aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/linalg/__init__.py
blob: 4cd7306edb11bbf2dab78c625429d83ffc20e3ea (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
MLlib utilities for linear algebra. For dense vectors, MLlib
uses the NumPy C{array} type, so you can simply pass NumPy arrays
around. For sparse vectors, users can construct a L{SparseVector}
object from MLlib or pass SciPy C{scipy.sparse} column vectors if
SciPy is available in their environment.
"""

import sys
import array
import struct

if sys.version >= '3':
    basestring = str
    xrange = range
    import copyreg as copy_reg
    long = int
else:
    from itertools import izip as zip
    import copy_reg

import numpy as np

from pyspark.sql.types import UserDefinedType, StructField, StructType, ArrayType, DoubleType, \
    IntegerType, ByteType, BooleanType


__all__ = ['Vector', 'DenseVector', 'SparseVector', 'Vectors',
           'Matrix', 'DenseMatrix', 'SparseMatrix', 'Matrices']


if sys.version_info[:2] == (2, 7):
    # speed up pickling array in Python 2.7
    def fast_pickle_array(ar):
        return array.array, (ar.typecode, ar.tostring())
    copy_reg.pickle(array.array, fast_pickle_array)


# Check whether we have SciPy. MLlib works without it too, but if we have it, some methods,
# such as _dot and _serialize_double_vector, start to support scipy.sparse matrices.

try:
    import scipy.sparse
    _have_scipy = True
except:
    # No SciPy in environment, but that's okay
    _have_scipy = False


def _convert_to_vector(l):
    if isinstance(l, Vector):
        return l
    elif type(l) in (array.array, np.array, np.ndarray, list, tuple, xrange):
        return DenseVector(l)
    elif _have_scipy and scipy.sparse.issparse(l):
        assert l.shape[1] == 1, "Expected column vector"
        csc = l.tocsc()
        return SparseVector(l.shape[0], csc.indices, csc.data)
    else:
        raise TypeError("Cannot convert type %s into Vector" % type(l))


def _vector_size(v):
    """
    Returns the size of the vector.

    >>> _vector_size([1., 2., 3.])
    3
    >>> _vector_size((1., 2., 3.))
    3
    >>> _vector_size(array.array('d', [1., 2., 3.]))
    3
    >>> _vector_size(np.zeros(3))
    3
    >>> _vector_size(np.zeros((3, 1)))
    3
    >>> _vector_size(np.zeros((1, 3)))
    Traceback (most recent call last):
        ...
    ValueError: Cannot treat an ndarray of shape (1, 3) as a vector
    """
    if isinstance(v, Vector):
        return len(v)
    elif type(v) in (array.array, list, tuple, xrange):
        return len(v)
    elif type(v) == np.ndarray:
        if v.ndim == 1 or (v.ndim == 2 and v.shape[1] == 1):
            return len(v)
        else:
            raise ValueError("Cannot treat an ndarray of shape %s as a vector" % str(v.shape))
    elif _have_scipy and scipy.sparse.issparse(v):
        assert v.shape[1] == 1, "Expected column vector"
        return v.shape[0]
    else:
        raise TypeError("Cannot treat type %s as a vector" % type(v))


def _format_float(f, digits=4):
    s = str(round(f, digits))
    if '.' in s:
        s = s[:s.index('.') + 1 + digits]
    return s


def _format_float_list(l):
    return [_format_float(x) for x in l]


def _double_to_long_bits(value):
    if np.isnan(value):
        value = float('nan')
    # pack double into 64 bits, then unpack as long int
    return struct.unpack('Q', struct.pack('d', value))[0]


class VectorUDT(UserDefinedType):
    """
    SQL user-defined type (UDT) for Vector.
    """

    @classmethod
    def sqlType(cls):
        return StructType([
            StructField("type", ByteType(), False),
            StructField("size", IntegerType(), True),
            StructField("indices", ArrayType(IntegerType(), False), True),
            StructField("values", ArrayType(DoubleType(), False), True)])

    @classmethod
    def module(cls):
        return "pyspark.mllib.linalg"

    @classmethod
    def scalaUDT(cls):
        return "org.apache.spark.mllib.linalg.VectorUDT"

    def serialize(self, obj):
        if isinstance(obj, SparseVector):
            indices = [int(i) for i in obj.indices]
            values = [float(v) for v in obj.values]
            return (0, obj.size, indices, values)
        elif isinstance(obj, DenseVector):
            values = [float(v) for v in obj]
            return (1, None, None, values)
        else:
            raise TypeError("cannot serialize %r of type %r" % (obj, type(obj)))

    def deserialize(self, datum):
        assert len(datum) == 4, \
            "VectorUDT.deserialize given row with length %d but requires 4" % len(datum)
        tpe = datum[0]
        if tpe == 0:
            return SparseVector(datum[1], datum[2], datum[3])
        elif tpe == 1:
            return DenseVector(datum[3])
        else:
            raise ValueError("do not recognize type %r" % tpe)

    def simpleString(self):
        return "vector"


class MatrixUDT(UserDefinedType):
    """
    SQL user-defined type (UDT) for Matrix.
    """

