aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/feature.py
blob: 077c11370eb3f73e3b904e35f0a6fac6695bcdd8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
Python package for feature in MLlib.
"""
from __future__ import absolute_import

import sys
import warnings
import random
import binascii
if sys.version >= '3':
    basestring = str
    unicode = str

from py4j.protocol import Py4JJavaError

from pyspark import since
from pyspark.rdd import RDD, ignore_unicode_prefix
from pyspark.mllib.common import callMLlibFunc, JavaModelWrapper
from pyspark.mllib.linalg import (
    Vector, Vectors, DenseVector, SparseVector, _convert_to_vector)
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.util import JavaLoader, JavaSaveable

__all__ = ['Normalizer', 'StandardScalerModel', 'StandardScaler',
           'HashingTF', 'IDFModel', 'IDF', 'Word2Vec', 'Word2VecModel',
           'ChiSqSelector', 'ChiSqSelectorModel', 'ElementwiseProduct']


class VectorTransformer(object):
    """
    .. note:: DeveloperApi

    Base class for transformation of a vector or RDD of vector
    """
    def transform(self, vector):
        """
        Applies transformation on a vector.

        :param vector: vector to be transformed.
        """
        raise NotImplementedError


class Normalizer(VectorTransformer):
    """
    Normalizes samples individually to unit L\ :sup:`p`\  norm

    For any 1 <= `p` < float('inf'), normalizes samples using
    sum(abs(vector) :sup:`p`) :sup:`(1/p)` as norm.

    For `p` = float('inf'), max(abs(vector)) will be used as norm for
    normalization.

    :param p: Normalization in L^p^ space, p = 2 by default.

    >>> v = Vectors.dense(range(3))
    >>> nor = Normalizer(1)
    >>> nor.transform(v)
    DenseVector([0.0, 0.3333, 0.6667])

    >>> rdd = sc.parallelize([v])
    >>> nor.transform(rdd).collect()
    [DenseVector([0.0, 0.3333, 0.6667])]

    >>> nor2 = Normalizer(float("inf"))
    >>> nor2.transform(v)
    DenseVector([0.0, 0.5, 1.0])

    .. versionadded:: 1.2.0
    """
    def __init__(self, p=2.0):
        assert p >= 1.0, "p should be greater than 1.0"
        self.p = float(p)

    @since('1.2.0')
    def transform(self, vector):
        """
        Applies unit length normalization on a vector.

        :param vector: vector or RDD of vector to be normalized.
        :return: normalized vector. If the norm of the input is zero, it
                 will return the input vector.
        """
        if isinstance(vector, RDD):
            vector = vector.map(_convert_to_vector)
        else:
            vector = _convert_to_vector(vector)
        return callMLlibFunc("normalizeVector", self.p, vector)


class JavaVectorTransformer(JavaModelWrapper, VectorTransformer):
    """
    Wrapper for the model in JVM
    """

    def transform(self, vector):
        """
        Applies transformation on a vector or an RDD[Vector].

        Note: In Python, transform cannot currently be used within
              an RDD transformation or action.
              Call transform directly on the RDD instead.

        :param vector: Vector or RDD of Vector to be transformed.
        """
        if isinstance(vector, RDD):
            vector = vector.map(_convert_to_vector)
        else:
            vector = _convert_to_vector(vector)
        return self.call("transform", vector)


class StandardScalerModel(JavaVectorTransformer):
    """
    Represents a StandardScaler model that can transform vectors.

    .. versionadded:: 1.2.0
    """

    @since('1.2.0')
    def transform(self, vector):
        """
        Applies standardization transformation on a vector.

        Note: In Python, transform cannot currently be used within
              an RDD transformation or action.
              Call transform directly on the RDD instead.

