aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/ml/classification.py
blob: 922f8069fac49592f166c7738413ea8a0b962f04 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import warnings

from pyspark import since
from pyspark.ml.util import *
from pyspark.ml.wrapper import JavaEstimator, JavaModel, JavaWrapper
from pyspark.ml.param import TypeConverters
from pyspark.ml.param.shared import *
from pyspark.ml.regression import (
    RandomForestParams, TreeEnsembleParams, DecisionTreeModel, TreeEnsembleModels)
from pyspark.mllib.common import inherit_doc
from pyspark.sql import DataFrame


__all__ = ['LogisticRegression', 'LogisticRegressionModel',
           'LogisticRegressionSummary', 'LogisticRegressionTrainingSummary',
           'BinaryLogisticRegressionSummary', 'BinaryLogisticRegressionTrainingSummary',
           'DecisionTreeClassifier', 'DecisionTreeClassificationModel',
           'GBTClassifier', 'GBTClassificationModel',
           'RandomForestClassifier', 'RandomForestClassificationModel',
           'NaiveBayes', 'NaiveBayesModel',
           'MultilayerPerceptronClassifier', 'MultilayerPerceptronClassificationModel']


@inherit_doc
class LogisticRegression(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasMaxIter,
                         HasRegParam, HasTol, HasProbabilityCol, HasRawPredictionCol,
                         HasElasticNetParam, HasFitIntercept, HasStandardization, HasThresholds,
                         HasWeightCol, JavaMLWritable, JavaMLReadable):
    """
    Logistic regression.
    Currently, this class only supports binary classification.

    >>> from pyspark.sql import Row
    >>> from pyspark.mllib.linalg import Vectors
    >>> df = sc.parallelize([
    ...     Row(label=1.0, weight=2.0, features=Vectors.dense(1.0)),
    ...     Row(label=0.0, weight=2.0, features=Vectors.sparse(1, [], []))]).toDF()
    >>> lr = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight")
    >>> model = lr.fit(df)
    >>> model.coefficients
    DenseVector([5.5...])
    >>> model.intercept
    -2.68...
    >>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0))]).toDF()
    >>> result = model.transform(test0).head()
    >>> result.prediction
    0.0
    >>> result.probability
    DenseVector([0.99..., 0.00...])
    >>> result.rawPrediction
    DenseVector([8.22..., -8.22...])
    >>> test1 = sc.parallelize([Row(features=Vectors.sparse(1, [0], [1.0]))]).toDF()
    >>> model.transform(test1).head().prediction
    1.0
    >>> lr.setParams("vector")
    Traceback (most recent call last):
        ...
    TypeError: Method setParams forces keyword arguments.
    >>> lr_path = temp_path + "/lr"
    >>> lr.save(lr_path)
    >>> lr2 = LogisticRegression.load(lr_path)
    >>> lr2.getMaxIter()
    5
    >>> model_path = temp_path + "/lr_model"
    >>> model.save(model_path)
    >>> model2 = LogisticRegressionModel.load(model_path)
    >>> model.coefficients[0] == model2.coefficients[0]
    True
    >>> model.intercept == model2.intercept
    True

    .. versionadded:: 1.3.0
    """

    threshold = Param(Params._dummy(), "threshold",
                      "Threshold in binary classification prediction, in range [0, 1]." +
                      " If threshold and thresholds are both set, they must match.",
                      typeConverter=TypeConverters.toFloat)

    @keyword_only
    def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                 maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
                 threshold=0.5, thresholds=None, probabilityCol="probability",
                 rawPredictionCol="rawPrediction", standardization=True, weightCol=None):
        """
        __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                 maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \
                 threshold=0.5, thresholds=None, probabilityCol="probability", \
                 rawPredictionCol="rawPrediction", standardization=True, weightCol=None)
        If the threshold and thresholds Params are both set, they must be equivalent.
        """
        super(LogisticRegression, self).__init__()
        self._java_obj = self._new_java_obj(
            "org.apache.spark.ml.classification.LogisticRegression", self.uid)
        self._setDefault(maxIter=100, regParam=0.0, tol=1E-6, threshold=0.5)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)
        self._checkThresholdConsistency()