    @classmethod
    def sqlType(cls):
        return StructType([
            StructField("type", ByteType(), False),
            StructField("numRows", IntegerType(), False),
            StructField("numCols", IntegerType(), False),
            StructField("colPtrs", ArrayType(IntegerType(), False), True),
            StructField("rowIndices", ArrayType(IntegerType(), False), True),
            StructField("values", ArrayType(DoubleType(), False), True),
            StructField("isTransposed", BooleanType(), False)])

    @classmethod
    def module(cls):
        return "pyspark.mllib.linalg"

    @classmethod
    def scalaUDT(cls):
        return "org.apache.spark.mllib.linalg.MatrixUDT"

    def serialize(self, obj):
        if isinstance(obj, SparseMatrix):
            colPtrs = [int(i) for i in obj.colPtrs]
            rowIndices = [int(i) for i in obj.rowIndices]
            values = [float(v) for v in obj.values]
            return (0, obj.numRows, obj.numCols, colPtrs,
                    rowIndices, values, bool(obj.isTransposed))
        elif isinstance(obj, DenseMatrix):
            values = [float(v) for v in obj.values]
            return (1, obj.numRows, obj.numCols, None, None, values,
                    bool(obj.isTransposed))
        else:
            raise TypeError("cannot serialize type %r" % (type(obj)))

    def deserialize(self, datum):
        assert len(datum) == 7, \
            "MatrixUDT.deserialize given row with length %d but requires 7" % len(datum)
        tpe = datum[0]
        if tpe == 0:
            return SparseMatrix(*datum[1:])
        elif tpe == 1:
            return DenseMatrix(datum[1], datum[2], datum[5], datum[6])
        else:
            raise ValueError("do not recognize type %r" % tpe)

    def simpleString(self):
        return "matrix"


class Vector(object):

    __UDT__ = VectorUDT()

    """
    Abstract class for DenseVector and SparseVector
    """
    def toArray(self):
        """
        Convert the vector into an numpy.ndarray

        :return: numpy.ndarray
        """
        raise NotImplementedError


class DenseVector(Vector):
    """
    A dense vector represented by a value array. We use numpy array for
    storage and arithmetics will be delegated to the underlying numpy
    array.

    >>> v = Vectors.dense([1.0, 2.0])
    >>> u = Vectors.dense([3.0, 4.0])
    >>> v + u
    DenseVector([4.0, 6.0])
    >>> 2 - v
    DenseVector([1.0, 0.0])
    >>> v / 2
    DenseVector([0.5, 1.0])
    >>> v * u
    DenseVector([3.0, 8.0])
    >>> u / v
    DenseVector([3.0, 2.0])
    >>> u % 2
    DenseVector([1.0, 0.0])
    """
    def __init__(self, ar):
        if isinstance(ar, bytes):
            ar = np.frombuffer(ar, dtype=np.float64)
        elif not isinstance(ar, np.ndarray):
            ar = np.array(ar, dtype=np.float64)
        if ar.dtype != np.float64:
            ar = ar.astype(np.float64)
        self.array = ar

    @staticmethod
    def parse(s):
        """
        Parse string representation back into the DenseVector.

        >>> DenseVector.parse(' [ 0.0,1.0,2.0,  3.0]')
        DenseVector([0.0, 1.0, 2.0, 3.0])
        """
        start = s.find('[')
        if start == -1:
            raise ValueError("Array should start with '['.")
        end = s.find(']')
        if end == -1:
            raise ValueError("Array should end with ']'.")
        s = s[start + 1: end]

        try:
            values = [float(val) for val in s.split(',') if val]
        except ValueError:
            raise ValueError("Unable to parse values from %s" % s)
        return DenseVector(values)

    def __reduce__(self):
        return DenseVector, (self.array.tostring(),)

    def numNonzeros(self):
        """
        Number of nonzero elements. This scans all active values and count non zeros
        """
        return np.count_nonzero(self.array)

    def norm(self, p):
        """
        Calculates the norm of a DenseVector.

        >>> a = DenseVector([0, -1, 2, -3])
        >>> a.norm(2)
        3.7...
        >>> a.norm(1)
        6.0
        """
        return np.linalg.norm(self.array, p)

    def dot(self, other):
        """
        Compute the dot product of two Vectors. We support
        (Numpy array, list, SparseVector, or SciPy sparse)
        and a target NumPy array that is either 1- or 2-dimensional.
        Equivalent to calling numpy.dot of the two vectors.

