// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "protobuf.h" #include "utf8.h" /* stringsink *****************************************************************/ typedef struct { upb_byteshandler handler; upb_bytessink sink; char *ptr; size_t len, size; } stringsink; static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { stringsink *sink = _sink; sink->len = 0; return sink; } static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, size_t len, const upb_bufhandle *handle) { stringsink *sink = _sink; size_t new_size = sink->size; UPB_UNUSED(hd); UPB_UNUSED(handle); while (sink->len + len > new_size) { new_size *= 2; } if (new_size != sink->size) { sink->ptr = realloc(sink->ptr, new_size); sink->size = new_size; } memcpy(sink->ptr + sink->len, ptr, len); sink->len += len; return len; } void stringsink_init(stringsink *sink) { upb_byteshandler_init(&sink->handler); upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); upb_bytessink_reset(&sink->sink, &sink->handler, sink); sink->size = 32; sink->ptr = malloc(sink->size); sink->len = 0; } void stringsink_uninit(stringsink *sink) { free(sink->ptr); } /* stackenv *****************************************************************/ // Stack-allocated context during an encode/decode operation. Contains the upb // environment and its stack-based allocator, an initial buffer for allocations // to avoid malloc() when possible, and a template for PHP exception messages // if any error occurs. #define STACK_ENV_STACKBYTES 4096 typedef struct { upb_env env; const char *php_error_template; char allocbuf[STACK_ENV_STACKBYTES]; } stackenv; static void stackenv_init(stackenv* se, const char* errmsg); static void stackenv_uninit(stackenv* se); // Callback invoked by upb if any error occurs during parsing or serialization. static bool env_error_func(void* ud, const upb_status* status) { char err_msg[100] = ""; stackenv* se = ud; // Free the env -- zend_error will longjmp up the stack past the // encode/decode function so it would not otherwise have been freed. stackenv_uninit(se); // TODO(teboring): have a way to verify that this is actually a parse error, // instead of just throwing "parse error" unconditionally. sprintf(err_msg, se->php_error_template, upb_status_errmsg(status)); TSRMLS_FETCH(); zend_throw_exception(NULL, err_msg, 0 TSRMLS_CC); // Never reached. return false; } static void stackenv_init(stackenv* se, const char* errmsg) { se->php_error_template = errmsg; upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL); upb_env_seterrorfunc(&se->env, env_error_func, se); } static void stackenv_uninit(stackenv* se) { upb_env_uninit(&se->env); } // ----------------------------------------------------------------------------- // Parsing. // ----------------------------------------------------------------------------- #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs) // Creates a handlerdata that simply contains the offset for this field. static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) { size_t* hd_ofs = (size_t*)malloc(sizeof(size_t)); *hd_ofs = ofs; upb_handlers_addcleanup(h, hd_ofs, free); return hd_ofs; } typedef size_t (*encodeunknown_handlerfunc)(void* _sink, const void* hd, const char* ptr, size_t len, const upb_bufhandle* handle); typedef struct { encodeunknown_handlerfunc handler; } unknownfields_handlerdata_t; // Creates a handlerdata for unknown fields. static const void *newunknownfieldshandlerdata(upb_handlers* h) { unknownfields_handlerdata_t* hd = (unknownfields_handlerdata_t*)malloc(sizeof(unknownfields_handlerdata_t)); hd->handler = stringsink_string; upb_handlers_addcleanup(h, hd, free); return hd; } typedef struct { size_t ofs; const upb_msgdef *md; } submsg_handlerdata_t; // Creates a handlerdata that contains offset and submessage type information. static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs, const upb_fielddef* f) { submsg_handlerdata_t* hd = (submsg_handlerdata_t*)malloc(sizeof(submsg_handlerdata_t)); hd->ofs = ofs; hd->md = upb_fielddef_msgsubdef(f); upb_handlers_addcleanup(h, hd, free); return hd; } typedef struct { size_t ofs; // union data slot size_t case_ofs; // oneof_case field int property_ofs; // properties table cache uint32_t oneof_case_num; // oneof-case number to place in oneof_case field const upb_msgdef *md; // msgdef, for oneof submessage handler const upb_msgdef *parent_md; // msgdef, for parent submessage } oneof_handlerdata_t; static const void *newoneofhandlerdata(upb_handlers *h, uint32_t ofs, uint32_t case_ofs, int property_ofs, const upb_msgdef *m, const upb_fielddef *f) { oneof_handlerdata_t* hd = (oneof_handlerdata_t*)malloc(sizeof(oneof_handlerdata_t)); hd->ofs = ofs; hd->case_ofs = case_ofs; hd->property_ofs = property_ofs; hd->parent_md = m; // We reuse the field tag number as a oneof union discriminant tag. Note that // we don't expose these numbers to the user, so the only requirement is that // we have some unique ID for each union case/possibility. The field tag // numbers are already present and are easy to use so there's no reason to // create a separate ID space. In addition, using the field tag number here // lets us easily look up the field in the oneof accessor. hd->oneof_case_num = upb_fielddef_number(f); if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) { hd->md = upb_fielddef_msgsubdef(f); } else { hd->md = NULL; } upb_handlers_addcleanup(h, hd, free); return hd; } // A handler that starts a repeated field. Gets the Repeated*Field instance for // this field (such an instance always exists even in an empty message). static void *startseq_handler(void* closure, const void* hd) { MessageHeader* msg = closure; const size_t *ofs = hd; return CACHED_PTR_TO_ZVAL_PTR(DEREF(message_data(msg), *ofs, CACHED_VALUE*)); } // Handlers that append primitive values to a repeated field. #define DEFINE_APPEND_HANDLER(type, ctype) \ static bool append##type##_handler(void* closure, const void* hd, \ ctype val) { \ zval* array = (zval*)closure; \ TSRMLS_FETCH(); \ RepeatedField* intern = UNBOX(RepeatedField, array); \ repeated_field_push_native(intern, &val); \ return true; \ } DEFINE_APPEND_HANDLER(bool, bool) DEFINE_APPEND_HANDLER(int32, int32_t) DEFINE_APPEND_HANDLER(uint32, uint32_t) DEFINE_APPEND_HANDLER(float, float) DEFINE_APPEND_HANDLER(int64, int64_t) DEFINE_APPEND_HANDLER(uint64, uint64_t) DEFINE_APPEND_HANDLER(double, double) // Appends a string to a repeated field. static void* appendstr_handler(void *closure, const void *hd, size_t size_hint) { zval* array = (zval*)closure; TSRMLS_FETCH(); RepeatedField* intern = UNBOX(RepeatedField, array); #if PHP_MAJOR_VERSION < 7 zval* str; MAKE_STD_ZVAL(str); PHP_PROTO_ZVAL_STRING(str, "", 1); repeated_field_push_native(intern, &str); return (void*)str; #else zend_string* str = zend_string_init("", 0, 1); repeated_field_push_native(intern, &str); return intern; #endif } // Appends a 'bytes' string to a repeated field. static void* appendbytes_handler(void *closure, const void *hd, size_t size_hint) { zval* array = (zval*)closure; TSRMLS_FETCH(); RepeatedField* intern = UNBOX(RepeatedField, array); #if PHP_MAJOR_VERSION < 7 zval* str; MAKE_STD_ZVAL(str); PHP_PROTO_ZVAL_STRING(str, "", 1); repeated_field_push_native(intern, &str); return (void*)str; #else zend_string* str = zend_string_init("", 0, 1); repeated_field_push_native(intern, &str); return intern; #endif } // Handlers that append primitive values to a repeated field. #define DEFINE_SINGULAR_HANDLER(type, ctype) \ static bool type##_handler(void* closure, const void* hd, \ ctype val) { \ MessageHeader* msg = (MessageHeader*)closure; \ const size_t *ofs = hd; \ DEREF(message_data(msg), *ofs, ctype) = val; \ return true; \ } DEFINE_SINGULAR_HANDLER(bool, bool) DEFINE_SINGULAR_HANDLER(int32, int32_t) DEFINE_SINGULAR_HANDLER(uint32, uint32_t) DEFINE_SINGULAR_HANDLER(float, float) DEFINE_SINGULAR_HANDLER(int64, int64_t) DEFINE_SINGULAR_HANDLER(uint64, uint64_t) DEFINE_SINGULAR_HANDLER(double, double) #undef DEFINE_SINGULAR_HANDLER #if PHP_MAJOR_VERSION < 7 static void *empty_php_string(zval** value_ptr) { SEPARATE_ZVAL_IF_NOT_REF(value_ptr); if (Z_TYPE_PP(value_ptr) == IS_STRING && !IS_INTERNED(Z_STRVAL_PP(value_ptr))) { FREE(Z_STRVAL_PP(value_ptr)); } ZVAL_EMPTY_STRING(*value_ptr); return (void*)(*value_ptr); } #else static void *empty_php_string(zval* value_ptr) { if (Z_TYPE_P(value_ptr) == IS_STRING) { zend_string_release(Z_STR_P(value_ptr)); } ZVAL_EMPTY_STRING(value_ptr); return value_ptr; } #endif // Sets a non-repeated string field in a message. static void* str_handler(void *closure, const void *hd, size_t size_hint) { MessageHeader* msg = closure; const size_t *ofs = hd; return empty_php_string(DEREF(message_data(msg), *ofs, CACHED_VALUE*)); } // Sets a non-repeated 'bytes' field in a message. static void* bytes_handler(void *closure, const void *hd, size_t size_hint) { MessageHeader* msg = closure; const size_t *ofs = hd; return empty_php_string(DEREF(message_data(msg), *ofs, CACHED_VALUE*)); } static size_t stringdata_handler(void* closure, const void* hd, const char* str, size_t len, const upb_bufhandle* handle) { zval* php_str = (zval*)closure; #if PHP_MAJOR_VERSION < 7 // Oneof string/bytes fields may have NULL initial value, which doesn't need // to be freed. if (Z_TYPE_P(php_str) == IS_STRING && !IS_INTERNED(Z_STRVAL_P(php_str))) { FREE(Z_STRVAL_P(php_str)); } ZVAL_STRINGL(php_str, str, len, 1); #else if (Z_TYPE_P(php_str) == IS_STRING) { zend_string_release(Z_STR_P(php_str)); } ZVAL_NEW_STR(php_str, zend_string_init(str, len, 0)); #endif return len; } #if PHP_MAJOR_VERSION >= 7 static size_t zendstringdata_handler(void* closure, const void* hd, const char* str, size_t len, const upb_bufhandle* handle) { RepeatedField* intern = (RepeatedField*)closure; unsigned char memory[NATIVE_SLOT_MAX_SIZE]; memset(memory, 0, NATIVE_SLOT_MAX_SIZE); *(zend_string**)memory = zend_string_init(str, len, 0); HashTable *ht = PHP_PROTO_HASH_OF(intern->array); int index = zend_hash_num_elements(ht) - 1; php_proto_zend_hash_index_update_mem( ht, index, memory, sizeof(zend_string*), NULL); return len; } #endif // Appends a submessage to a repeated field. static void *appendsubmsg_handler(void *closure, const void *hd) { zval* array = (zval*)closure; TSRMLS_FETCH(); RepeatedField* intern = UNBOX(RepeatedField, array); const submsg_handlerdata_t *submsgdata = hd; Descriptor* subdesc = UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj((void*)submsgdata->md)); zend_class_entry* subklass = subdesc->klass; MessageHeader* submsg; #if PHP_MAJOR_VERSION < 7 zval* val = NULL; MAKE_STD_ZVAL(val); ZVAL_OBJ(val, subklass->create_object(subklass TSRMLS_CC)); repeated_field_push_native(intern, &val); submsg = UNBOX(MessageHeader, val); #else zend_object* obj = subklass->create_object(subklass TSRMLS_CC); repeated_field_push_native(intern, &obj); submsg = (MessageHeader*)((char*)obj - XtOffsetOf(MessageHeader, std)); #endif custom_data_init(subklass, submsg PHP_PROTO_TSRMLS_CC); return submsg; } // Sets a non-repeated submessage field in a message. static void *submsg_handler(void *closure, const void *hd) { MessageHeader* msg = closure; const submsg_handlerdata_t* submsgdata = hd; TSRMLS_FETCH(); Descriptor* subdesc = UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj((void*)submsgdata->md)); zend_class_entry* subklass = subdesc->klass; zval* submsg_php; MessageHeader* submsg; if (Z_TYPE_P(CACHED_PTR_TO_ZVAL_PTR(DEREF(message_data(msg), submsgdata->ofs, CACHED_VALUE*))) == IS_NULL) { #if PHP_MAJOR_VERSION < 7 zval* val = NULL; MAKE_STD_ZVAL(val); ZVAL_OBJ(val, subklass->create_object(subklass TSRMLS_CC)); MessageHeader* intern = UNBOX(MessageHeader, val); custom_data_init(subklass, intern PHP_PROTO_TSRMLS_CC); php_proto_zval_ptr_dtor(*DEREF(message_data(msg), submsgdata->ofs, zval**)); *DEREF(message_data(msg), submsgdata->ofs, zval**) = val; #else zend_object* obj = subklass->create_object(subklass TSRMLS_CC); ZVAL_OBJ(DEREF(message_data(msg), submsgdata->ofs, zval*), obj); MessageHeader* intern = UNBOX_HASHTABLE_VALUE(MessageHeader, obj); custom_data_init(subklass, intern