    @keyword_only
    @since("1.3.0")
    def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                  maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
                  threshold=0.5, thresholds=None, probabilityCol="probability",
                  rawPredictionCol="rawPrediction", standardization=True, weightCol=None):
        """
        setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                  maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \
                  threshold=0.5, thresholds=None, probabilityCol="probability", \
                  rawPredictionCol="rawPrediction", standardization=True, weightCol=None)
        Sets params for logistic regression.
        If the threshold and thresholds Params are both set, they must be equivalent.
        """
        kwargs = self.setParams._input_kwargs
        self._set(**kwargs)
        self._checkThresholdConsistency()
        return self

    def _create_model(self, java_model):
        return LogisticRegressionModel(java_model)

    @since("1.4.0")
    def setThreshold(self, value):
        """
        Sets the value of :py:attr:`threshold`.
        Clears value of :py:attr:`thresholds` if it has been set.
        """
        self._paramMap[self.threshold] = value
        if self.isSet(self.thresholds):
            del self._paramMap[self.thresholds]
        return self

    @since("1.4.0")
    def getThreshold(self):
        """
        Gets the value of threshold or its default value.
        """
        self._checkThresholdConsistency()
        if self.isSet(self.thresholds):
            ts = self.getOrDefault(self.thresholds)
            if len(ts) != 2:
                raise ValueError("Logistic Regression getThreshold only applies to" +
                                 " binary classification, but thresholds has length != 2." +
                                 "  thresholds: " + ",".join(ts))
            return 1.0/(1.0 + ts[0]/ts[1])
        else:
            return self.getOrDefault(self.threshold)

    @since("1.5.0")
    def setThresholds(self, value):
        """
        Sets the value of :py:attr:`thresholds`.
        Clears value of :py:attr:`threshold` if it has been set.
        """
        self._paramMap[self.thresholds] = value
        if self.isSet(self.threshold):
            del self._paramMap[self.threshold]
        return self

    @since("1.5.0")
    def getThresholds(self):
        """
        If :py:attr:`thresholds` is set, return its value.
        Otherwise, if :py:attr:`threshold` is set, return the equivalent thresholds for binary
        classification: (1-threshold, threshold).
        If neither are set, throw an error.
        """
        self._checkThresholdConsistency()
        if not self.isSet(self.thresholds) and self.isSet(self.threshold):
            t = self.getOrDefault(self.threshold)
            return [1.0-t, t]
        else:
            return self.getOrDefault(self.thresholds)

    def _checkThresholdConsistency(self):
        if self.isSet(self.threshold) and self.isSet(self.thresholds):
            ts = self.getParam(self.thresholds)
            if len(ts) != 2:
                raise ValueError("Logistic Regression getThreshold only applies to" +
                                 " binary classification, but thresholds has length != 2." +
                                 " thresholds: " + ",".join(ts))
            t = 1.0/(1.0 + ts[0]/ts[1])
            t2 = self.getParam(self.threshold)
            if abs(t2 - t) >= 1E-5:
                raise ValueError("Logistic Regression getThreshold found inconsistent values for" +
                                 " threshold (%g) and thresholds (equivalent to %g)" % (t2, t))


class LogisticRegressionModel(JavaModel, JavaMLWritable, JavaMLReadable):
    """
    Model fitted by LogisticRegression.

    .. versionadded:: 1.3.0
    """

    @property
    @since("1.4.0")
    def weights(self):
        """
        Model weights.
        """

        warnings.warn("weights is deprecated. Use coefficients instead.")
        return self._call_java("weights")

    @property
    @since("1.6.0")
    def coefficients(self):
        """
        Model coefficients.
        """
        return self._call_java("coefficients")

    @property
    @since("1.4.0")
    def intercept(self):
        """
        Model intercept.
        """
        return self._call_java("intercept")

    @property
    @since("2.0.0")
    def summary(self):
        """
        Gets summary (e.g. residuals, mse, r-squared ) of model on
        training set. An exception is thrown if
        `trainingSummary is None`.
        """
        java_blrt_summary = self._call_java("summary")
        # Note: Once multiclass is added, update this to return correct summary
        return BinaryLogisticRegressionTrainingSummary(java_blrt_summary)

    @property
    @since("2.0.0")
    def hasSummary(self):
        """
        Indicates whether a training summary exists for this model
        instance.
        """
        return self._call_java("hasSummary")

    @since("2.0.0")
    def evaluate(self, dataset):
        """
        Evaluates the model on a test dataset.

        :param dataset:
          Test dataset to evaluate model on, where dataset is an
          instance of :py:class:`pyspark.sql.DataFrame`
        """
        if not isinstance(dataset, DataFrame):
            raise ValueError("dataset must be a DataFrame but got %s." % type(dataset))
        java_blr_summary = self._call_java("evaluate", dataset)
        return BinaryLogisticRegressionSummary(java_blr_summary)


class LogisticRegressionSummary(JavaWrapper):
    """
    Abstraction for Logistic Regression Results for a given model.