        >>> dense = DenseVector(array.array('d', [1., 2.]))
        >>> dense.dot(dense)
        5.0
        >>> dense.dot(SparseVector(2, [0, 1], [2., 1.]))
        4.0
        >>> dense.dot(range(1, 3))
        5.0
        >>> dense.dot(np.array(range(1, 3)))
        5.0
        >>> dense.dot([1.,])
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        >>> dense.dot(np.reshape([1., 2., 3., 4.], (2, 2), order='F'))
        array([  5.,  11.])
        >>> dense.dot(np.reshape([1., 2., 3.], (3, 1), order='F'))
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        """
        if type(other) == np.ndarray:
            if other.ndim > 1:
                assert len(self) == other.shape[0], "dimension mismatch"
            return np.dot(self.array, other)
        elif _have_scipy and scipy.sparse.issparse(other):
            assert len(self) == other.shape[0], "dimension mismatch"
            return other.transpose().dot(self.toArray())
        else:
            assert len(self) == _vector_size(other), "dimension mismatch"
            if isinstance(other, SparseVector):
                return other.dot(self)
            elif isinstance(other, Vector):
                return np.dot(self.toArray(), other.toArray())
            else:
                return np.dot(self.toArray(), other)

    def squared_distance(self, other):
        """
        Squared distance of two Vectors.

        >>> dense1 = DenseVector(array.array('d', [1., 2.]))
        >>> dense1.squared_distance(dense1)
        0.0
        >>> dense2 = np.array([2., 1.])
        >>> dense1.squared_distance(dense2)
        2.0
        >>> dense3 = [2., 1.]
        >>> dense1.squared_distance(dense3)
        2.0
        >>> sparse1 = SparseVector(2, [0, 1], [2., 1.])
        >>> dense1.squared_distance(sparse1)
        2.0
        >>> dense1.squared_distance([1.,])
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        >>> dense1.squared_distance(SparseVector(1, [0,], [1.,]))
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        """
        assert len(self) == _vector_size(other), "dimension mismatch"
        if isinstance(other, SparseVector):
            return other.squared_distance(self)
        elif _have_scipy and scipy.sparse.issparse(other):
            return _convert_to_vector(other).squared_distance(self)

        if isinstance(other, Vector):
            other = other.toArray()
        elif not isinstance(other, np.ndarray):
            other = np.array(other)
        diff = self.toArray() - other
        return np.dot(diff, diff)

    def toArray(self):
        """
        Returns an numpy.ndarray
        """
        return self.array

    @property
    def values(self):
        """
        Returns a list of values
        """
        return self.array

    def __getitem__(self, item):
        return self.array[item]

    def __len__(self):
        return len(self.array)

    def __str__(self):
        return "[" + ",".join([str(v) for v in self.array]) + "]"

    def __repr__(self):
        return "DenseVector([%s])" % (', '.join(_format_float(i) for i in self.array))

    def __eq__(self, other):
        if isinstance(other, DenseVector):
            return np.array_equal(self.array, other.array)
        elif isinstance(other, SparseVector):
            if len(self) != other.size:
                return False
            return Vectors._equals(list(xrange(len(self))), self.array, other.indices, other.values)
        return False

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        size = len(self)
        result = 31 + size
        nnz = 0
        i = 0
        while i < size and nnz < 128:
            if self.array[i] != 0:
                result = 31 * result + i
                bits = _double_to_long_bits(self.array[i])
                result = 31 * result + (bits ^ (bits >> 32))
                nnz += 1
            i += 1
        return result

    def __getattr__(self, item):
        return getattr(self.array, item)

    def _delegate(op):
        def func(self, other):
            if isinstance(other, DenseVector):
                other = other.array
            return DenseVector(getattr(self.array, op)(other))
        return func

    __neg__ = _delegate("__neg__")
    __add__ = _delegate("__add__")
    __sub__ = _delegate("__sub__")
    __mul__ = _delegate("__mul__")
    __div__ = _delegate("__div__")
    __truediv__ = _delegate("__truediv__")
    __mod__ = _delegate("__mod__")
    __radd__ = _delegate("__radd__")
    __rsub__ = _delegate("__rsub__")
    __rmul__ = _delegate("__rmul__")
    __rdiv__ = _delegate("__rdiv__")
    __rtruediv__ = _delegate("__rtruediv__")
    __rmod__ = _delegate("__rmod__")


class SparseVector(Vector):
    """
    A simple sparse vector class for passing data to MLlib. Users may
    alternatively pass SciPy's {scipy.sparse} data types.
    """
    def __init__(self, size, *args):
        """
        Create a sparse vector, using either a dictionary, a list of
        (index, value) pairs, or two separate arrays of indices and
        values (sorted by index).

        :param size: Size of the vector.
        :param args: Active entries, as a dictionary {index: value, ...},
          a list of tuples [(index, value), ...], or a list of strictly
          increasing indices and a list of corresponding values [index, ...],
          [value, ...]. Inactive entries are treated as zeros.

