package magnolia import scala.util.control.NonFatal import scala.reflect._ import macros._ import scala.collection.immutable.ListMap import language.existentials import language.higherKinds /** the object which defines the Magnolia macro */ object Magnolia { import CompileTimeState._ /** derives a generic typeclass instance for the type `T` * * This is a macro definition method which should be bound to a method defined inside a Magnolia * generic derivation object, that is, one which defines the methods `combine`, `dispatch` and * the type constructor, `Typeclass[_]`. This will typically look like, *
    *  object Derivation {
    *    // other definitions
    *    implicit def gen[T]: Typeclass[T] = Magnolia.gen[T]
    *  }
    *  
* which would support automatic derivation of typeclass instances by calling * `Derivation.gen[T]` or with `implicitly[Typeclass[T]]`, if the implicit method is imported * into the current scope. * * The definition expects a type constructor called `Typeclass`, taking one *-kinded type * parameter to be defined on the same object as a means of determining how the typeclass should * be genericized. While this may be obvious for typeclasses like `Show[T]` which take only a * single type parameter, Magnolia can also derive typeclass instances for types such as * `Decoder[Format, Type]` which would typically fix the `Format` parameter while varying the * `Type` parameter. * * While there is no "interface" for a derivation, in the object-oriented sense, the Magnolia * macro expects to be able to call certain methods on the object within which it is bound to a * method. * * Specifically, for deriving case classes (product types), the macro will attempt to call the * `combine` method with an instance of [[CaseClass]], like so, *
    *    <derivation>.combine(<caseClass>): Typeclass[T]
    *  
* That is to say, the macro expects there to exist a method called `combine` on the derivation * object, which may be called with the code above, and for it to return a type which conforms * to the type `Typeclass[T]`. The implementation of `combine` will therefore typically look * like this, *
    *    def combine[T](caseClass: CaseClass[Typeclass, T]): Typeclass[T] = ...
    *  
* however, there is the flexibility to provide additional type parameters or additional * implicit parameters to the definition, provided these do not affect its ability to be invoked * as described above. * * Likewise, for deriving sealed traits (coproduct or sum types), the macro will attempt to call * the `dispatch` method with an instance of [[SealedTrait]], like so, *
    *    <derivation>.dispatch(<sealedTrait>): Typeclass[T]
    *  
* so a definition such as, *
    *    def dispatch[T](sealedTrait: SealedTrait[Typeclass, T]): Typeclass[T] = ...
    *  
* will suffice, however the qualifications regarding additional type parameters and implicit * parameters apply equally to `dispatch` as to `combine`. * */ def gen[T: c.WeakTypeTag](c: whitebox.Context): c.Tree = { import c.universe._ import internal._ val magnoliaPkg = q"_root_.magnolia" val scalaPkg = q"_root_.scala" val repeatedParamClass = definitions.RepeatedParamClass val scalaSeqType = typeOf[Seq[_]].typeConstructor val prefixType = c.prefix.tree.tpe val typeDefs = prefixType.baseClasses.flatMap { cls => cls.asType.toType.decls.filter(_.isType).find(_.name.toString == "Typeclass").map { tpe => tpe.asType.toType.asSeenFrom(prefixType, cls) } } val typeConstructorOpt = typeDefs.headOption.map(_.typeConstructor) val typeConstructor = typeConstructorOpt.getOrElse { c.abort(c.enclosingPosition, "magnolia: the derivation object does not define the Typeclass type