    .. versionadded:: 2.0.0
    """

    @property
    @since("2.0.0")
    def predictions(self):
        """
        Dataframe outputted by the model's `transform` method.
        """
        return self._call_java("predictions")

    @property
    @since("2.0.0")
    def probabilityCol(self):
        """
        Field in "predictions" which gives the probability
        of each class as a vector.
        """
        return self._call_java("probabilityCol")

    @property
    @since("2.0.0")
    def labelCol(self):
        """
        Field in "predictions" which gives the true label of each
        instance.
        """
        return self._call_java("labelCol")

    @property
    @since("2.0.0")
    def featuresCol(self):
        """
        Field in "predictions" which gives the features of each instance
        as a vector.
        """
        return self._call_java("featuresCol")


@inherit_doc
class LogisticRegressionTrainingSummary(LogisticRegressionSummary):
    """
    Abstraction for multinomial Logistic Regression Training results.
    Currently, the training summary ignores the training weights except
    for the objective trace.

    .. versionadded:: 2.0.0
    """

    @property
    @since("2.0.0")
    def objectiveHistory(self):
        """
        Objective function (scaled loss + regularization) at each
        iteration.
        """
        return self._call_java("objectiveHistory")

    @property
    @since("2.0.0")
    def totalIterations(self):
        """
        Number of training iterations until termination.
        """
        return self._call_java("totalIterations")


@inherit_doc
class BinaryLogisticRegressionSummary(LogisticRegressionSummary):
    """
    .. note:: Experimental

    Binary Logistic regression results for a given model.

    .. versionadded:: 2.0.0
    """

    @property
    @since("2.0.0")
    def roc(self):
        """
        Returns the receiver operating characteristic (ROC) curve,
        which is an Dataframe having two fields (FPR, TPR) with
        (0.0, 0.0) prepended and (1.0, 1.0) appended to it.
        Reference: http://en.wikipedia.org/wiki/Receiver_operating_characteristic

        Note: This ignores instance weights (setting all to 1.0) from
        `LogisticRegression.weightCol`. This will change in later Spark
        versions.
        """
        return self._call_java("roc")

    @property
    @since("2.0.0")
    def areaUnderROC(self):
        """
        Computes the area under the receiver operating characteristic
        (ROC) curve.

        Note: This ignores instance weights (setting all to 1.0) from
        `LogisticRegression.weightCol`. This will change in later Spark
        versions.
        """
        return self._call_java("areaUnderROC")

    @property
    @since("2.0.0")
    def pr(self):
        """
        Returns the precision-recall curve, which is an Dataframe
        containing two fields recall, precision with (0.0, 1.0) prepended
        to it.

        Note: This ignores instance weights (setting all to 1.0) from
        `LogisticRegression.weightCol`. This will change in later Spark
        versions.
        """
        return self._call_java("pr")

    @property
    @since("2.0.0")
    def fMeasureByThreshold(self):
        """
        Returns a dataframe with two fields (threshold, F-Measure) curve
        with beta = 1.0.

        Note: This ignores instance weights (setting all to 1.0) from
        `LogisticRegression.weightCol`. This will change in later Spark
        versions.
        """
        return self._call_java("fMeasureByThreshold")

    @property
    @since("2.0.0")
    def precisionByThreshold(self):
        """
        Returns a dataframe with two fields (threshold, precision) curve.
        Every possible probability obtained in transforming the dataset
        are used as thresholds used in calculating the precision.

        Note: This ignores instance weights (setting all to 1.0) from
        `LogisticRegression.weightCol`. This will change in later Spark
        versions.
        """
        return self._call_java("precisionByThreshold")

    @property
    @since("2.0.0")
    def recallByThreshold(self):
        """
        Returns a dataframe with two fields (threshold, recall) curve.
        Every possible probability obtained in transforming the dataset
        are used as thresholds used in calculating the recall.

        Note: This ignores instance weights (setting all to 1.0) from
        `LogisticRegression.weightCol`. This will change in later Spark
        versions.
        """
        return self._call_java("recallByThreshold")


@inherit_doc
class BinaryLogisticRegressionTrainingSummary(BinaryLogisticRegressionSummary,
                                              LogisticRegressionTrainingSummary):
    """
    .. note:: Experimental

    Binary Logistic regression training results for a given model.