PHP_PROTO_TSRMLS_CC); #endif } submsg_php = CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), submsgdata->ofs, CACHED_VALUE*)); submsg = UNBOX(MessageHeader, submsg_php); return submsg; } // Handler data for startmap/endmap handlers. typedef struct { size_t ofs; upb_fieldtype_t key_field_type; upb_fieldtype_t value_field_type; // We know that we can hold this reference because the handlerdata has the // same lifetime as the upb_handlers struct, and the upb_handlers struct holds // a reference to the upb_msgdef, which in turn has references to its subdefs. const upb_def* value_field_subdef; } map_handlerdata_t; // Temporary frame for map parsing: at the beginning of a map entry message, a // submsg handler allocates a frame to hold (i) a reference to the Map object // into which this message will be inserted and (ii) storage slots to // temporarily hold the key and value for this map entry until the end of the // submessage. When the submessage ends, another handler is called to insert the // value into the map. typedef struct { char key_storage[NATIVE_SLOT_MAX_SIZE]; char value_storage[NATIVE_SLOT_MAX_SIZE]; } map_parse_frame_data_t; PHP_PROTO_WRAP_OBJECT_START(map_parse_frame_t) map_parse_frame_data_t* data; // Place needs to be consistent with // MessageHeader. zval* map; // In php7, we cannot allocate zval dynamically. So we need to add zval here // to help decoding. zval key_zval; zval value_zval; PHP_PROTO_WRAP_OBJECT_END typedef struct map_parse_frame_t map_parse_frame_t; static void map_slot_init(void* memory, upb_fieldtype_t type, zval* cache) { switch (type) { case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { #if PHP_MAJOR_VERSION < 7 // Store zval** in memory in order to be consistent with the layout of // singular fields. zval** holder = ALLOC(zval*); *(zval***)memory = holder; zval* tmp; MAKE_STD_ZVAL(tmp); PHP_PROTO_ZVAL_STRINGL(tmp, "", 0, 1); *holder = tmp; #else *(zval**)memory = cache; PHP_PROTO_ZVAL_STRINGL(*(zval**)memory, "", 0, 1); #endif break; } case UPB_TYPE_MESSAGE: { #if PHP_MAJOR_VERSION < 7 zval** holder = ALLOC(zval*); zval* tmp; MAKE_STD_ZVAL(tmp); ZVAL_NULL(tmp); *holder = tmp; *(zval***)memory = holder; #else *(zval**)memory = cache; ZVAL_NULL(*(zval**)memory); #endif break; } default: native_slot_init(type, memory, NULL); } } static void map_slot_uninit(void* memory, upb_fieldtype_t type) { switch (type) { case UPB_TYPE_MESSAGE: case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { #if PHP_MAJOR_VERSION < 7 zval** holder = *(zval***)memory; zval_ptr_dtor(holder); FREE(holder); #else php_proto_zval_ptr_dtor(*(zval**)memory); #endif break; } default: break; } } static void map_slot_key(upb_fieldtype_t type, const void* from, const char** keyval, size_t* length) { if (type == UPB_TYPE_STRING) { #if PHP_MAJOR_VERSION < 7 zval* key_php = **(zval***)from; #else zval* key_php = *(zval**)from; #endif *keyval = Z_STRVAL_P(key_php); *length = Z_STRLEN_P(key_php); } else { *keyval = from; *length = native_slot_size(type); } } static void map_slot_value(upb_fieldtype_t type, const void* from, upb_value* v) { size_t len; void* to = upb_value_memory(v); #ifndef NDEBUG v->ctype = UPB_CTYPE_UINT64; #endif memset(to, 0, native_slot_size(type)); switch (type) { #if PHP_MAJOR_VERSION < 7 case UPB_TYPE_STRING: case UPB_TYPE_BYTES: case UPB_TYPE_MESSAGE: { *(zval**)to = **(zval***)from; Z_ADDREF_PP((zval**)to); break; } #else case UPB_TYPE_STRING: case UPB_TYPE_BYTES: *(zend_string**)to = Z_STR_P(*(zval**)from); zend_string_addref(*(zend_string**)to); break; case UPB_TYPE_MESSAGE: *(zend_object**)to = Z_OBJ_P(*(zval**)from); GC_ADDREF(*(zend_object**)to); break; #endif default: len = native_slot_size(type); memcpy(to, from, len); } } // Handler to begin a map entry: allocates a temporary frame. This is the // 'startsubmsg' handler on the msgdef that contains the map field. static void *startmapentry_handler(void *closure, const void *hd) { MessageHeader* msg = closure; const map_handlerdata_t* mapdata = hd; zval* map = CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), mapdata->ofs, CACHED_VALUE*)); map_parse_frame_t* frame = ALLOC(map_parse_frame_t); frame->data = ALLOC(map_parse_frame_data_t); frame->map = map; map_slot_init(&frame->data->key_storage, mapdata->key_field_type, &frame->key_zval); map_slot_init(&frame->data->value_storage, mapdata->value_field_type, &frame->value_zval); return frame; } // Handler to end a map entry: inserts the value defined during the message into // the map. This is the 'endmsg' handler on the map entry msgdef. static bool endmap_handler(void* closure, const void* hd, upb_status* s) { map_parse_frame_t* frame = closure; const map_handlerdata_t* mapdata = hd; TSRMLS_FETCH(); Map *map = UNBOX(Map, frame->map); const char* keyval = NULL; upb_value v; size_t length; map_slot_key(map->key_type, &frame->data->key_storage, &keyval, &length); map_slot_value(map->value_type, &frame->data->value_storage, &v); map_index_set(map, keyval, length, v); map_slot_uninit(&frame->data->key_storage, mapdata->key_field_type); map_slot_uninit(&frame->data->value_storage, mapdata->value_field_type); FREE(frame->data); FREE(frame); return true; } // Allocates a new map_handlerdata_t given the map entry message definition. If // the offset of the field within the parent message is also given, that is // added to the handler data as well. Note that this is called *twice* per map // field: once in the parent message handler setup when setting the startsubmsg // handler and once in the map entry message handler setup when setting the // key/value and endmsg handlers. The reason is that there is no easy way to // pass the handlerdata down to the sub-message handler setup. static map_handlerdata_t* new_map_handlerdata( size_t ofs, const upb_msgdef* mapentry_def, Descriptor* desc) { const upb_fielddef* key_field; const upb_fielddef* value_field; // TODO(teboring): Use emalloc and efree. map_handlerdata_t* hd = (map_handlerdata_t*)malloc(sizeof(map_handlerdata_t)); hd->ofs = ofs; key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD); assert(key_field != NULL); hd->key_field_type = upb_fielddef_type(key_field); value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD); assert(value_field != NULL); hd->value_field_type = upb_fielddef_type(value_field); hd->value_field_subdef = upb_fielddef_subdef(value_field); return hd; } // Handlers that set primitive values in oneofs. #define DEFINE_ONEOF_HANDLER(type, ctype) \ static bool oneof##type##_handler(void* closure, const void* hd, \ ctype val) { \ const oneof_handlerdata_t* oneofdata = hd; \ MessageHeader* msg = (MessageHeader*)closure; \ DEREF(message_data(closure), oneofdata->case_ofs, uint32_t) = \ oneofdata->oneof_case_num; \ DEREF(message_data(closure), oneofdata->ofs, ctype) = val; \ return true; \ } DEFINE_ONEOF_HANDLER(bool, bool) DEFINE_ONEOF_HANDLER(int32, int32_t) DEFINE_ONEOF_HANDLER(uint32, uint32_t) DEFINE_ONEOF_HANDLER(float, float) DEFINE_ONEOF_HANDLER(int64, int64_t) DEFINE_ONEOF_HANDLER(uint64, uint64_t) DEFINE_ONEOF_HANDLER(double, double) #undef DEFINE_ONEOF_HANDLER static void oneof_cleanup(MessageHeader* msg, const oneof_handlerdata_t* oneofdata) { uint32_t old_case_num = DEREF(message_data(msg), oneofdata->case_ofs, uint32_t); if (old_case_num == 0) { return; } const upb_fielddef* old_field = upb_msgdef_itof(oneofdata->parent_md, old_case_num); bool need_clean = false; switch (upb_fielddef_type(old_field)) { case UPB_TYPE_STRING: case UPB_TYPE_BYTES: need_clean = true; break; case UPB_TYPE_MESSAGE: if (oneofdata->oneof_case_num != old_case_num) { need_clean = true; } break; default: break; } if (need_clean) { #if PHP_MAJOR_VERSION < 7 SEPARATE_ZVAL_IF_NOT_REF( DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*)); php_proto_zval_ptr_dtor( *DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*)); MAKE_STD_ZVAL(*DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*)); ZVAL_NULL(*DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*)); #endif } } // Handlers for string/bytes in a oneof. static void *oneofbytes_handler(void *closure, const void *hd, size_t size_hint) { MessageHeader* msg = closure; const oneof_handlerdata_t *oneofdata = hd; oneof_cleanup(msg, oneofdata); DEREF(message_data(msg), oneofdata->case_ofs, uint32_t) = oneofdata->oneof_case_num; DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*) = OBJ_PROP(&msg->std, oneofdata->property_ofs); return empty_php_string(DEREF( message_data(msg), oneofdata->ofs, CACHED_VALUE*)); } static void *oneofstr_handler(void *closure, const void *hd, size_t size_hint) { // TODO(teboring): Add it back. // rb_enc_associate(str, kRubyString8bitEncoding); return oneofbytes_handler(closure, hd, size_hint); } // Handler for a submessage field in a oneof. static void* oneofsubmsg_handler(void* closure, const void* hd) { MessageHeader* msg = closure; const oneof_handlerdata_t *oneofdata = hd; uint32_t oldcase = DEREF(message_data(msg), oneofdata->case_ofs, uint32_t); TSRMLS_FETCH(); Descriptor* subdesc = UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj((void*)oneofdata->md)); zend_class_entry* subklass = subdesc->klass; zval* submsg_php; MessageHeader* submsg; if (oldcase != oneofdata->oneof_case_num) { oneof_cleanup(msg, oneofdata); // Create new message. DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*) = OBJ_PROP(&msg->std, oneofdata->property_ofs); ZVAL_OBJ(CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*)), subklass->create_object(subklass TSRMLS_CC)); } DEREF(message_data(msg), oneofdata->case_ofs, uint32_t) = oneofdata->oneof_case_num; submsg_php = CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), oneofdata->ofs, CACHED_VALUE*)); submsg = UNBOX(MessageHeader, submsg_php); custom_data_init(subklass, submsg PHP_PROTO_TSRMLS_CC); return submsg; } // Set up handlers for a repeated field. static void add_handlers_for_repeated_field(upb_handlers *h, const upb_fielddef *f, size_t offset) { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); upb_handlers_setstartseq(h, f, startseq_handler, &attr); upb_handlerattr_uninit(&attr); switch (upb_fielddef_type(f)) { #define SET_HANDLER(utype, ltype) \ case utype: \ upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ break; SET_HANDLER(UPB_TYPE_BOOL, bool); SET_HANDLER(UPB_TYPE_INT32, int32); SET_HANDLER(UPB_TYPE_UINT32, uint32); SET_HANDLER(UPB_TYPE_ENUM, int32); SET_HANDLER(UPB_TYPE_FLOAT, float); SET_HANDLER(UPB_TYPE_INT64, int64); SET_HANDLER(UPB_TYPE_UINT64, uint64); SET_HANDLER(UPB_TYPE_DOUBLE, double); #undef SET_HANDLER case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; upb_handlers_setstartstr(h, f, is_bytes ? appendbytes_handler : appendstr_handler, NULL); #if PHP_MAJOR_VERSION < 7 upb_handlers_setstring(h, f, stringdata_handler, NULL); #else upb_handlers_setstring(h, f, zendstringdata_handler, NULL); #endif break; } case UPB_TYPE_MESSAGE: { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f)); upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); upb_handlerattr_uninit(&attr); break; } } } // Set up handlers for a singular field. static void add_handlers_for_singular_field(upb_handlers *h, const upb_fielddef *f, size_t offset) { switch (upb_fielddef_type(f)) { #define SET_HANDLER(utype, ltype) \ case utype: { \ upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; \ upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); \ upb_handlers_set##ltype(h, f, ltype##_handler, &attr); \ break; \ } SET_HANDLER(UPB_TYPE_BOOL, bool); SET_HANDLER(UPB_TYPE_INT32, int32); SET_HANDLER(UPB_TYPE_UINT32, uint32); SET_HANDLER(UPB_TYPE_ENUM, int32); SET_HANDLER(UPB_TYPE_FLOAT, float); SET_HANDLER(UPB_TYPE_INT64, int64); SET_HANDLER(UPB_TYPE_UINT64, uint64); SET_HANDLER(UPB_TYPE_DOUBLE, double); #undef SET_HANDLER case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); upb_handlers_setstartstr(h, f, is_bytes ? bytes_handler : str_handler, &attr); upb_handlers_setstring(h, f, stringdata_handler, &attr); upb_handlerattr_uninit(&attr); break; } case UPB_TYPE_MESSAGE: { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f)); upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); upb_handlerattr_uninit(&attr); break; } } } // Adds handlers to a map field. static void add_handlers_for_mapfield(upb_handlers* h, const upb_fielddef* fielddef, size_t offset, Descriptor* desc) { const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef); map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc); upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlers_addcleanup(h, hd, free); upb_handlerattr_sethandlerdata(&attr, hd); upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr); upb_handlerattr_uninit(&attr); } // Adds handlers to a map-entry msgdef. static void add_handlers_for_mapentry(const upb_msgdef* msgdef, upb_handlers* h, Descriptor* desc) { const upb_fielddef* key_field = map_entry_key(msgdef); const upb_fielddef* value_field = map_entry_value(msgdef); map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc); upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlers_addcleanup(h, hd, free); upb_handlerattr_sethandlerdata(&attr, hd); upb_handlers_setendmsg(h, endmap_handler, &attr); add_handlers_for_singular_field(h, key_field, offsetof(map_parse_frame_data_t, key_storage)); add_handlers_for_singular_field(h, value_field, offsetof(map_parse_frame_data_t, value_storage)); } // Set up handlers for a oneof field. static void add_handlers_for_oneof_field(upb_handlers *h, const upb_msgdef *m, const upb_fielddef *f, size_t offset, size_t oneof_case_offset, int property_cache_offset) { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata( &attr, newoneofhandlerdata(h, offset, oneof_case_offset, property_cache_offset, m, f)); switch (upb_fielddef_type(f)) { #define SET_HANDLER(utype, ltype) \ case utype: \ upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \ break; SET_HANDLER(UPB_TYPE_BOOL, bool); SET_HANDLER(UPB_TYPE_INT32, int32); SET_HANDLER(UPB_TYPE_UINT32, uint32); SET_HANDLER(UPB_TYPE_ENUM, int32); SET_HANDLER(UPB_TYPE_FLOAT, float); SET_HANDLER(UPB_TYPE_INT64, int64); SET_HANDLER(UPB_TYPE_UINT64, uint64); SET_HANDLER(UPB_TYPE_DOUBLE, double); #undef SET_HANDLER case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; upb_handlers_setstartstr(h, f, is_bytes ? oneofbytes_handler : oneofstr_handler, &attr); upb_handlers_setstring(h, f, stringdata_handler, NULL); break; } case UPB_TYPE_MESSAGE: { upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr); break; } } upb_handlerattr_uninit(&attr); } static bool add_unknown_handler(void* closure, const void* hd, const char* buf, size_t size) { encodeunknown_handlerfunc handler = ((unknownfields_handlerdata_t*)hd)->handler; MessageHeader* msg = (MessageHeader*)closure; stringsink* unknown = DEREF(message_data(msg), 0, stringsink*); if (unknown == NULL) { DEREF(message_data(msg), 0, stringsink*) = ALLOC(stringsink); unknown = DEREF(message_data(msg), 0, stringsink*); stringsink_init(unknown); } handler(unknown, NULL, buf, size, NULL); return true; } static void add_handlers_for_message(const void* closure, upb_handlers* h) { const upb_msgdef* msgdef = upb_handlers_msgdef(h); TSRMLS_FETCH(); Descriptor* desc = UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj((void*)msgdef)); upb_msg_field_iter i; // If this is a mapentry message type, set up a special set of handlers and // bail out of the normal (user-defined) message type handling. if (upb_msgdef_mapentry(msgdef)) { add_handlers_for_mapentry(msgdef, h, desc); return; } // Ensure layout exists. We may be invoked to create handlers for a given // message if we are included as a submsg of another message type before our // class is actually built, so to work around this, we just create the layout // (and handlers, in the class-building function) on-demand. if (desc->layout == NULL) { desc->layout = create_layout(desc->msgdef); } upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newunknownfieldshandlerdata(h)); upb_handlers_setunknown(h, add_unknown_handler, &attr); for (upb_msg_field_begin(&i, desc->msgdef); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset; if (upb_fielddef_containingoneof(f)) { size_t oneof_case_offset = desc->layout->fields[upb_fielddef_index(f)].case_offset; int property_cache_index = desc->layout->fields[upb_fielddef_index(f)].cache_index; add_handlers_for_oneof_field(h, desc->msgdef, f, offset, oneof_case_offset, property_cache_index); } else if (is_map_field(f)) { add_handlers_for_mapfield(h, f, offset, desc); } else if (upb_fielddef_isseq(f)) { add_handlers_for_repeated_field(h, f, offset); } else { add_handlers_for_singular_field(h, f, offset); } } } // Creates upb handlers for populating a message. static const upb_handlers *new_fill_handlers(Descriptor* desc, const void* owner) { // TODO(cfallin, haberman): once upb gets a caching/memoization layer for // handlers, reuse subdef handlers so that e.g. if we already parse // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to // parse A-with-field-of-type-B-with-field-of-type-C. return upb_handlers_newfrozen(desc->msgdef, owner, add_handlers_for_message, NULL); } // Constructs the handlers for filling a message's data into an in-memory // object. const upb_handlers* get_fill_handlers(Descriptor* desc) { if (!desc->fill_handlers) { desc->fill_handlers = new_fill_handlers(desc, &desc->fill_handlers); } return desc->fill_handlers; } const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc, const void* owner) { const upb_handlers* handlers = get_fill_handlers(desc); upb_pbdecodermethodopts opts; upb_pbdecodermethodopts_init(&opts, handlers); return upb_pbdecodermethod_new(&opts, owner); } static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) { if (desc->fill_method == NULL) { desc->fill_method = new_fillmsg_decodermethod( desc, &desc->fill_method); } return desc->fill_method; } static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) { if (desc->json_fill_method == NULL) { desc->json_fill_method = upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method); } return