constructor") } def checkMethod(termName: String, category: String, expected: String): Unit = { val term = TermName(termName) val combineClass = c.prefix.tree.tpe.baseClasses .find { cls => cls.asType.toType.decl(term) != NoSymbol } .getOrElse { c.abort( c.enclosingPosition, s"magnolia: the method `$termName` must be defined on the derivation object to derive typeclasses for $category" ) } val firstParamBlock = combineClass.asType.toType.decl(term).asTerm.asMethod.paramLists.head if (firstParamBlock.lengthCompare(1) != 0) c.abort(c.enclosingPosition, s"magnolia: the method `combine` should take a single parameter of type $expected") } // FIXME: Only run these methods if they're used, particularly `dispatch` checkMethod("combine", "case classes", "CaseClass[Typeclass, _]") checkMethod("dispatch", "sealed traits", "SealedTrait[Typeclass, _]") def findType(key: Type): Option[TermName] = recursionStack(c.enclosingPosition).frames.find(_.genericType == key).map(_.termName(c)) final case class Typeclass(typ: c.Type, tree: c.Tree) def recurse[A](path: TypePath, key: Type, value: TermName)(fn: => A): Option[A] = { val oldRecursionStack = recursionStack.get(c.enclosingPosition) recursionStack = recursionStack.updated( c.enclosingPosition, oldRecursionStack.map(_.push(path, key, value)).getOrElse { Stack(Map(), List(Frame(path, key, value)), Nil) } ) try Some(fn) catch { case NonFatal(_) => None } finally { val currentStack = recursionStack(c.enclosingPosition) recursionStack = recursionStack.updated(c.enclosingPosition, currentStack.pop()) } } val removeDeferred: Transformer = new Transformer { override def transform(tree: Tree): Tree = tree match { case q"$magnoliaPkg.Deferred.apply[$returnType](${Literal(Constant(method: String))})" => q"${TermName(method)}" case _ => super.transform(tree) } } def typeclassTree(paramName: Option[String], genericType: Type, typeConstructor: Type, assignedName: TermName): Tree = { val searchType = appliedType(typeConstructor, genericType) val deferredRef = findType(genericType).map { methodName => val methodAsString = methodName.decodedName.toString q"$magnoliaPkg.Deferred.apply[$searchType]($methodAsString)" } val foundImplicit = deferredRef.orElse { val (inferredImplicit, newStack) = recursionStack(c.enclosingPosition).lookup(c)(searchType) { val implicitSearchTry = scala.util.Try { val genericTypeName: String = genericType.typeSymbol.name.decodedName.toString.toLowerCase val assignedName: TermName = TermName(c.freshName(s"${genericTypeName}Typeclass")) recurse(ChainedImplicit(genericType.toString), genericType, assignedName) { c.inferImplicitValue(searchType, false, false) }.get } implicitSearchTry.toOption.orElse( directInferImplicit(genericType, typeConstructor).map(_.tree) ) } recursionStack = recursionStack.updated(c.enclosingPosition, newStack) inferredImplicit } foundImplicit.getOrElse { val currentStack: Stack = recursionStack(c.enclosingPosition) val error = ImplicitNotFound(genericType.toString, recursionStack(c.enclosingPosition).frames.map(_.path)) val updatedStack = currentStack.copy(errors = error :: currentStack.errors) recursionStack = recursionStack.updated(c.enclosingPosition, updatedStack) val stackPaths = recursionStack(c.enclosingPosition).frames.map(_.path) val stack = stackPaths.mkString(" in ", "\n in ", "\n") c.abort(c.enclosingPosition, s"magnolia: could not find typeclass for type $genericType\n$stack") } } def directInferImplicit(genericType: c.Type, typeConstructor: Type): Option[Typeclass] = { val genericTypeName: String = genericType.typeSymbol.name.decodedName.toString.toLowerCase val assignedName: TermName = TermName(c.freshName(s"${genericTypeName}Typeclass")) val