        :param vector: Vector or RDD of Vector to be standardized.
        :return: Standardized vector. If the variance of a column is
                 zero, it will return default `0.0` for the column with
                 zero variance.
        """
        return JavaVectorTransformer.transform(self, vector)

    @since('1.4.0')
    def setWithMean(self, withMean):
        """
        Setter of the boolean which decides
        whether it uses mean or not
        """
        self.call("setWithMean", withMean)
        return self

    @since('1.4.0')
    def setWithStd(self, withStd):
        """
        Setter of the boolean which decides
        whether it uses std or not
        """
        self.call("setWithStd", withStd)
        return self

    @property
    @since('2.0.0')
    def withStd(self):
        """
        Returns if the model scales the data to unit standard deviation.
        """
        return self.call("withStd")

    @property
    @since('2.0.0')
    def withMean(self):
        """
        Returns if the model centers the data before scaling.
        """
        return self.call("withMean")

    @property
    @since('2.0.0')
    def std(self):
        """
        Return the column standard deviation values.
        """
        return self.call("std")

    @property
    @since('2.0.0')
    def mean(self):
        """
        Return the column mean values.
        """
        return self.call("mean")


class StandardScaler(object):
    """
    Standardizes features by removing the mean and scaling to unit
    variance using column summary statistics on the samples in the
    training set.

    :param withMean: False by default. Centers the data with mean
                     before scaling. It will build a dense output, so take
                     care when applying to sparse input.
    :param withStd: True by default. Scales the data to unit
                    standard deviation.

    >>> vs = [Vectors.dense([-2.0, 2.3, 0]), Vectors.dense([3.8, 0.0, 1.9])]
    >>> dataset = sc.parallelize(vs)
    >>> standardizer = StandardScaler(True, True)
    >>> model = standardizer.fit(dataset)
    >>> result = model.transform(dataset)
    >>> for r in result.collect(): r
    DenseVector([-0.7071, 0.7071, -0.7071])
    DenseVector([0.7071, -0.7071, 0.7071])
    >>> int(model.std[0])
    4
    >>> int(model.mean[0]*10)
    9
    >>> model.withStd
    True
    >>> model.withMean
    True

    .. versionadded:: 1.2.0
    """
    def __init__(self, withMean=False, withStd=True):
        if not (withMean or withStd):
            warnings.warn("Both withMean and withStd are false. The model does nothing.")
        self.withMean = withMean
        self.withStd = withStd

    @since('1.2.0')
    def fit(self, dataset):
        """
        Computes the mean and variance and stores as a model to be used
        for later scaling.

        :param dataset: The data used to compute the mean and variance
                     to build the transformation model.
        :return: a StandardScalarModel
        """
        dataset = dataset.map(_convert_to_vector)
        jmodel = callMLlibFunc("fitStandardScaler", self.withMean, self.withStd, dataset)
        return StandardScalerModel(jmodel)


class ChiSqSelectorModel(JavaVectorTransformer):
    """
    Represents a Chi Squared selector model.

    .. versionadded:: 1.4.0
    """

    @since('1.4.0')
    def transform(self, vector):
        """
        Applies transformation on a vector.

        :param vector: Vector or RDD of Vector to be transformed.
        :return: transformed vector.
        """
        return JavaVectorTransformer.transform(self, vector)


class ChiSqSelectorType:
    """
    This class defines the selector types of Chi Square Selector.
    """
    KBest, Percentile, FPR = range(3)


class ChiSqSelector(object):
    """
    Creates a ChiSquared feature selector.
    The selector supports three selection methods: `KBest`, `Percentile` and `FPR`.
    `KBest` chooses the `k` top features according to a chi-squared test.
    `Percentile` is similar but chooses a fraction of all features instead of a fixed number.
    `FPR` chooses all features whose false positive rate meets some threshold.
    By default, the selection method is `KBest`, the default number of top features is 50.
    User can use setNumTopFeatures, setPercentile and setAlpha to set different selection methods.