    .. versionadded:: 2.0.0
    """
    pass


class TreeClassifierParams(object):
    """
    Private class to track supported impurity measures.

    .. versionadded:: 1.4.0
    """
    supportedImpurities = ["entropy", "gini"]

    impurity = Param(Params._dummy(), "impurity",
                     "Criterion used for information gain calculation (case-insensitive). " +
                     "Supported options: " +
                     ", ".join(supportedImpurities), typeConverter=TypeConverters.toString)

    def __init__(self):
        super(TreeClassifierParams, self).__init__()

    @since("1.6.0")
    def setImpurity(self, value):
        """
        Sets the value of :py:attr:`impurity`.
        """
        self._paramMap[self.impurity] = value
        return self

    @since("1.6.0")
    def getImpurity(self):
        """
        Gets the value of impurity or its default value.
        """
        return self.getOrDefault(self.impurity)


class GBTParams(TreeEnsembleParams):
    """
    Private class to track supported GBT params.

    .. versionadded:: 1.4.0
    """
    supportedLossTypes = ["logistic"]


@inherit_doc
class DecisionTreeClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol,
                             HasProbabilityCol, HasRawPredictionCol, DecisionTreeParams,
                             TreeClassifierParams, HasCheckpointInterval, HasSeed, JavaMLWritable,
                             JavaMLReadable):
    """
    `http://en.wikipedia.org/wiki/Decision_tree_learning Decision tree`
    learning algorithm for classification.
    It supports both binary and multiclass labels, as well as both continuous and categorical
    features.

    >>> from pyspark.mllib.linalg import Vectors
    >>> from pyspark.ml.feature import StringIndexer
    >>> df = sqlContext.createDataFrame([
    ...     (1.0, Vectors.dense(1.0)),
    ...     (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
    >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
    >>> si_model = stringIndexer.fit(df)
    >>> td = si_model.transform(df)
    >>> dt = DecisionTreeClassifier(maxDepth=2, labelCol="indexed")
    >>> model = dt.fit(td)
    >>> model.numNodes
    3
    >>> model.depth
    1
    >>> model.featureImportances
    SparseVector(1, {0: 1.0})
    >>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
    >>> result = model.transform(test0).head()
    >>> result.prediction
    0.0
    >>> result.probability
    DenseVector([1.0, 0.0])
    >>> result.rawPrediction
    DenseVector([1.0, 0.0])
    >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
    >>> model.transform(test1).head().prediction
    1.0

    >>> dtc_path = temp_path + "/dtc"
    >>> dt.save(dtc_path)
    >>> dt2 = DecisionTreeClassifier.load(dtc_path)
    >>> dt2.getMaxDepth()
    2
    >>> model_path = temp_path + "/dtc_model"
    >>> model.save(model_path)
    >>> model2 = DecisionTreeClassificationModel.load(model_path)
    >>> model.featureImportances == model2.featureImportances
    True

    .. versionadded:: 1.4.0
    """

    @keyword_only
    def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                 probabilityCol="probability", rawPredictionCol="rawPrediction",
                 maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                 maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini",
                 seed=None):
        """
        __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                 probabilityCol="probability", rawPredictionCol="rawPrediction", \
                 maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
                 maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", \
                 seed=None)
        """
        super(DecisionTreeClassifier, self).__init__()
        self._java_obj = self._new_java_obj(
            "org.apache.spark.ml.classification.DecisionTreeClassifier", self.uid)
        self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                         maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
                         impurity="gini")
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    @since("1.4.0")
    def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                  probabilityCol="probability", rawPredictionCol="rawPrediction",
                  maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                  maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
                  impurity="gini", seed=None):
        """
        setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                  probabilityCol="probability", rawPredictionCol="rawPrediction", \
                  maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
                  maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", \
                  seed=None)
        Sets params for the DecisionTreeClassifier.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def _create_model(self, java_model):
        return DecisionTreeClassificationModel(java_model)


@inherit_doc
class DecisionTreeClassificationModel(DecisionTreeModel, JavaMLWritable, JavaMLReadable):
    """
    Model fitted by DecisionTreeClassifier.

    .. versionadded:: 1.4.0
    """

    @property
    @since("2.0.0")
    def featureImportances(self):
        """
        Estimate of the importance of each feature.

        This generalizes the idea of "Gini" importance to other losses,
        following the explanation of Gini importance from "Random Forests" documentation
        by Leo Breiman and Adele Cutler, and following the implementation from scikit-learn.