typeSymbol = genericType.typeSymbol val classType = if (typeSymbol.isClass) Some(typeSymbol.asClass) else None val isCaseClass = classType.exists(_.isCaseClass) val isCaseObject = classType.exists(_.isModuleClass) val isSealedTrait = classType.exists(_.isSealed) val primitives = Set(typeOf[Double], typeOf[Float], typeOf[Short], typeOf[Byte], typeOf[Int], typeOf[Long], typeOf[Char], typeOf[Boolean], typeOf[Unit]) val isValueClass = genericType <:< typeOf[AnyVal] && !primitives.exists(_ =:= genericType) val resultType = appliedType(typeConstructor, genericType) val typeName = TermName(c.freshName("typeName")) val typeNameDef = { val ts = genericType.typeSymbol q"val $typeName = $magnoliaPkg.TypeName(${ts.owner.fullName}, ${ts.name.decodedName.toString})" } val result = if (isCaseObject) { val impl = q""" $typeNameDef ${c.prefix}.combine($magnoliaPkg.Magnolia.caseClass[$typeConstructor, $genericType]( $typeName, true, false, new $scalaPkg.Array(0), _ => ${genericType.typeSymbol.asClass.module}) ) """ Some(Typeclass(genericType, impl)) } else if (isCaseClass || isValueClass) { val caseClassParameters = genericType.decls.collect { case m: MethodSymbol if m.isCaseAccessor || (isValueClass && m.isParamAccessor) => m.asMethod } final case class CaseParam(sym: c.universe.MethodSymbol, repeated: Boolean, typeclass: c.Tree, paramType: c.Type, ref: c.TermName) val caseParamsReversed = caseClassParameters.foldLeft[List[CaseParam]](Nil) { (acc, param) => val paramName = param.name.decodedName.toString val paramTypeSubstituted = param.typeSignatureIn(genericType).resultType val (repeated, paramType) = paramTypeSubstituted match { case TypeRef(_, `repeatedParamClass`, typeArgs) => true -> appliedType(scalaSeqType, typeArgs) case tpe => false -> tpe } val predefinedRef = acc.find(_.paramType == paramType) val caseParamOpt = predefinedRef.map { backRef => CaseParam(param, repeated, q"()", paramType, backRef.ref) :: acc } caseParamOpt.getOrElse { val derivedImplicit = recurse(ProductType(paramName, genericType.toString), genericType, assignedName) { typeclassTree(Some(paramName), paramType, typeConstructor, assignedName) }.getOrElse( c.abort(c.enclosingPosition, s"failed to get implicit for type $genericType") ) val ref = TermName(c.freshName("paramTypeclass")) val assigned = q"""val $ref = $derivedImplicit""" CaseParam(param, repeated, assigned, paramType, ref) :: acc } } val caseParams = caseParamsReversed.reverse val paramsVal: TermName = TermName(c.freshName("parameters")) val fieldValues: TermName = TermName(c.freshName("fieldValues")) val preAssignments = caseParams.map(_.typeclass) val defaults = if (!isValueClass) { val companionRef = GlobalUtil.patchedCompanionRef(c)(genericType) val companionSym = companionRef.symbol.asModule.info // If a companion object is defined with alternative apply methods // it is needed get all the alternatives val constructorMethods = companionSym.decl(TermName("apply")).alternatives.map(_.asMethod) // The last apply method in the alternatives is the one that belongs // to the case class, not the user defined companion object val indexedConstructorParams = constructorMethods.last.paramLists.head.map(_.asTerm).zipWithIndex indexedConstructorParams.map { case (p, idx) => if (p.isParamWithDefault) { val method = TermName("apply$default$" + (idx + 1)) q"$scalaPkg.Some($companionRef.$method)" } else q"$scalaPkg.None" } } else List(q"$scalaPkg.None") val assignments = caseParams.zip(defaults).zipWithIndex.map { case ((CaseParam(param, repeated, typeclass, paramType, ref), defaultVal), idx) => q"""$paramsVal($idx) = $magnoliaPkg.Magnolia.param[$typeConstructor, $genericType, $paramType]( ${param.name.decodedName.toString}, $repeated, $ref, $defaultVal, _.