        >>> SparseVector(4, {1: 1.0, 3: 5.5})
        SparseVector(4, {1: 1.0, 3: 5.5})
        >>> SparseVector(4, [(1, 1.0), (3, 5.5)])
        SparseVector(4, {1: 1.0, 3: 5.5})
        >>> SparseVector(4, [1, 3], [1.0, 5.5])
        SparseVector(4, {1: 1.0, 3: 5.5})
        """
        self.size = int(size)
        """ Size of the vector. """
        assert 1 <= len(args) <= 2, "must pass either 2 or 3 arguments"
        if len(args) == 1:
            pairs = args[0]
            if type(pairs) == dict:
                pairs = pairs.items()
            pairs = sorted(pairs)
            self.indices = np.array([p[0] for p in pairs], dtype=np.int32)
            """ A list of indices corresponding to active entries. """
            self.values = np.array([p[1] for p in pairs], dtype=np.float64)
            """ A list of values corresponding to active entries. """
        else:
            if isinstance(args[0], bytes):
                assert isinstance(args[1], bytes), "values should be string too"
                if args[0]:
                    self.indices = np.frombuffer(args[0], np.int32)
                    self.values = np.frombuffer(args[1], np.float64)
                else:
                    # np.frombuffer() doesn't work well with empty string in older version
                    self.indices = np.array([], dtype=np.int32)
                    self.values = np.array([], dtype=np.float64)
            else:
                self.indices = np.array(args[0], dtype=np.int32)
                self.values = np.array(args[1], dtype=np.float64)
            assert len(self.indices) == len(self.values), "index and value arrays not same length"
            for i in xrange(len(self.indices) - 1):
                if self.indices[i] >= self.indices[i + 1]:
                    raise TypeError(
                        "Indices %s and %s are not strictly increasing"
                        % (self.indices[i], self.indices[i + 1]))

    def numNonzeros(self):
        """
        Number of nonzero elements. This scans all active values and count non zeros.
        """
        return np.count_nonzero(self.values)

    def norm(self, p):
        """
        Calculates the norm of a SparseVector.

        >>> a = SparseVector(4, [0, 1], [3., -4.])
        >>> a.norm(1)
        7.0
        >>> a.norm(2)
        5.0
        """
        return np.linalg.norm(self.values, p)

    def __reduce__(self):
        return (
            SparseVector,
            (self.size, self.indices.tostring(), self.values.tostring()))

    @staticmethod
    def parse(s):
        """
        Parse string representation back into the SparseVector.

        >>> SparseVector.parse(' (4, [0,1 ],[ 4.0,5.0] )')
        SparseVector(4, {0: 4.0, 1: 5.0})
        """
        start = s.find('(')
        if start == -1:
            raise ValueError("Tuple should start with '('")
        end = s.find(')')
        if start == -1:
            raise ValueError("Tuple should end with ')'")
        s = s[start + 1: end].strip()

        size = s[: s.find(',')]
        try:
            size = int(size)
        except ValueError:
            raise ValueError("Cannot parse size %s." % size)

        ind_start = s.find('[')
        if ind_start == -1:
            raise ValueError("Indices array should start with '['.")
        ind_end = s.find(']')
        if ind_end == -1:
            raise ValueError("Indices array should end with ']'")
        new_s = s[ind_start + 1: ind_end]
        ind_list = new_s.split(',')
        try:
            indices = [int(ind) for ind in ind_list if ind]
        except ValueError:
            raise ValueError("Unable to parse indices from %s." % new_s)
        s = s[ind_end + 1:].strip()

        val_start = s.find('[')
        if val_start == -1:
            raise ValueError("Values array should start with '['.")
        val_end = s.find(']')
        if val_end == -1:
            raise ValueError("Values array should end with ']'.")
        val_list = s[val_start + 1: val_end].split(',')
        try:
            values = [float(val) for val in val_list if val]
        except ValueError:
            raise ValueError("Unable to parse values from %s." % s)
        return SparseVector(size, indices, values)

    def dot(self, other):
        """
        Dot product with a SparseVector or 1- or 2-dimensional Numpy array.

        >>> a = SparseVector(4, [1, 3], [3.0, 4.0])
        >>> a.dot(a)
        25.0
        >>> a.dot(array.array('d', [1., 2., 3., 4.]))
        22.0
        >>> b = SparseVector(4, [2], [1.0])
        >>> a.dot(b)
        0.0
        >>> a.dot(np.array([[1, 1], [2, 2], [3, 3], [4, 4]]))
        array([ 22.,  22.])
        >>> a.dot([1., 2., 3.])
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        >>> a.dot(np.array([1., 2.]))
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        >>> a.dot(DenseVector([1., 2.]))
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        >>> a.dot(np.zeros((3, 2)))
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        """

        if isinstance(other, np.ndarray):
            if other.ndim not in [2, 1]:
                raise ValueError("Cannot call dot with %d-dimensional array" % other.ndim)
            assert len(self) == other.shape[0], "dimension mismatch"
            return np.dot(self.values, other[self.indices])

        assert len(self) == _vector_size(other), "dimension mismatch"

        if isinstance(other, DenseVector):
            return np.dot(other.array[self.indices], self.values)

        elif isinstance(other, SparseVector):
            # Find out common indices.
            self_cmind = np.in1d(self.indices, other.indices, assume_unique=True)
            self_values = self.values[self_cmind]
            if self_values.size == 0:
                return 0.0
            else:
                other_cmind = np.in1d(other.indices, self.indices, assume_unique=True)
                return np.dot(self_values, other.values[other_cmind])

        else:
            return self.dot(_convert_to_vector(other))

    def squared_distance(self, other):
        """
        Squared distance from a SparseVector or 1-dimensional NumPy array.