        This feature importance is calculated as follows:
          - importance(feature j) = sum (over nodes which split on feature j) of the gain,
            where gain is scaled by the number of instances passing through node
          - Normalize importances for tree to sum to 1.

        Note: Feature importance for single decision trees can have high variance due to
              correlated predictor variables. Consider using a :py:class:`RandomForestClassifier`
              to determine feature importance instead.
        """
        return self._call_java("featureImportances")


@inherit_doc
class RandomForestClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasSeed,
                             HasRawPredictionCol, HasProbabilityCol,
                             RandomForestParams, TreeClassifierParams, HasCheckpointInterval,
                             JavaMLWritable, JavaMLReadable):
    """
    `http://en.wikipedia.org/wiki/Random_forest  Random Forest`
    learning algorithm for classification.
    It supports both binary and multiclass labels, as well as both continuous and categorical
    features.

    >>> import numpy
    >>> from numpy import allclose
    >>> from pyspark.mllib.linalg import Vectors
    >>> from pyspark.ml.feature import StringIndexer
    >>> df = sqlContext.createDataFrame([
    ...     (1.0, Vectors.dense(1.0)),
    ...     (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
    >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
    >>> si_model = stringIndexer.fit(df)
    >>> td = si_model.transform(df)
    >>> rf = RandomForestClassifier(numTrees=3, maxDepth=2, labelCol="indexed", seed=42)
    >>> model = rf.fit(td)
    >>> model.featureImportances
    SparseVector(1, {0: 1.0})
    >>> allclose(model.treeWeights, [1.0, 1.0, 1.0])
    True
    >>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
    >>> result = model.transform(test0).head()
    >>> result.prediction
    0.0
    >>> numpy.argmax(result.probability)
    0
    >>> numpy.argmax(result.rawPrediction)
    0
    >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
    >>> model.transform(test1).head().prediction
    1.0
    >>> rfc_path = temp_path + "/rfc"
    >>> rf.save(rfc_path)
    >>> rf2 = RandomForestClassifier.load(rfc_path)
    >>> rf2.getNumTrees()
    3
    >>> model_path = temp_path + "/rfc_model"
    >>> model.save(model_path)
    >>> model2 = RandomForestClassificationModel.load(model_path)
    >>> model.featureImportances == model2.featureImportances
    True

    .. versionadded:: 1.4.0
    """

    @keyword_only
    def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                 probabilityCol="probability", rawPredictionCol="rawPrediction",
                 maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                 maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini",
                 numTrees=20, featureSubsetStrategy="auto", seed=None):
        """
        __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                 probabilityCol="probability", rawPredictionCol="rawPrediction", \
                 maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
                 maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", \
                 numTrees=20, featureSubsetStrategy="auto", seed=None)
        """
        super(RandomForestClassifier, self).__init__()
        self._java_obj = self._new_java_obj(
            "org.apache.spark.ml.classification.RandomForestClassifier", self.uid)
        self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                         maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None,
                         impurity="gini", numTrees=20, featureSubsetStrategy="auto")
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    @since("1.4.0")
    def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                  probabilityCol="probability", rawPredictionCol="rawPrediction",
                  maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                  maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None,
                  impurity="gini", numTrees=20, featureSubsetStrategy="auto"):
        """
        setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                 probabilityCol="probability", rawPredictionCol="rawPrediction", \
                  maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
                  maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None, \
                  impurity="gini", numTrees=20, featureSubsetStrategy="auto")
        Sets params for linear classification.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def _create_model(self, java_model):
        return RandomForestClassificationModel(java_model)


class RandomForestClassificationModel(TreeEnsembleModels, JavaMLWritable, JavaMLReadable):
    """
    Model fitted by RandomForestClassifier.

    .. versionadded:: 1.4.0
    """

    @property
    @since("2.0.0")
    def featureImportances(self):
        """
        Estimate of the importance of each feature.

        Each feature's importance is the average of its importance across all trees in the ensemble
        The importance vector is normalized to sum to 1. This method is suggested by Hastie et al.
        (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.)
        and follows the implementation from scikit-learn.

        .. seealso:: :py:attr:`DecisionTreeClassificationModel.featureImportances`
        """
        return self._call_java("featureImportances")


@inherit_doc
class GBTClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasMaxIter,
                    GBTParams, HasCheckpointInterval, HasStepSize, HasSeed):
    """
    `http://en.wikipedia.org/wiki/Gradient_boosting Gradient-Boosted Trees (GBTs)`
    learning algorithm for classification.
    It supports binary labels, as well as both continuous and categorical features.
    Note: Multiclass labels are not currently supported.