    >>> data = [
    ...     LabeledPoint(0.0, SparseVector(3, {0: 8.0, 1: 7.0})),
    ...     LabeledPoint(1.0, SparseVector(3, {1: 9.0, 2: 6.0})),
    ...     LabeledPoint(1.0, [0.0, 9.0, 8.0]),
    ...     LabeledPoint(2.0, [8.0, 9.0, 5.0])
    ... ]
    >>> model = ChiSqSelector().setNumTopFeatures(1).fit(sc.parallelize(data))
    >>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0}))
    SparseVector(1, {0: 6.0})
    >>> model.transform(DenseVector([8.0, 9.0, 5.0]))
    DenseVector([5.0])
    >>> model = ChiSqSelector().setPercentile(0.34).fit(sc.parallelize(data))
    >>> model.transform(SparseVector(3, {1: 9.0, 2: 6.0}))
    SparseVector(1, {0: 6.0})
    >>> model.transform(DenseVector([8.0, 9.0, 5.0]))
    DenseVector([5.0])
    >>> data = [
    ...     LabeledPoint(0.0, SparseVector(4, {0: 8.0, 1: 7.0})),
    ...     LabeledPoint(1.0, SparseVector(4, {1: 9.0, 2: 6.0, 3: 4.0})),
    ...     LabeledPoint(1.0, [0.0, 9.0, 8.0, 4.0]),
    ...     LabeledPoint(2.0, [8.0, 9.0, 5.0, 9.0])
    ... ]
    >>> model = ChiSqSelector().setAlpha(0.1).fit(sc.parallelize(data))
    >>> model.transform(DenseVector([1.0,2.0,3.0,4.0]))
    DenseVector([4.0])

    .. versionadded:: 1.4.0
    """
    def __init__(self, numTopFeatures=50):
        self.numTopFeatures = numTopFeatures
        self.selectorType = ChiSqSelectorType.KBest

    @since('2.1.0')
    def setNumTopFeatures(self, numTopFeatures):
        """
        set numTopFeature for feature selection by number of top features
        """
        self.numTopFeatures = int(numTopFeatures)
        self.selectorType = ChiSqSelectorType.KBest
        return self

    @since('2.1.0')
    def setPercentile(self, percentile):
        """
        set percentile [0.0, 1.0] for feature selection by percentile
        """
        self.percentile = float(percentile)
        self.selectorType = ChiSqSelectorType.Percentile
        return self

    @since('2.1.0')
    def setAlpha(self, alpha):
        """
        set alpha [0.0, 1.0] for feature selection by FPR
        """
        self.alpha = float(alpha)
        self.selectorType = ChiSqSelectorType.FPR
        return self

    @since('1.4.0')
    def fit(self, data):
        """
        Returns a ChiSquared feature selector.

        :param data: an `RDD[LabeledPoint]` containing the labeled dataset
                     with categorical features. Real-valued features will be
                     treated as categorical for each distinct value.
                     Apply feature discretizer before using this function.
        """
        if self.selectorType == ChiSqSelectorType.KBest:
            jmodel = callMLlibFunc("fitChiSqSelectorKBest", self.numTopFeatures, data)
        elif self.selectorType == ChiSqSelectorType.Percentile:
            jmodel = callMLlibFunc("fitChiSqSelectorPercentile", self.percentile, data)
        elif self.selectorType == ChiSqSelectorType.FPR:
            jmodel = callMLlibFunc("fitChiSqSelectorFPR", self.alpha, data)
        else:
            raise ValueError("ChiSqSelector type supports KBest(0), Percentile(1) and"
                             " FPR(2), the current value is: %s" % self.selectorType)
        return ChiSqSelectorModel(jmodel)


class PCAModel(JavaVectorTransformer):
    """
    Model fitted by [[PCA]] that can project vectors to a low-dimensional space using PCA.

    .. versionadded:: 1.5.0
    """


class PCA(object):
    """
    A feature transformer that projects vectors to a low-dimensional space using PCA.

    >>> data = [Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),
    ...     Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),
    ...     Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0])]
    >>> model = PCA(2).fit(sc.parallelize(data))
    >>> pcArray = model.transform(Vectors.sparse(5, [(1, 1.0), (3, 7.0)])).toArray()
    >>> pcArray[0]
    1.648...
    >>> pcArray[1]
    -4.013...