        >>> a = SparseVector(4, [1, 3], [3.0, 4.0])
        >>> a.squared_distance(a)
        0.0
        >>> a.squared_distance(array.array('d', [1., 2., 3., 4.]))
        11.0
        >>> a.squared_distance(np.array([1., 2., 3., 4.]))
        11.0
        >>> b = SparseVector(4, [2], [1.0])
        >>> a.squared_distance(b)
        26.0
        >>> b.squared_distance(a)
        26.0
        >>> b.squared_distance([1., 2.])
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        >>> b.squared_distance(SparseVector(3, [1,], [1.0,]))
        Traceback (most recent call last):
            ...
        AssertionError: dimension mismatch
        """
        assert len(self) == _vector_size(other), "dimension mismatch"

        if isinstance(other, np.ndarray) or isinstance(other, DenseVector):
            if isinstance(other, np.ndarray) and other.ndim != 1:
                raise Exception("Cannot call squared_distance with %d-dimensional array" %
                                other.ndim)
            if isinstance(other, DenseVector):
                other = other.array
            sparse_ind = np.zeros(other.size, dtype=bool)
            sparse_ind[self.indices] = True
            dist = other[sparse_ind] - self.values
            result = np.dot(dist, dist)

            other_ind = other[~sparse_ind]
            result += np.dot(other_ind, other_ind)
            return result

        elif isinstance(other, SparseVector):
            result = 0.0
            i, j = 0, 0
            while i < len(self.indices) and j < len(other.indices):
                if self.indices[i] == other.indices[j]:
                    diff = self.values[i] - other.values[j]
                    result += diff * diff
                    i += 1
                    j += 1
                elif self.indices[i] < other.indices[j]:
                    result += self.values[i] * self.values[i]
                    i += 1
                else:
                    result += other.values[j] * other.values[j]
                    j += 1
            while i < len(self.indices):
                result += self.values[i] * self.values[i]
                i += 1
            while j < len(other.indices):
                result += other.values[j] * other.values[j]
                j += 1
            return result
        else:
            return self.squared_distance(_convert_to_vector(other))

    def toArray(self):
        """
        Returns a copy of this SparseVector as a 1-dimensional NumPy array.
        """
        arr = np.zeros((self.size,), dtype=np.float64)
        arr[self.indices] = self.values
        return arr

    def __len__(self):
        return self.size

    def __str__(self):
        inds = "[" + ",".join([str(i) for i in self.indices]) + "]"
        vals = "[" + ",".join([str(v) for v in self.values]) + "]"
        return "(" + ",".join((str(self.size), inds, vals)) + ")"

    def __repr__(self):
        inds = self.indices
        vals = self.values
        entries = ", ".join(["{0}: {1}".format(inds[i], _format_float(vals[i]))
                             for i in xrange(len(inds))])
        return "SparseVector({0}, {{{1}}})".format(self.size, entries)

    def __eq__(self, other):
        if isinstance(other, SparseVector):
            return other.size == self.size and np.array_equal(other.indices, self.indices) \
                and np.array_equal(other.values, self.values)
        elif isinstance(other, DenseVector):
            if self.size != len(other):
                return False
            return Vectors._equals(self.indices, self.values, list(xrange(len(other))), other.array)
        return False

    def __getitem__(self, index):
        inds = self.indices
        vals = self.values
        if not isinstance(index, int):
            raise TypeError(
                "Indices must be of type integer, got type %s" % type(index))

        if index >= self.size or index < -self.size:
            raise ValueError("Index %d out of bounds." % index)
        if index < 0:
            index += self.size

        if (inds.size == 0) or (index > inds.item(-1)):
            return 0.

        insert_index = np.searchsorted(inds, index)
        row_ind = inds[insert_index]
        if row_ind == index:
            return vals[insert_index]
        return 0.

    def __ne__(self, other):
        return not self.__eq__(other)

    def __hash__(self):
        result = 31 + self.size
        nnz = 0
        i = 0
        while i < len(self.values) and nnz < 128:
            if self.values[i] != 0:
                result = 31 * result + int(self.indices[i])
                bits = _double_to_long_bits(self.values[i])
                result = 31 * result + (bits ^ (bits >> 32))
                nnz += 1
            i += 1
        return result


class Vectors(object):

    """
    Factory methods for working with vectors. Note that dense vectors
    are simply represented as NumPy array objects, so there is no need
    to covert them for use in MLlib. For sparse vectors, the factory
    methods in this class create an MLlib-compatible type, or users
    can pass in SciPy's C{scipy.sparse} column vectors.
    """

    @staticmethod
    def sparse(size, *args):
        """
        Create a sparse vector, using either a dictionary, a list of
        (index, value) pairs, or two separate arrays of indices and
        values (sorted by index).