    >>> from numpy import allclose
    >>> from pyspark.mllib.linalg import Vectors
    >>> from pyspark.ml.feature import StringIndexer
    >>> df = sqlContext.createDataFrame([
    ...     (1.0, Vectors.dense(1.0)),
    ...     (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
    >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
    >>> si_model = stringIndexer.fit(df)
    >>> td = si_model.transform(df)
    >>> gbt = GBTClassifier(maxIter=5, maxDepth=2, labelCol="indexed", seed=42)
    >>> model = gbt.fit(td)
    >>> model.featureImportances
    SparseVector(1, {0: 1.0})
    >>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1])
    True
    >>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
    >>> model.transform(test0).head().prediction
    0.0
    >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
    >>> model.transform(test1).head().prediction
    1.0

    .. versionadded:: 1.4.0
    """

    lossType = Param(Params._dummy(), "lossType",
                     "Loss function which GBT tries to minimize (case-insensitive). " +
                     "Supported options: " + ", ".join(GBTParams.supportedLossTypes),
                     typeConverter=TypeConverters.toString)

    @keyword_only
    def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                 maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                 maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType="logistic",
                 maxIter=20, stepSize=0.1, seed=None):
        """
        __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                 maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
                 maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
                 lossType="logistic", maxIter=20, stepSize=0.1, seed=None)
        """
        super(GBTClassifier, self).__init__()
        self._java_obj = self._new_java_obj(
            "org.apache.spark.ml.classification.GBTClassifier", self.uid)
        self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                         maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
                         lossType="logistic", maxIter=20, stepSize=0.1, seed=None)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    @since("1.4.0")
    def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                  maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
                  maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
                  lossType="logistic", maxIter=20, stepSize=0.1, seed=None):
        """
        setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                  maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
                  maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
                  lossType="logistic", maxIter=20, stepSize=0.1, seed=None)
        Sets params for Gradient Boosted Tree Classification.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def _create_model(self, java_model):
        return GBTClassificationModel(java_model)

    @since("1.4.0")
    def setLossType(self, value):
        """
        Sets the value of :py:attr:`lossType`.
        """
        self._paramMap[self.lossType] = value
        return self

    @since("1.4.0")
    def getLossType(self):
        """
        Gets the value of lossType or its default value.
        """
        return self.getOrDefault(self.lossType)


class GBTClassificationModel(TreeEnsembleModels):
    """
    Model fitted by GBTClassifier.

    .. versionadded:: 1.4.0
    """

    @property
    @since("2.0.0")
    def featureImportances(self):
        """
        Estimate of the importance of each feature.

        Each feature's importance is the average of its importance across all trees in the ensemble
        The importance vector is normalized to sum to 1. This method is suggested by Hastie et al.
        (Hastie, Tibshirani, Friedman. "The Elements of Statistical Learning, 2nd Edition." 2001.)
        and follows the implementation from scikit-learn.

        .. seealso:: :py:attr:`DecisionTreeClassificationModel.featureImportances`
        """
        return self._call_java("featureImportances")


@inherit_doc
class NaiveBayes(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasProbabilityCol,
                 HasRawPredictionCol, JavaMLWritable, JavaMLReadable):
    """
    Naive Bayes Classifiers.
    It supports both Multinomial and Bernoulli NB. Multinomial NB
    (`http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html`)
    can handle finitely supported discrete data. For example, by converting documents into
    TF-IDF vectors, it can be used for document classification. By making every vector a
    binary (0/1) data, it can also be used as Bernoulli NB
    (`http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html`).
    The input feature values must be nonnegative.

    >>> from pyspark.sql import Row
    >>> from pyspark.mllib.linalg import Vectors
    >>> df = sqlContext.createDataFrame([
    ...     Row(label=0.0, features=Vectors.dense([0.0, 0.0])),
    ...     Row(label=0.0, features=Vectors.dense([0.0, 1.0])),
    ...     Row(label=1.0, features=Vectors.dense([1.0, 0.0]))])
    >>> nb = NaiveBayes(smoothing=1.0, modelType="multinomial")
    >>> model = nb.fit(df)
    >>> model.pi
    DenseVector([-0.51..., -0.91...])
    >>> model.theta
    DenseMatrix(2, 2, [-1.09..., -0.40..., -0.40..., -1.09...], 1)
    >>> test0 = sc.parallelize([Row(features=Vectors.dense([1.0, 0.0]))]).toDF()
    >>> result = model.transform(test0).head()
    >>> result.prediction
    1.0
    >>> result.probability
    DenseVector([0.42..., 0.57...])
    >>> result.rawPrediction
    DenseVector([-1.60..., -1.32...])
    >>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF()
    >>> model.transform(test1).head().prediction
    1.0
    >>> nb_path = temp_path + "/nb"
    >>> nb.save(nb_path)
    >>> nb2 = NaiveBayes.load(nb_path)
    >>> nb2.getSmoothing()
    1.0
    >>> model_path = temp_path + "/nb_model"
    >>> model.save(model_path)
    >>> model2 = NaiveBayesModel.load(model_path)
    >>> model.pi == model2.pi
    True
    >>> model.theta == model2.theta
    True