    .. versionadded:: 1.5.0
    """
    def __init__(self, k):
        """
        :param k: number of principal components.
        """
        self.k = int(k)

    @since('1.5.0')
    def fit(self, data):
        """
        Computes a [[PCAModel]] that contains the principal components of the input vectors.
        :param data: source vectors
        """
        jmodel = callMLlibFunc("fitPCA", self.k, data)
        return PCAModel(jmodel)


class HashingTF(object):
    """
    Maps a sequence of terms to their term frequencies using the hashing
    trick.

    Note: the terms must be hashable (can not be dict/set/list...).

    :param numFeatures: number of features (default: 2^20)

    >>> htf = HashingTF(100)
    >>> doc = "a a b b c d".split(" ")
    >>> htf.transform(doc)
    SparseVector(100, {...})

    .. versionadded:: 1.2.0
    """
    def __init__(self, numFeatures=1 << 20):
        self.numFeatures = numFeatures
        self.binary = False

    @since("2.0.0")
    def setBinary(self, value):
        """
        If True, term frequency vector will be binary such that non-zero
        term counts will be set to 1
        (default: False)
        """
        self.binary = value
        return self

    @since('1.2.0')
    def indexOf(self, term):
        """ Returns the index of the input term. """
        return hash(term) % self.numFeatures

    @since('1.2.0')
    def transform(self, document):
        """
        Transforms the input document (list of terms) to term frequency
        vectors, or transform the RDD of document to RDD of term
        frequency vectors.
        """
        if isinstance(document, RDD):
            return document.map(self.transform)

        freq = {}
        for term in document:
            i = self.indexOf(term)
            freq[i] = 1.0 if self.binary else freq.get(i, 0) + 1.0
        return Vectors.sparse(self.numFeatures, freq.items())


class IDFModel(JavaVectorTransformer):
    """
    Represents an IDF model that can transform term frequency vectors.

    .. versionadded:: 1.2.0
    """
    @since('1.2.0')
    def transform(self, x):
        """
        Transforms term frequency (TF) vectors to TF-IDF vectors.

        If `minDocFreq` was set for the IDF calculation,
        the terms which occur in fewer than `minDocFreq`
        documents will have an entry of 0.

        Note: In Python, transform cannot currently be used within
              an RDD transformation or action.
              Call transform directly on the RDD instead.

        :param x: an RDD of term frequency vectors or a term frequency
                  vector
        :return: an RDD of TF-IDF vectors or a TF-IDF vector
        """
        return JavaVectorTransformer.transform(self, x)

    @since('1.4.0')
    def idf(self):
        """
        Returns the current IDF vector.
        """
        return self.call('idf')


class IDF(object):
    """
    Inverse document frequency (IDF).

    The standard formulation is used: `idf = log((m + 1) / (d(t) + 1))`,
    where `m` is the total number of documents and `d(t)` is the number
    of documents that contain term `t`.

    This implementation supports filtering out terms which do not appear
    in a minimum number of documents (controlled by the variable
    `minDocFreq`). For terms that are not in at least `minDocFreq`
    documents, the IDF is found as 0, resulting in TF-IDFs of 0.

    :param minDocFreq: minimum of documents in which a term
                       should appear for filtering

    >>> n = 4
    >>> freqs = [Vectors.sparse(n, (1, 3), (1.0, 2.0)),
    ...          Vectors.dense([0.0, 1.0, 2.0, 3.0]),
    ...          Vectors.sparse(n, [1], [1.0])]
    >>> data = sc.parallelize(freqs)
    >>> idf = IDF()
    >>> model = idf.fit(data)
    >>> tfidf = model.transform(data)
    >>> for r in tfidf.collect(): r
    SparseVector(4, {1: 0.0, 3: 0.5754})
    DenseVector([0.0, 0.0, 1.3863, 0.863])
    SparseVector(4, {1: 0.0})
    >>> model.transform(Vectors.dense([0.0, 1.0, 2.0, 3.0]))
    DenseVector([0.0, 0.0, 1.3863, 0.863])
    >>> model.transform([0.0, 1.0, 2.0, 3.0])
    DenseVector([0.0, 0.0, 1.3863, 0.863])
    >>> model.transform(Vectors.sparse(n, (1, 3), (1.0, 2.0)))
    SparseVector(4, {1: 0.0, 3: 0.5754})