        :param size: Size of the vector.
        :param args: Non-zero entries, as a dictionary, list of tuples,
                     or two sorted lists containing indices and values.

        >>> Vectors.sparse(4, {1: 1.0, 3: 5.5})
        SparseVector(4, {1: 1.0, 3: 5.5})
        >>> Vectors.sparse(4, [(1, 1.0), (3, 5.5)])
        SparseVector(4, {1: 1.0, 3: 5.5})
        >>> Vectors.sparse(4, [1, 3], [1.0, 5.5])
        SparseVector(4, {1: 1.0, 3: 5.5})
        """
        return SparseVector(size, *args)

    @staticmethod
    def dense(*elements):
        """
        Create a dense vector of 64-bit floats from a Python list or numbers.

        >>> Vectors.dense([1, 2, 3])
        DenseVector([1.0, 2.0, 3.0])
        >>> Vectors.dense(1.0, 2.0)
        DenseVector([1.0, 2.0])
        """
        if len(elements) == 1 and not isinstance(elements[0], (float, int, long)):
            # it's list, numpy.array or other iterable object.
            elements = elements[0]
        return DenseVector(elements)

    @staticmethod
    def stringify(vector):
        """
        Converts a vector into a string, which can be recognized by
        Vectors.parse().

        >>> Vectors.stringify(Vectors.sparse(2, [1], [1.0]))
        '(2,[1],[1.0])'
        >>> Vectors.stringify(Vectors.dense([0.0, 1.0]))
        '[0.0,1.0]'
        """
        return str(vector)

    @staticmethod
    def squared_distance(v1, v2):
        """
        Squared distance between two vectors.
        a and b can be of type SparseVector, DenseVector, np.ndarray
        or array.array.

        >>> a = Vectors.sparse(4, [(0, 1), (3, 4)])
        >>> b = Vectors.dense([2, 5, 4, 1])
        >>> a.squared_distance(b)
        51.0
        """
        v1, v2 = _convert_to_vector(v1), _convert_to_vector(v2)
        return v1.squared_distance(v2)

    @staticmethod
    def norm(vector, p):
        """
        Find norm of the given vector.
        """
        return _convert_to_vector(vector).norm(p)

    @staticmethod
    def parse(s):
        """Parse a string representation back into the Vector.

        >>> Vectors.parse('[2,1,2 ]')
        DenseVector([2.0, 1.0, 2.0])
        >>> Vectors.parse(' ( 100,  [0],  [2])')
        SparseVector(100, {0: 2.0})
        """
        if s.find('(') == -1 and s.find('[') != -1:
            return DenseVector.parse(s)
        elif s.find('(') != -1:
            return SparseVector.parse(s)
        else:
            raise ValueError(
                "Cannot find tokens '[' or '(' from the input string.")

    @staticmethod
    def zeros(size):
        return DenseVector(np.zeros(size))

    @staticmethod
    def _equals(v1_indices, v1_values, v2_indices, v2_values):
        """
        Check equality between sparse/dense vectors,
        v1_indices and v2_indices assume to be strictly increasing.
        """
        v1_size = len(v1_values)
        v2_size = len(v2_values)
        k1 = 0
        k2 = 0
        all_equal = True
        while all_equal:
            while k1 < v1_size and v1_values[k1] == 0:
                k1 += 1
            while k2 < v2_size and v2_values[k2] == 0:
                k2 += 1

            if k1 >= v1_size or k2 >= v2_size:
                return k1 >= v1_size and k2 >= v2_size

            all_equal = v1_indices[k1] == v2_indices[k2] and v1_values[k1] == v2_values[k2]
            k1 += 1
            k2 += 1
        return all_equal


class Matrix(object):

    __UDT__ = MatrixUDT()

    """
    Represents a local matrix.
    """
    def __init__(self, numRows, numCols, isTransposed=False):
        self.numRows = numRows
        self.numCols = numCols
        self.isTransposed = isTransposed

    def toArray(self):
        """
        Returns its elements in a NumPy ndarray.
        """
        raise NotImplementedError