    .. versionadded:: 1.5.0
    """

    smoothing = Param(Params._dummy(), "smoothing", "The smoothing parameter, should be >= 0, " +
                      "default is 1.0", typeConverter=TypeConverters.toFloat)
    modelType = Param(Params._dummy(), "modelType", "The model type which is a string " +
                      "(case-sensitive). Supported options: multinomial (default) and bernoulli.",
                      typeConverter=TypeConverters.toString)

    @keyword_only
    def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                 probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0,
                 modelType="multinomial"):
        """
        __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                 probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0, \
                 modelType="multinomial")
        """
        super(NaiveBayes, self).__init__()
        self._java_obj = self._new_java_obj(
            "org.apache.spark.ml.classification.NaiveBayes", self.uid)
        self._setDefault(smoothing=1.0, modelType="multinomial")
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    @since("1.5.0")
    def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                  probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0,
                  modelType="multinomial"):
        """
        setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                  probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0, \
                  modelType="multinomial")
        Sets params for Naive Bayes.
        """
        kwargs = self.setParams._input_kwargs
        return self._set(**kwargs)

    def _create_model(self, java_model):
        return NaiveBayesModel(java_model)

    @since("1.5.0")
    def setSmoothing(self, value):
        """
        Sets the value of :py:attr:`smoothing`.
        """
        self._paramMap[self.smoothing] = value
        return self

    @since("1.5.0")
    def getSmoothing(self):
        """
        Gets the value of smoothing or its default value.
        """
        return self.getOrDefault(self.smoothing)

    @since("1.5.0")
    def setModelType(self, value):
        """
        Sets the value of :py:attr:`modelType`.
        """
        self._paramMap[self.modelType] = value
        return self

    @since("1.5.0")
    def getModelType(self):
        """
        Gets the value of modelType or its default value.
        """
        return self.getOrDefault(self.modelType)


class NaiveBayesModel(JavaModel, JavaMLWritable, JavaMLReadable):
    """
    Model fitted by NaiveBayes.

    .. versionadded:: 1.5.0
    """

    @property
    @since("1.5.0")
    def pi(self):
        """
        log of class priors.
        """
        return self._call_java("pi")

    @property
    @since("1.5.0")
    def theta(self):
        """
        log of class conditional probabilities.
        """
        return self._call_java("theta")


@inherit_doc
class MultilayerPerceptronClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol,
                                     HasMaxIter, HasTol, HasSeed, JavaMLWritable, JavaMLReadable):
    """
    Classifier trainer based on the Multilayer Perceptron.
    Each layer has sigmoid activation function, output layer has softmax.
    Number of inputs has to be equal to the size of feature vectors.
    Number of outputs has to be equal to the total number of labels.

    >>> from pyspark.mllib.linalg import Vectors
    >>> df = sqlContext.createDataFrame([
    ...     (0.0, Vectors.dense([0.0, 0.0])),
    ...     (1.0, Vectors.dense([0.0, 1.0])),
    ...     (1.0, Vectors.dense([1.0, 0.0])),
    ...     (0.0, Vectors.dense([1.0, 1.0]))], ["label", "features"])
    >>> mlp = MultilayerPerceptronClassifier(maxIter=100, layers=[2, 5, 2], blockSize=1, seed=123)
    >>> model = mlp.fit(df)
    >>> model.layers
    [2, 5, 2]
    >>> model.weights.size
    27
    >>> testDF = sqlContext.createDataFrame([
    ...     (Vectors.dense([1.0, 0.0]),),
    ...     (Vectors.dense([0.0, 0.0]),)], ["features"])
    >>> model.transform(testDF).show()
    +---------+----------+
    | features|prediction|
    +---------+----------+
    |[1.0,0.0]|       1.0|
    |[0.0,0.0]|       0.0|
    +---------+----------+
    ...
    >>> mlp_path = temp_path + "/mlp"
    >>> mlp.save(mlp_path)
    >>> mlp2 = MultilayerPerceptronClassifier.load(mlp_path)
    >>> mlp2.getBlockSize()
    1
    >>> model_path = temp_path + "/mlp_model"
    >>> model.save(model_path)
    >>> model2 = MultilayerPerceptronClassificationModel.load(model_path)
    >>> model.layers == model2.layers
    True
    >>> model.weights == model2.weights
    True