    .. versionadded:: 1.2.0
    """
    def __init__(self, minDocFreq=0):
        self.minDocFreq = minDocFreq

    @since('1.2.0')
    def fit(self, dataset):
        """
        Computes the inverse document frequency.

        :param dataset: an RDD of term frequency vectors
        """
        if not isinstance(dataset, RDD):
            raise TypeError("dataset should be an RDD of term frequency vectors")
        jmodel = callMLlibFunc("fitIDF", self.minDocFreq, dataset.map(_convert_to_vector))
        return IDFModel(jmodel)


class Word2VecModel(JavaVectorTransformer, JavaSaveable, JavaLoader):
    """
    class for Word2Vec model

    .. versionadded:: 1.2.0
    """
    @since('1.2.0')
    def transform(self, word):
        """
        Transforms a word to its vector representation

        Note: local use only

        :param word: a word
        :return: vector representation of word(s)
        """
        try:
            return self.call("transform", word)
        except Py4JJavaError:
            raise ValueError("%s not found" % word)

    @since('1.2.0')
    def findSynonyms(self, word, num):
        """
        Find synonyms of a word

        :param word: a word or a vector representation of word
        :param num: number of synonyms to find
        :return: array of (word, cosineSimilarity)

        Note: local use only
        """
        if not isinstance(word, basestring):
            word = _convert_to_vector(word)
        words, similarity = self.call("findSynonyms", word, num)
        return zip(words, similarity)

    @since('1.4.0')
    def getVectors(self):
        """
        Returns a map of words to their vector representations.
        """
        return self.call("getVectors")

    @classmethod
    @since('1.5.0')
    def load(cls, sc, path):
        """
        Load a model from the given path.
        """
        jmodel = sc._jvm.org.apache.spark.mllib.feature \
            .Word2VecModel.load(sc._jsc.sc(), path)
        model = sc._jvm.org.apache.spark.mllib.api.python.Word2VecModelWrapper(jmodel)
        return Word2VecModel(model)


@ignore_unicode_prefix
class Word2Vec(object):
    """Word2Vec creates vector representation of words in a text corpus.
    The algorithm first constructs a vocabulary from the corpus
    and then learns vector representation of words in the vocabulary.
    The vector representation can be used as features in
    natural language processing and machine learning algorithms.

    We used skip-gram model in our implementation and hierarchical
    softmax method to train the model. The variable names in the
    implementation matches the original C implementation.

    For original C implementation,
    see https://code.google.com/p/word2vec/
    For research papers, see
    Efficient Estimation of Word Representations in Vector Space
    and Distributed Representations of Words and Phrases and their
    Compositionality.

    >>> sentence = "a b " * 100 + "a c " * 10
    >>> localDoc = [sentence, sentence]
    >>> doc = sc.parallelize(localDoc).map(lambda line: line.split(" "))
    >>> model = Word2Vec().setVectorSize(10).setSeed(42).fit(doc)

    Querying for synonyms of a word will not return that word:

    >>> syms = model.findSynonyms("a", 2)
    >>> [s[0] for s in syms]
    [u'b', u'c']

    But querying for synonyms of a vector may return the word whose
    representation is that vector:

    >>> vec = model.transform("a")
    >>> syms = model.findSynonyms(vec, 2)
    >>> [s[0] for s in syms]
    [u'a', u'b']

    >>> import os, tempfile
    >>> path = tempfile.mkdtemp()
    >>> model.save(sc, path)
    >>> sameModel = Word2VecModel.load(sc, path)
    >>> model.transform("a") == sameModel.transform("a")
    True
    >>> syms = sameModel.findSynonyms("a", 2)
    >>> [s[0] for s in syms]
    [u'b', u'c']
    >>> from shutil import rmtree
    >>> try:
    ...     rmtree(path)
    ... except OSError:
    ...     pass