    @staticmethod
    def _convert_to_array(array_like, dtype):
        """
        Convert Matrix attributes which are array-like or buffer to array.
        """
        if isinstance(array_like, bytes):
            return np.frombuffer(array_like, dtype=dtype)
        return np.asarray(array_like, dtype=dtype)


class DenseMatrix(Matrix):
    """
    Column-major dense matrix.
    """
    def __init__(self, numRows, numCols, values, isTransposed=False):
        Matrix.__init__(self, numRows, numCols, isTransposed)
        values = self._convert_to_array(values, np.float64)
        assert len(values) == numRows * numCols
        self.values = values

    def __reduce__(self):
        return DenseMatrix, (
            self.numRows, self.numCols, self.values.tostring(),
            int(self.isTransposed))

    def __str__(self):
        """
        Pretty printing of a DenseMatrix

        >>> dm = DenseMatrix(2, 2, range(4))
        >>> print(dm)
        DenseMatrix([[ 0.,  2.],
                     [ 1.,  3.]])
        >>> dm = DenseMatrix(2, 2, range(4), isTransposed=True)
        >>> print(dm)
        DenseMatrix([[ 0.,  1.],
                     [ 2.,  3.]])
        """
        # Inspired by __repr__ in scipy matrices.
        array_lines = repr(self.toArray()).splitlines()

        # We need to adjust six spaces which is the difference in number
        # of letters between "DenseMatrix" and "array"
        x = '\n'.join([(" " * 6 + line) for line in array_lines[1:]])
        return array_lines[0].replace("array", "DenseMatrix") + "\n" + x

    def __repr__(self):
        """
        Representation of a DenseMatrix

        >>> dm = DenseMatrix(2, 2, range(4))
        >>> dm
        DenseMatrix(2, 2, [0.0, 1.0, 2.0, 3.0], False)
        """
        # If the number of values are less than seventeen then return as it is.
        # Else return first eight values and last eight values.
        if len(self.values) < 17:
            entries = _format_float_list(self.values)
        else:
            entries = (
                _format_float_list(self.values[:8]) +
                ["..."] +
                _format_float_list(self.values[-8:])
            )

        entries = ", ".join(entries)
        return "DenseMatrix({0}, {1}, [{2}], {3})".format(
            self.numRows, self.numCols, entries, self.isTransposed)

    def toArray(self):
        """
        Return an numpy.ndarray

        >>> m = DenseMatrix(2, 2, range(4))
        >>> m.toArray()
        array([[ 0.,  2.],
               [ 1.,  3.]])
        """
        if self.isTransposed:
            return np.asfortranarray(
                self.values.reshape((self.numRows, self.numCols)))
        else:
            return self.values.reshape((self.numRows, self.numCols), order='F')

    def toSparse(self):
        """Convert to SparseMatrix"""
        if self.isTransposed:
            values = np.ravel(self.toArray(), order='F')
        else:
            values = self.values
        indices = np.nonzero(values)[0]
        colCounts = np.bincount(indices // self.numRows)
        colPtrs = np.cumsum(np.hstack(
            (0, colCounts, np.zeros(self.numCols - colCounts.size))))
        values = values[indices]
        rowIndices = indices % self.numRows

        return SparseMatrix(self.numRows, self.numCols, colPtrs, rowIndices, values)

    def __getitem__(self, indices):
        i, j = indices
        if i < 0 or i >= self.numRows:
            raise ValueError("Row index %d is out of range [0, %d)"
                             % (i, self.numRows))
        if j >= self.numCols or j < 0:
            raise ValueError("Column index %d is out of range [0, %d)"
                             % (j, self.numCols))

        if self.isTransposed:
            return self.values[i * self.numCols + j]
        else:
            return self.values[i + j * self.numRows]

    def __eq__(self, other):
        if (not isinstance(other, DenseMatrix) or
                self.numRows != other.numRows or
                self.numCols != other.numCols):
            return False

        self_values = np.ravel(self.toArray(), order='F')
        other_values = np.ravel(other.toArray(), order='F')
        return all(self_values == other_values)


class SparseMatrix(Matrix):
    """Sparse Matrix stored in CSC format."""
    def __init__(self, numRows, numCols, colPtrs, rowIndices, values,
                 isTransposed=False):
        Matrix.__init__(self, numRows, numCols, isTransposed)
        self.colPtrs = self._convert_to_array(colPtrs, np.int32)
        self.rowIndices = self._convert_to_array(rowIndices, np.int32)
        self.values = self._convert_to_array(values, np.float64)

        if self.isTransposed:
            if self.colPtrs.size != numRows + 1:
                raise ValueError("Expected colPtrs of size %d, got %d."
                                 % (numRows + 1, self.colPtrs.size))
        else:
            if self.colPtrs.size != numCols + 1:
                raise ValueError("Expected colPtrs of size %d, got %d."
                                 % (numCols + 1, self.colPtrs.size))
        if self.rowIndices.size != self.values.size:
            raise ValueError("Expected rowIndices of length %d, got %d."
                             % (self.rowIndices.size, self.values.size))

    def __str__(self):
        """
        Pretty printing of a SparseMatrix

        >>> sm1 = SparseMatrix(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4])
        >>> print(sm1)
        2 X 2 CSCMatrix
        (0,0) 2.0
        (1,0) 3.0
        (1,1) 4.0
        >>> sm1 = SparseMatrix(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4], True)
        >>> print(sm1)
        2 X 2 CSRMatrix
        (0,0) 2.0
        (0,1) 3.0
        (1,1) 4.0
        """
        spstr = "{0} X {1} ".format(self.numRows, self.numCols)
        if self.isTransposed:
            spstr += "CSRMatrix\n"
        else:
            spstr += "CSCMatrix\n"

        cur_col = 0
        smlist = []

