nil)(toIRType(sym.info))
    }
  }

  /** Gen JS code for loading a module.
   *
   *  Can be given either the module symbol, or its module class symbol.
   */
  private def genLoadModule(sym0: Symbol)(implicit pos: Position): js.Tree = {
    require(sym0.is(Module),
        "genLoadModule called with non-module symbol: " + sym0)
    val sym1 = if (sym0.isTerm) sym0.moduleClass else sym0
    val sym = // redirect all static methods of String to RuntimeString
      if (sym1 == defn.StringModule) jsdefn.RuntimeStringModule.moduleClass
      else sym1

    if (isJSType(sym)) {
      if (isScalaJSDefinedJSClass(sym))
        js.LoadJSModule(jstpe.ClassType(encodeClassFullName(sym)))
      else if (sym.derivesFrom(jsdefn.JSGlobalScopeClass))
        genLoadJSGlobal()
      else
        genLoadNativeJSModule(sym)
    } else {
      js.LoadModule(jstpe.ClassType(encodeClassFullName(sym)))
    }
  }

  /** Gen JS code representing the constructor of a JS class. */
  private def genLoadJSConstructor(sym: Symbol)(
      implicit pos: Position): js.Tree = {
    assert(!isStaticModule(sym) && !sym.is(Trait),
        s"genPrimitiveJSClass called with non-class $sym")
    js.LoadJSConstructor(jstpe.ClassType(encodeClassFullName(sym)))
  }

  /** Gen JS code representing a native JS module. */
  private def genLoadNativeJSModule(sym: Symbol)(
      implicit pos: Position): js.Tree = {
    require(sym.is(ModuleClass),
        s"genLoadNativeJSModule called with non-module $sym")
    fullJSNameOf(sym).split('.').foldLeft(genLoadJSGlobal()) { (memo, chunk) =>
      js.JSBracketSelect(memo, js.StringLiteral(chunk))
    }
  }

  /** Gen JS code to load the JavaScript global scope. */
  private def genLoadJSGlobal()(implicit pos: Position): js.Tree = {
    js.JSBracketSelect(
        js.JSBracketSelect(js.JSLinkingInfo(), js.StringLiteral("envInfo")),
        js.StringLiteral("global"))
  }

  /** Generate a Class[_] value (e.g. coming from classOf[T]) */
  private def genClassConstant(tpe: Type)(implicit pos: Position): js.Tree =
    js.ClassOf(toReferenceType(tpe))

  private def isStaticModule(sym: Symbol): Boolean =
    sym.is(Module) && sym.isStatic

  private def isPrimitiveValueType(tpe: Type): Boolean = {
    tpe.widenDealias match {
      case JavaArrayType(_) => false
      case t                => t.typeSymbol.asClass.isPrimitiveValueClass
    }
  }

}