    .. versionadded:: 1.2.0

    """
    def __init__(self):
        """
        Construct Word2Vec instance
        """
        self.vectorSize = 100
        self.learningRate = 0.025
        self.numPartitions = 1
        self.numIterations = 1
        self.seed = None
        self.minCount = 5
        self.windowSize = 5

    @since('1.2.0')
    def setVectorSize(self, vectorSize):
        """
        Sets vector size (default: 100).
        """
        self.vectorSize = vectorSize
        return self

    @since('1.2.0')
    def setLearningRate(self, learningRate):
        """
        Sets initial learning rate (default: 0.025).
        """
        self.learningRate = learningRate
        return self

    @since('1.2.0')
    def setNumPartitions(self, numPartitions):
        """
        Sets number of partitions (default: 1). Use a small number for
        accuracy.
        """
        self.numPartitions = numPartitions
        return self

    @since('1.2.0')
    def setNumIterations(self, numIterations):
        """
        Sets number of iterations (default: 1), which should be smaller
        than or equal to number of partitions.
        """
        self.numIterations = numIterations
        return self

    @since('1.2.0')
    def setSeed(self, seed):
        """
        Sets random seed.
        """
        self.seed = seed
        return self

    @since('1.4.0')
    def setMinCount(self, minCount):
        """
        Sets minCount, the minimum number of times a token must appear
        to be included in the word2vec model's vocabulary (default: 5).
        """
        self.minCount = minCount
        return self

    @since('2.0.0')
    def setWindowSize(self, windowSize):
        """
        Sets window size (default: 5).
        """
        self.windowSize = windowSize
        return self

    @since('1.2.0')
    def fit(self, data):
        """
        Computes the vector representation of each word in vocabulary.

        :param data: training data. RDD of list of string
        :return: Word2VecModel instance
        """
        if not isinstance(data, RDD):
            raise TypeError("data should be an RDD of list of string")
        jmodel = callMLlibFunc("trainWord2VecModel", data, int(self.vectorSize),
                               float(self.learningRate), int(self.numPartitions),
                               int(self.numIterations), self.seed,
                               int(self.minCount), int(self.windowSize))
        return Word2VecModel(jmodel)


class ElementwiseProduct(VectorTransformer):
    """
    Scales each column of the vector, with the supplied weight vector.
    i.e the elementwise product.

    >>> weight = Vectors.dense([1.0, 2.0, 3.0])
    >>> eprod = ElementwiseProduct(weight)
    >>> a = Vectors.dense([2.0, 1.0, 3.0])
    >>> eprod.transform(a)
    DenseVector([2.0, 2.0, 9.0])
    >>> b = Vectors.dense([9.0, 3.0, 4.0])
    >>> rdd = sc.parallelize([a, b])
    >>> eprod.transform(rdd).collect()
    [DenseVector([2.0, 2.0, 9.0]), DenseVector([9.0, 6.0, 12.0])]

    .. versionadded:: 1.5.0
    """
    def __init__(self, scalingVector):
        self.scalingVector = _convert_to_vector(scalingVector)

    @since('1.5.0')
    def transform(self, vector):
        """
        Computes the Hadamard product of the vector.
        """
        if isinstance(vector, RDD):
            vector = vector.map(_convert_to_vector)

        else:
            vector = _convert_to_vector(vector)
        return callMLlibFunc("elementwiseProductVector", self.scalingVector, vector)


def _test():
    import doctest
    from pyspark.sql import SparkSession
    globs = globals().copy()
    spark = SparkSession.builder\
        .master("local[4]")\
        .appName("mllib.feature tests")\
        .getOrCreate()
    globs['sc'] = spark.sparkContext
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    spark.stop()
    if failure_count:
        exit(-1)

if __name__ == "__main__":
    sys.path.pop(0)
    _test()