        # Display first 16 values.
        if len(self.values) <= 16:
            zipindval = zip(self.rowIndices, self.values)
        else:
            zipindval = zip(self.rowIndices[:16], self.values[:16])
        for i, (rowInd, value) in enumerate(zipindval):
            if self.colPtrs[cur_col + 1] <= i:
                cur_col += 1
            if self.isTransposed:
                smlist.append('({0},{1}) {2}'.format(
                    cur_col, rowInd, _format_float(value)))
            else:
                smlist.append('({0},{1}) {2}'.format(
                    rowInd, cur_col, _format_float(value)))
        spstr += "\n".join(smlist)

        if len(self.values) > 16:
            spstr += "\n.." * 2
        return spstr

    def __repr__(self):
        """
        Representation of a SparseMatrix

        >>> sm1 = SparseMatrix(2, 2, [0, 2, 3], [0, 1, 1], [2, 3, 4])
        >>> sm1
        SparseMatrix(2, 2, [0, 2, 3], [0, 1, 1], [2.0, 3.0, 4.0], False)
        """
        rowIndices = list(self.rowIndices)
        colPtrs = list(self.colPtrs)

        if len(self.values) <= 16:
            values = _format_float_list(self.values)

        else:
            values = (
                _format_float_list(self.values[:8]) +
                ["..."] +
                _format_float_list(self.values[-8:])
            )
            rowIndices = rowIndices[:8] + ["..."] + rowIndices[-8:]

        if len(self.colPtrs) > 16:
            colPtrs = colPtrs[:8] + ["..."] + colPtrs[-8:]

        values = ", ".join(values)
        rowIndices = ", ".join([str(ind) for ind in rowIndices])
        colPtrs = ", ".join([str(ptr) for ptr in colPtrs])
        return "SparseMatrix({0}, {1}, [{2}], [{3}], [{4}], {5})".format(
            self.numRows, self.numCols, colPtrs, rowIndices,
            values, self.isTransposed)

    def __reduce__(self):
        return SparseMatrix, (
            self.numRows, self.numCols, self.colPtrs.tostring(),
            self.rowIndices.tostring(), self.values.tostring(),
            int(self.isTransposed))

    def __getitem__(self, indices):
        i, j = indices
        if i < 0 or i >= self.numRows:
            raise ValueError("Row index %d is out of range [0, %d)"
                             % (i, self.numRows))
        if j < 0 or j >= self.numCols:
            raise ValueError("Column index %d is out of range [0, %d)"
                             % (j, self.numCols))

        # If a CSR matrix is given, then the row index should be searched
        # for in ColPtrs, and the column index should be searched for in the
        # corresponding slice obtained from rowIndices.
        if self.isTransposed:
            j, i = i, j

        colStart = self.colPtrs[j]
        colEnd = self.colPtrs[j + 1]
        nz = self.rowIndices[colStart: colEnd]
        ind = np.searchsorted(nz, i) + colStart
        if ind < colEnd and self.rowIndices[ind] == i:
            return self.values[ind]
        else:
            return 0.0

    def toArray(self):
        """
        Return an numpy.ndarray
        """
        A = np.zeros((self.numRows, self.numCols), dtype=np.float64, order='F')
        for k in xrange(self.colPtrs.size - 1):
            startptr = self.colPtrs[k]
            endptr = self.colPtrs[k + 1]
            if self.isTransposed:
                A[k, self.rowIndices[startptr:endptr]] = self.values[startptr:endptr]
            else:
                A[self.rowIndices[startptr:endptr], k] = self.values[startptr:endptr]
        return A

    def toDense(self):
        densevals = np.ravel(self.toArray(), order='F')
        return DenseMatrix(self.numRows, self.numCols, densevals)

    # TODO: More efficient implementation:
    def __eq__(self, other):
        return np.all(self.toArray() == other.toArray())


class Matrices(object):
    @staticmethod
    def dense(numRows, numCols, values):
        """
        Create a DenseMatrix
        """
        return DenseMatrix(numRows, numCols, values)

    @staticmethod
    def sparse(numRows, numCols, colPtrs, rowIndices, values):
        """
        Create a SparseMatrix
        """
        return SparseMatrix(numRows, numCols, colPtrs, rowIndices, values)


def _test():
    import doctest
    (failure_count, test_count) = doctest.testmod(optionflags=doctest.ELLIPSIS)
    if failure_count:
        exit(-1)

if __name__ == "__main__":
    _test()