${param.name} )""" } Some( Typeclass( genericType, q"""{ ..$preAssignments val $paramsVal: $scalaPkg.Array[$magnoliaPkg.Param[$typeConstructor, $genericType]] = new $scalaPkg.Array(${assignments.length}) ..$assignments $typeNameDef ${c.prefix}.combine($magnoliaPkg.Magnolia.caseClass[$typeConstructor, $genericType]( $typeName, false, $isValueClass, $paramsVal, ($fieldValues: $scalaPkg.Seq[Any]) => { if ($fieldValues.lengthCompare($paramsVal.length) != 0) { val msg = "`" + $typeName.full + "` has " + $paramsVal.length + " fields, not " + $fieldValues.size throw new java.lang.IllegalArgumentException(msg) } new $genericType(..${ caseParams.zipWithIndex.map { case (typeclass, idx) => val arg = q"$fieldValues($idx).asInstanceOf[${typeclass.paramType}]" if (typeclass.repeated) q"$arg: _*" else arg } })})) }""") ) } else if (isSealedTrait) { val genericSubtypes = classType.get.knownDirectSubclasses.to[List] val subtypes = genericSubtypes.map { sub => val subType = sub.asType.toType // FIXME: Broken for path dependent types val typeParams = sub.asType.typeParams val typeArgs = thisType(sub).baseType(genericType.typeSymbol).typeArgs val mapping = (typeArgs.map(_.typeSymbol), genericType.typeArgs).zipped.toMap val newTypeArgs = typeParams.map(mapping.withDefault(_.asType.toType)) val applied = appliedType(subType.typeConstructor, newTypeArgs) existentialAbstraction(typeParams, applied) } if (subtypes.isEmpty) { c.info(c.enclosingPosition, s"magnolia: could not find any direct subtypes of $typeSymbol", true) c.abort(c.enclosingPosition, "") } val subtypesVal: TermName = TermName(c.freshName("subtypes")) val typeclasses = subtypes.map { searchType => recurse(CoproductType(genericType.toString), genericType, assignedName) { (searchType, typeclassTree(None, searchType, typeConstructor, assignedName)) }.getOrElse { c.abort(c.enclosingPosition, s"failed to get implicit for type $searchType") } } val assignments = typeclasses.zipWithIndex.map { case ((typ, typeclass), idx) => q"""$subtypesVal($idx) = $magnoliaPkg.Magnolia.subtype[$typeConstructor, $genericType, $typ]( ${s"${typ.typeSymbol.owner.fullName}.${typ.typeSymbol.name.decodedName}"}, $typeclass, (t: $genericType) => t.isInstanceOf[$typ], (t: $genericType) => t.asInstanceOf[$typ] )""" } Some { Typeclass( genericType, q"""{ val $subtypesVal: $scalaPkg.Array[$magnoliaPkg.Subtype[$typeConstructor, $genericType]] = new $scalaPkg.Array(${assignments.size}) ..$assignments $typeNameDef ${c.prefix}.dispatch(new $magnoliaPkg.SealedTrait( $typeName, $subtypesVal: $scalaPkg.Array[$magnoliaPkg.Subtype[$typeConstructor, $genericType]]) ): $resultType }""" ) } } else None result.map { case Typeclass(t, r) => Typeclass(t, q"""{ def $assignedName: $resultType = $r $assignedName }""") } } val genericType: Type = weakTypeOf[T] val currentStack: Stack = recursionStack.getOrElse(c.enclosingPosition, Stack(Map(), List(), List())) val directlyReentrant = currentStack.frames.headOption.exists(_.genericType == genericType) if (directlyReentrant) throw DirectlyReentrantException() currentStack.errors.foreach { error => if (!emittedErrors.contains(error)) { emittedErrors += error val trace = error.path.mkString("\n in ", "\n in ", "\n \n") val msg = s"magnolia: could not derive $typeConstructor instance for type " + s"${error.genericType}" c.info(c.enclosingPosition, msg + trace, true) } } val result: Option[Tree] = if (currentStack.frames.nonEmpty) { findType(genericType) match { case None => directInferImplicit(genericType, typeConstructor).map(_.tree) case Some(enclosingRef) => val methodAsString = enclosingRef.toString