desc->json_fill_method; } // ----------------------------------------------------------------------------- // Serializing. // ----------------------------------------------------------------------------- static void putmsg(zval* msg, const Descriptor* desc, upb_sink* sink, int depth TSRMLS_DC); static void putrawmsg(MessageHeader* msg, const Descriptor* desc, upb_sink* sink, int depth TSRMLS_DC); static void putstr(zval* str, const upb_fielddef* f, upb_sink* sink); static void putrawstr(const char* str, int len, const upb_fielddef* f, upb_sink* sink); static void putsubmsg(zval* submsg, const upb_fielddef* f, upb_sink* sink, int depth TSRMLS_DC); static void putrawsubmsg(MessageHeader* submsg, const upb_fielddef* f, upb_sink* sink, int depth TSRMLS_DC); static void putarray(zval* array, const upb_fielddef* f, upb_sink* sink, int depth TSRMLS_DC); static void putmap(zval* map, const upb_fielddef* f, upb_sink* sink, int depth TSRMLS_DC); static upb_selector_t getsel(const upb_fielddef* f, upb_handlertype_t type) { upb_selector_t ret; bool ok = upb_handlers_getselector(f, type, &ret); UPB_ASSERT(ok); return ret; } static void put_optional_value(const void* memory, int len, const upb_fielddef* f, int depth, upb_sink* sink TSRMLS_DC) { assert(upb_fielddef_label(f) == UPB_LABEL_OPTIONAL); switch (upb_fielddef_type(f)) { #define T(upbtypeconst, upbtype, ctype, default_value) \ case upbtypeconst: { \ ctype value = DEREF(memory, 0, ctype); \ if (value != default_value) { \ upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); \ upb_sink_put##upbtype(sink, sel, value); \ } \ } break; T(UPB_TYPE_FLOAT, float, float, 0.0) T(UPB_TYPE_DOUBLE, double, double, 0.0) T(UPB_TYPE_BOOL, bool, uint8_t, 0) T(UPB_TYPE_ENUM, int32, int32_t, 0) T(UPB_TYPE_INT32, int32, int32_t, 0) T(UPB_TYPE_UINT32, uint32, uint32_t, 0) T(UPB_TYPE_INT64, int64, int64_t, 0) T(UPB_TYPE_UINT64, uint64, uint64_t, 0) #undef T case UPB_TYPE_STRING: case UPB_TYPE_BYTES: putrawstr(memory, len, f, sink); break; case UPB_TYPE_MESSAGE: { #if PHP_MAJOR_VERSION < 7 MessageHeader *submsg = UNBOX(MessageHeader, *(zval**)memory); #else MessageHeader *submsg = (MessageHeader*)((char*)(*(zend_object**)memory) - XtOffsetOf(MessageHeader, std)); #endif putrawsubmsg(submsg, f, sink, depth TSRMLS_CC); break; } default: assert(false); } } // Only string/bytes fields are stored as zval. static const char* raw_value(void* memory, const upb_fielddef* f) { switch (upb_fielddef_type(f)) { case UPB_TYPE_STRING: case UPB_TYPE_BYTES: #if PHP_MAJOR_VERSION < 7 return Z_STRVAL_PP((zval**)memory); #else return ZSTR_VAL(*(zend_string**)memory); #endif break; default: return memory; } } static int raw_value_len(void* memory, int len, const upb_fielddef* f) { switch (upb_fielddef_type(f)) { case UPB_TYPE_STRING: case UPB_TYPE_BYTES: #if PHP_MAJOR_VERSION < 7 return Z_STRLEN_PP((zval**)memory); #else return ZSTR_LEN(*(zend_string**)memory); #endif default: return len; } } static void putmap(zval* map, const upb_fielddef* f, upb_sink* sink, int depth TSRMLS_DC) { upb_sink subsink; const upb_fielddef* key_field; const upb_fielddef* value_field; MapIter it; int len, size; assert(map != NULL); Map* intern = UNBOX(Map, map); size = upb_strtable_count(&intern->table); if (size == 0) return; upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE); key_field = map_field_key(f); value_field = map_field_value(f); for (map_begin(map, &it TSRMLS_CC); !map_done(&it); map_next(&it)) { upb_status status; upb_sink entry_sink; upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG), &entry_sink); upb_sink_startmsg(&entry_sink); // Serialize key. const char *key = map_iter_key(&it, &len); put_optional_value(key, len, key_field, depth + 1, &entry_sink TSRMLS_CC); // Serialize value. upb_value value = map_iter_value(&it, &len); put_optional_value(raw_value(upb_value_memory(&value), value_field), raw_value_len(upb_value_memory(&value), len, value_field), value_field, depth + 1, &entry_sink TSRMLS_CC); upb_sink_endmsg(&entry_sink, &status); upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG)); } upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); } static void putmsg(zval* msg_php, const Descriptor* desc, upb_sink* sink, int depth TSRMLS_DC) { MessageHeader* msg = UNBOX(MessageHeader, msg_php); putrawmsg(msg, desc, sink, depth TSRMLS_CC); } static void putrawmsg(MessageHeader* msg, const Descriptor* desc, upb_sink* sink, int depth TSRMLS_DC) { upb_msg_field_iter i; upb_status status; upb_sink_startmsg(sink); // Protect against cycles (possible because users may freely reassign message // and repeated fields) by imposing a maximum recursion depth. if (depth > ENCODE_MAX_NESTING) { zend_error(E_ERROR, "Maximum recursion depth exceeded during encoding."); } for (upb_msg_field_begin(&i, desc->msgdef); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef* f = upb_msg_iter_field(&i); uint32_t offset = desc->layout->fields[upb_fielddef_index(f)].offset; bool containing_oneof = false; if (upb_fielddef_containingoneof(f)) { uint32_t oneof_case_offset = desc->layout->fields[upb_fielddef_index(f)].case_offset; // For a oneof, check that this field is actually present -- skip all the // below if not. if (DEREF(message_data(msg), oneof_case_offset, uint32_t) != upb_fielddef_number(f)) { continue; } // Otherwise, fall through to the appropriate singular-field handler // below. containing_oneof = true; } if (is_map_field(f)) { zval* map = CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), offset, CACHED_VALUE*)); if (map != NULL) { putmap(map, f, sink, depth TSRMLS_CC); } } else if (upb_fielddef_isseq(f)) { zval* array = CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), offset, CACHED_VALUE*)); if (array != NULL) { putarray(array, f, sink, depth TSRMLS_CC); } } else if (upb_fielddef_isstring(f)) { zval* str = CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), offset, CACHED_VALUE*)); if (containing_oneof || Z_STRLEN_P(str) > 0) { putstr(str, f, sink); } } else if (upb_fielddef_issubmsg(f)) { putsubmsg(CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), offset, CACHED_VALUE*)), f, sink, depth TSRMLS_CC); } else { upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); #define T(upbtypeconst, upbtype, ctype, default_value) \ case upbtypeconst: { \ ctype value = DEREF(message_data(msg), offset, ctype); \ if (containing_oneof || value != default_value) { \ upb_sink_put##upbtype(sink, sel, value); \ } \ } break; switch (upb_fielddef_type(f)) { T(UPB_TYPE_FLOAT, float, float, 0.0) T(UPB_TYPE_DOUBLE, double, double, 0.0) T(UPB_TYPE_BOOL, bool, uint8_t, 0) case UPB_TYPE_ENUM: T(UPB_TYPE_INT32, int32, int32_t, 0) T(UPB_TYPE_UINT32, uint32, uint32_t, 0) T(UPB_TYPE_INT64, int64, int64_t, 0) T(UPB_TYPE_UINT64, uint64, uint64_t, 0) case UPB_TYPE_STRING: case UPB_TYPE_BYTES: case UPB_TYPE_MESSAGE: zend_error(E_ERROR, "Internal error."); } #undef T } } stringsink* unknown = DEREF(message_data(msg), 0, stringsink*); if (unknown != NULL) { upb_sink_putunknown(sink, unknown->ptr, unknown->len); } upb_sink_endmsg(sink, &status); } static void putstr(zval* str, const upb_fielddef *f, upb_sink *sink) { upb_sink subsink; if (ZVAL_IS_NULL(str)) return; assert(Z_TYPE_P(str) == IS_STRING); upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), Z_STRLEN_P(str), &subsink); // For oneof string field, we may get here with string length is zero. if (Z_STRLEN_P(str) > 0) { // Ensure that the string has the correct encoding. We also check at // field-set time, but the user may have mutated the string object since // then. if (upb_fielddef_type(f) == UPB_TYPE_STRING && !is_structurally_valid_utf8(Z_STRVAL_P(str), Z_STRLEN_P(str))) { zend_error(E_USER_ERROR, "Given string is not UTF8 encoded."); return; } upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), Z_STRVAL_P(str), Z_STRLEN_P(str), NULL); } upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); } static void putrawstr(const char* str, int len, const upb_fielddef* f, upb_sink* sink) { upb_sink subsink; if (len == 0) return; // Ensure that the string has the correct encoding. We also check at field-set // time, but the user may have mutated the string object since then. if (upb_fielddef_type(f) == UPB_TYPE_STRING && !is_structurally_valid_utf8(str, len)) { zend_error(E_USER_ERROR, "Given string is not UTF8 encoded."); return; } upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), len, &subsink); upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), str, len, NULL); upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); } static void putsubmsg(zval* submsg_php, const upb_fielddef* f, upb_sink* sink, int depth TSRMLS_DC) { if (Z_TYPE_P(submsg_php) == IS_NULL) return; MessageHeader *submsg = UNBOX(MessageHeader, submsg_php); putrawsubmsg(submsg, f, sink, depth TSRMLS_CC); } static void putrawsubmsg(MessageHeader* submsg, const upb_fielddef* f, upb_sink* sink, int depth TSRMLS_DC) { upb_sink subsink; Descriptor* subdesc = UNBOX_HASHTABLE_VALUE(Descriptor, get_def_obj(upb_fielddef_msgsubdef(f))); upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); putrawmsg(submsg, subdesc, &subsink, depth + 1 TSRMLS_CC); upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); } static void putarray(zval* array, const upb_fielddef* f, upb_sink* sink, int depth TSRMLS_DC) { upb_sink subsink; upb_fieldtype_t type = upb_fielddef_type(f); upb_selector_t sel = 0; int size, i; assert(array != NULL); RepeatedField* intern = UNBOX(RepeatedField, array); HashTable *ht = PHP_PROTO_HASH_OF(intern->array); size = zend_hash_num_elements(ht); if (size == 0) return; upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); if (upb_fielddef_isprimitive(f)) { sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); } for (i = 0; i < size; i++) { void* memory = repeated_field_index_native(intern, i TSRMLS_CC); switch (type) { #define T(upbtypeconst, upbtype, ctype) \ case upbtypeconst: \ upb_sink_put##upbtype(&subsink, sel, *((ctype*)memory)); \ break; T(UPB_TYPE_FLOAT, float, float) T(UPB_TYPE_DOUBLE, double, double) T(UPB_TYPE_BOOL, bool, int8_t) case UPB_TYPE_ENUM: T(UPB_TYPE_INT32, int32, int32_t) T(UPB_TYPE_UINT32, uint32, uint32_t) T(UPB_TYPE_INT64, int64, int64_t) T(UPB_TYPE_UINT64, uint64, uint64_t) case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { #if PHP_MAJOR_VERSION < 7 const char* rawstr = Z_STRVAL_P(*(zval**)memory); int len = Z_STRLEN_P(*(zval**)memory); #else const char* rawstr = ZSTR_VAL(*(zend_string**)memory); int len = ZSTR_LEN(*(zend_string**)memory); #endif putrawstr(rawstr, len, f, &subsink); break; } case UPB_TYPE_MESSAGE: { #if PHP_MAJOR_VERSION < 7 MessageHeader *submsg = UNBOX(MessageHeader, *(zval**)memory); #else MessageHeader *submsg = (MessageHeader*)((char*)(Z_OBJ_P((zval*)memory)) - XtOffsetOf(MessageHeader, std)); #endif putrawsubmsg(submsg, f, &subsink, depth TSRMLS_CC); break; } #undef T } } upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); } static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) { if (desc->pb_serialize_handlers == NULL) { desc->pb_serialize_handlers = upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers); } return desc->pb_serialize_handlers; } static const upb_handlers* msgdef_json_serialize_handlers( Descriptor* desc, bool preserve_proto_fieldnames) { if (preserve_proto_fieldnames) { if (desc->json_serialize_handlers == NULL) { desc->json_serialize_handlers = upb_json_printer_newhandlers( desc->msgdef, true, &desc->json_serialize_handlers); } return desc->json_serialize_handlers; } else { if (desc->json_serialize_handlers_preserve == NULL) { desc->json_serialize_handlers_preserve = upb_json_printer_newhandlers( desc->msgdef, false, &desc->json_serialize_handlers_preserve); } return desc->json_serialize_handlers_preserve; } } // ----------------------------------------------------------------------------- // PHP encode/decode methods // ----------------------------------------------------------------------------- void serialize_to_string(zval* val, zval* return_value TSRMLS_DC) { Descriptor* desc = UNBOX_HASHTABLE_VALUE(Descriptor, get_ce_obj(Z_OBJCE_P(val))); stringsink sink; stringsink_init(&sink); { const upb_handlers* serialize_handlers = msgdef_pb_serialize_handlers(desc); stackenv