    .. versionadded:: 1.6.0
    """

    layers = Param(Params._dummy(), "layers", "Sizes of layers from input layer to output layer " +
                   "E.g., Array(780, 100, 10) means 780 inputs, one hidden layer with 100 " +
                   "neurons and output layer of 10 neurons, default is [1, 1].",
                   typeConverter=TypeConverters.toListInt)
    blockSize = Param(Params._dummy(), "blockSize", "Block size for stacking input data in " +
                      "matrices. Data is stacked within partitions. If block size is more than " +
                      "remaining data in a partition then it is adjusted to the size of this " +
                      "data. Recommended size is between 10 and 1000, default is 128.",
                      typeConverter=TypeConverters.toInt)

    @keyword_only
    def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                 maxIter=100, tol=1e-4, seed=None, layers=None, blockSize=128):
        """
        __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                 maxIter=100, tol=1e-4, seed=None, layers=[1, 1], blockSize=128)
        """
        super(MultilayerPerceptronClassifier, self).__init__()
        self._java_obj = self._new_java_obj(
            "org.apache.spark.ml.classification.MultilayerPerceptronClassifier", self.uid)
        self._setDefault(maxIter=100, tol=1E-4, layers=[1, 1], blockSize=128)
        kwargs = self.__init__._input_kwargs
        self.setParams(**kwargs)

    @keyword_only
    @since("1.6.0")
    def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
                  maxIter=100, tol=1e-4, seed=None, layers=None, blockSize=128):
        """
        setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
                  maxIter=100, tol=1e-4, seed=None, layers=[1, 1], blockSize=128)
        Sets params for MultilayerPerceptronClassifier.
        """
        kwargs = self.setParams._input_kwargs
        if layers is None:
            return self._set(**kwargs).setLayers([1, 1])
        else:
            return self._set(**kwargs)

    def _create_model(self, java_model):
        return MultilayerPerceptronClassificationModel(java_model)

    @since("1.6.0")
    def setLayers(self, value):
        """
        Sets the value of :py:attr:`layers`.
        """
        self._paramMap[self.layers] = value
        return self

    @since("1.6.0")
    def getLayers(self):
        """
        Gets the value of layers or its default value.
        """
        return self.getOrDefault(self.layers)

    @since("1.6.0")
    def setBlockSize(self, value):
        """
        Sets the value of :py:attr:`blockSize`.
        """
        self._paramMap[self.blockSize] = value
        return self

    @since("1.6.0")
    def getBlockSize(self):
        """
        Gets the value of blockSize or its default value.
        """
        return self.getOrDefault(self.blockSize)


class MultilayerPerceptronClassificationModel(JavaModel, JavaMLWritable, JavaMLReadable):
    """
    Model fitted by MultilayerPerceptronClassifier.

    .. versionadded:: 1.6.0
    """

    @property
    @since("1.6.0")
    def layers(self):
        """
        array of layer sizes including input and output layers.
        """
        return self._call_java("javaLayers")

    @property
    @since("1.6.0")
    def weights(self):
        """
        vector of initial weights for the model that consists of the weights of layers.
        """
        return self._call_java("weights")


if __name__ == "__main__":
    import doctest
    import pyspark.ml.classification
    from pyspark.context import SparkContext
    from pyspark.sql import SQLContext
    globs = pyspark.ml.classification.__dict__.copy()
    # The small batch size here ensures that we see multiple batches,
    # even in these small test examples:
    sc = SparkContext("local[2]", "ml.classification tests")
    sqlContext = SQLContext(sc)
    globs['sc'] = sc
    globs['sqlContext'] = sqlContext
    import tempfile
    temp_path = tempfile.mkdtemp()
    globs['temp_path'] = temp_path
    try:
        (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
        sc.stop()
    finally:
        from shutil import rmtree
        try:
            rmtree(temp_path)
        except OSError:
            pass
    if failure_count:
        exit(-1)