val searchType = appliedType(typeConstructor, genericType) Some(q"$magnoliaPkg.Deferred[$searchType]($methodAsString)") } } else directInferImplicit(genericType, typeConstructor).map(_.tree) if (currentStack.frames.isEmpty) recursionStack = ListMap() val dereferencedResult = result.map { tree => if (currentStack.frames.isEmpty) c.untypecheck(removeDeferred.transform(tree)) else tree } dereferencedResult.getOrElse { c.abort(c.enclosingPosition, s"magnolia: could not infer typeclass for type $genericType") } } /** constructs a new [[Subtype]] instance * * This method is intended to be called only from code generated by the Magnolia macro, and * should not be called directly from users' code. */ def subtype[Tc[_], T, S <: T](name: String, tc: => Tc[S], isType: T => Boolean, asType: T => S): Subtype[Tc, T] = new Subtype[Tc, T] with PartialFunction[T, S] { type SType = S def label: String = name def typeclass: Tc[SType] = tc def cast: PartialFunction[T, SType] = this def isDefinedAt(t: T) = isType(t) def apply(t: T): SType = asType(t) } /** constructs a new [[Param]] instance * * This method is intended to be called only from code generated by the Magnolia macro, and * should not be called directly from users' code. */ def param[Tc[_], T, P](name: String, isRepeated: Boolean, typeclassParam: Tc[P], defaultVal: => Option[P], deref: T => P): Param[Tc, T] = new Param[Tc, T] { type PType = P def label: String = name def repeated: Boolean = isRepeated def default: Option[PType] = defaultVal def typeclass: Tc[PType] = typeclassParam def dereference(t: T): PType = deref(t) } /** constructs a new [[CaseClass]] instance * * This method is intended to be called only from code generated by the Magnolia macro, and * should not be called directly from users' code. */ def caseClass[Tc[_], T](name: TypeName, obj: Boolean, valClass: Boolean, params: Array[Param[Tc, T]], constructor: Seq[Any] => T): CaseClass[Tc, T] = new CaseClass[Tc, T](name, obj, valClass, params) { def rawConstruct(fieldValues: Seq[Any]): T = constructor(fieldValues) } } private[magnolia] final case class DirectlyReentrantException() extends Exception("attempt to recurse directly") private[magnolia] object Deferred { def apply[T](method: String): T = ??? } private[magnolia] object CompileTimeState { sealed abstract class TypePath(path: String) { override def toString = path } final case class CoproductType(typeName: String) extends TypePath(s"coproduct type $typeName") final case class ProductType(paramName: String, typeName: String) extends TypePath(s"parameter '$paramName' of product type $typeName") final case class ChainedImplicit(typeName: String) extends TypePath(s"chained implicit of type $typeName") final case class ImplicitNotFound(genericType: String, path: List[TypePath]) final case class Stack(cache: Map[whitebox.Context#Type, Option[whitebox.Context#Tree]], frames: List[Frame], errors: List[ImplicitNotFound]) { def lookup(c: whitebox.Context)(t: c.Type)(orElse: => Option[c.Tree]): (Option[c.Tree], Stack) = if (cache.contains(t)) { (cache(t).asInstanceOf[Option[c.Tree]], this) } else { val value = orElse (value, copy(cache.updated(t, value))) } def push(path: TypePath, key: whitebox.Context#Type, value: whitebox.Context#TermName): Stack = Stack(cache, Frame(path, key, value) :: frames, errors) def pop(): Stack = Stack(cache, frames.tail, errors) } final case class Frame(path: TypePath, genericType: whitebox.Context#Type, term: whitebox.Context#TermName) { def termName(c: whitebox.Context): c.TermName = term.asInstanceOf[c.TermName] } var recursionStack: ListMap[api.Position, Stack] = ListMap() var emittedErrors: Set[ImplicitNotFound] = Set() }