se; upb_pb_encoder* encoder; stackenv_init(&se, "Error occurred during encoding: %s"); encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink); putmsg(val, desc, upb_pb_encoder_input(encoder), 0 TSRMLS_CC); PHP_PROTO_RETVAL_STRINGL(sink.ptr, sink.len, 1); stackenv_uninit(&se); stringsink_uninit(&sink); } } PHP_METHOD(Message, serializeToString) { serialize_to_string(getThis(), return_value TSRMLS_CC); } void merge_from_string(const char* data, int data_len, const Descriptor* desc, MessageHeader* msg) { const upb_pbdecodermethod* method = msgdef_decodermethod(desc); const upb_handlers* h = upb_pbdecodermethod_desthandlers(method); stackenv se; upb_sink sink; upb_pbdecoder* decoder; stackenv_init(&se, "Error occurred during parsing: %s"); upb_sink_reset(&sink, h, msg); decoder = upb_pbdecoder_create(&se.env, method, &sink); upb_bufsrc_putbuf(data, data_len, upb_pbdecoder_input(decoder)); stackenv_uninit(&se); } PHP_METHOD(Message, mergeFromString) { Descriptor* desc = UNBOX_HASHTABLE_VALUE(Descriptor, get_ce_obj(Z_OBJCE_P(getThis()))); MessageHeader* msg = UNBOX(MessageHeader, getThis()); char *data = NULL; PHP_PROTO_SIZE data_len; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &data, &data_len) == FAILURE) { return; } merge_from_string(data, data_len, desc, msg); } PHP_METHOD(Message, serializeToJsonString) { Descriptor* desc = UNBOX_HASHTABLE_VALUE(Descriptor, get_ce_obj(Z_OBJCE_P(getThis()))); zend_bool preserve_proto_fieldnames = false; if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "|b", &preserve_proto_fieldnames) == FAILURE) { return; } stringsink sink; stringsink_init(&sink); { const upb_handlers* serialize_handlers = msgdef_json_serialize_handlers(desc, preserve_proto_fieldnames); upb_json_printer* printer; stackenv se; stackenv_init(&se, "Error occurred during encoding: %s"); printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink); putmsg(getThis(), desc, upb_json_printer_input(printer), 0 TSRMLS_CC); PHP_PROTO_RETVAL_STRINGL(sink.ptr, sink.len, 1); stackenv_uninit(&se); stringsink_uninit(&sink); } } PHP_METHOD(Message, mergeFromJsonString) { Descriptor* desc = UNBOX_HASHTABLE_VALUE(Descriptor, get_ce_obj(Z_OBJCE_P(getThis()))); MessageHeader* msg = UNBOX(MessageHeader, getThis()); char *data = NULL; PHP_PROTO_SIZE data_len; zend_bool ignore_json_unknown = false; if (zend_parse_parameters( ZEND_NUM_ARGS() TSRMLS_CC, "s|b", &data, &data_len, &ignore_json_unknown) == FAILURE) { return; } // TODO(teboring): Check and respect string encoding. If not UTF-8, we need to // convert, because string handlers pass data directly to message string // fields. // TODO(teboring): Clear message. { const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc); stackenv se; upb_sink sink; upb_json_parser* parser; stackenv_init(&se, "Error occurred during parsing: %s"); upb_sink_reset(&sink, get_fill_handlers(desc), msg); parser = upb_json_parser_create(&se.env, method, &sink, ignore_json_unknown); upb_bufsrc_putbuf(data, data_len, upb_json_parser_input(parser)); stackenv_uninit(&se); } } // TODO(teboring): refactoring with putrawmsg static void discard_unknown_fields(MessageHeader* msg) { upb_msg_field_iter it; stringsink* unknown = DEREF(message_data(msg), 0, stringsink*); if (unknown != NULL) { stringsink_uninit(unknown); FREE(unknown); DEREF(message_data(msg), 0, stringsink*) = NULL; } // Recursively discard unknown fields of submessages. Descriptor* desc = msg->descriptor; TSRMLS_FETCH(); for (upb_msg_field_begin(&it, desc->msgdef); !upb_msg_field_done(&it); upb_msg_field_next(&it)) { upb_fielddef* f = upb_msg_iter_field(&it); uint32_t offset = desc->layout->fields[upb_fielddef_index(f)].offset; bool containing_oneof = false; if (upb_fielddef_containingoneof(f)) { uint32_t oneof_case_offset = desc->layout->fields[upb_fielddef_index(f)].case_offset; // For a oneof, check that this field is actually present -- skip all the // below if not. if (DEREF(message_data(msg), oneof_case_offset, uint32_t) != upb_fielddef_number(f)) { continue; } // Otherwise, fall through to the appropriate singular-field handler // below. containing_oneof = true; } if (is_map_field(f)) { MapIter map_it; int len, size; const upb_fielddef* value_field; value_field = map_field_value(f); if (!upb_fielddef_issubmsg(value_field)) continue; zval* map_php = CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), offset, CACHED_VALUE*)); if (map_php == NULL) continue; Map* intern = UNBOX(Map, map_php); for (map_begin(map_php, &map_it TSRMLS_CC); !map_done(&map_it); map_next(&map_it)) { upb_value value = map_iter_value(&map_it, &len); void* memory = raw_value(upb_value_memory(&value), value_field); #if PHP_MAJOR_VERSION < 7 MessageHeader *submsg = UNBOX(MessageHeader, *(zval**)memory); #else MessageHeader *submsg = (MessageHeader*)((char*)(Z_OBJ_P((zval*)memory)) - XtOffsetOf(MessageHeader, std)); #endif discard_unknown_fields(submsg); } } else if (upb_fielddef_isseq(f)) { if (!upb_fielddef_issubmsg(f)) continue; zval* array_php = CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), offset, CACHED_VALUE*)); if (array_php == NULL) continue; int size, i; RepeatedField* intern = UNBOX(RepeatedField, array_php); HashTable *ht = PHP_PROTO_HASH_OF(intern->array); size = zend_hash_num_elements(ht); if (size == 0) continue; for (i = 0; i < size; i++) { void* memory = repeated_field_index_native(intern, i TSRMLS_CC); #if PHP_MAJOR_VERSION < 7 MessageHeader *submsg = UNBOX(MessageHeader, *(zval**)memory); #else MessageHeader *submsg = (MessageHeader*)((char*)(Z_OBJ_P((zval*)memory)) - XtOffsetOf(MessageHeader, std)); #endif discard_unknown_fields(submsg); } } else if (upb_fielddef_issubmsg(f)) { zval* submsg_php = CACHED_PTR_TO_ZVAL_PTR( DEREF(message_data(msg), offset, CACHED_VALUE*)); if (Z_TYPE_P(submsg_php) == IS_NULL) continue; MessageHeader* submsg = UNBOX(MessageHeader, submsg_php); discard_unknown_fields(submsg); } } } PHP_METHOD(Message, discardUnknownFields) { MessageHeader* msg = UNBOX(MessageHeader, getThis()); discard_unknown_fields(msg); }