aboutsummaryrefslogtreecommitdiff
path: root/python/pyspark/mllib/linalg/distributed.py
blob: af34ce346b0ca2c16a844839ad8091b7dbad0b4d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
Package for distributed linear algebra.
"""

import sys

if sys.version >= '3':
    long = int

from py4j.java_gateway import JavaObject

from pyspark import RDD, since
from pyspark.mllib.common import callMLlibFunc, JavaModelWrapper
from pyspark.mllib.linalg import _convert_to_vector, Matrix, QRDecomposition
from pyspark.mllib.stat import MultivariateStatisticalSummary
from pyspark.storagelevel import StorageLevel


__all__ = ['DistributedMatrix', 'RowMatrix', 'IndexedRow',
           'IndexedRowMatrix', 'MatrixEntry', 'CoordinateMatrix',
           'BlockMatrix']


class DistributedMatrix(object):
    """
    .. note:: Experimental

    Represents a distributively stored matrix backed by one or
    more RDDs.

    """
    def numRows(self):
        """Get or compute the number of rows."""
        raise NotImplementedError

    def numCols(self):
        """Get or compute the number of cols."""
        raise NotImplementedError


class RowMatrix(DistributedMatrix):
    """
    .. note:: Experimental

    Represents a row-oriented distributed Matrix with no meaningful
    row indices.

    :param rows: An RDD of vectors.
    :param numRows: Number of rows in the matrix. A non-positive
                    value means unknown, at which point the number
                    of rows will be determined by the number of
                    records in the `rows` RDD.
    :param numCols: Number of columns in the matrix. A non-positive
                    value means unknown, at which point the number
                    of columns will be determined by the size of
                    the first row.
    """
    def __init__(self, rows, numRows=0, numCols=0):
        """
        Note: This docstring is not shown publicly.

        Create a wrapper over a Java RowMatrix.

        Publicly, we require that `rows` be an RDD.  However, for
        internal usage, `rows` can also be a Java RowMatrix
        object, in which case we can wrap it directly.  This
        assists in clean matrix conversions.

        >>> rows = sc.parallelize([[1, 2, 3], [4, 5, 6]])
        >>> mat = RowMatrix(rows)

        >>> mat_diff = RowMatrix(rows)
        >>> (mat_diff._java_matrix_wrapper._java_model ==
        ...  mat._java_matrix_wrapper._java_model)
        False

        >>> mat_same = RowMatrix(mat._java_matrix_wrapper._java_model)
        >>> (mat_same._java_matrix_wrapper._java_model ==
        ...  mat._java_matrix_wrapper._java_model)
        True
        """
        if isinstance(rows, RDD):
            rows = rows.map(_convert_to_vector)
            java_matrix = callMLlibFunc("createRowMatrix", rows, long(numRows), int(numCols))
        elif (isinstance(rows, JavaObject)
              and rows.getClass().getSimpleName() == "RowMatrix"):
            java_matrix = rows
        else:
            raise TypeError("rows should be an RDD of vectors, got %s" % type(rows))

        self._java_matrix_wrapper = JavaModelWrapper(java_matrix)

    @property
    def rows(self):
        """
        Rows of the RowMatrix stored as an RDD of vectors.

        >>> mat = RowMatrix(sc.parallelize([[1, 2, 3], [4, 5, 6]]))
        >>> rows = mat.rows
        >>> rows.first()
        DenseVector([1.0, 2.0, 3.0])
        """
        return self._java_matrix_wrapper.call("rows")

    def numRows(self):
        """
        Get or compute the number of rows.

        >>> rows = sc.parallelize([[1, 2, 3], [4, 5, 6],
        ...                        [7, 8, 9], [10, 11, 12]])

        >>> mat = RowMatrix(rows)
        >>> print(mat.numRows())
        4

        >>> mat = RowMatrix(rows, 7, 6)
        >>> print(mat.numRows())
        7
        """
        return self._java_matrix_wrapper.call("numRows")

    def numCols(self):
        """
        Get or compute the number of cols.

        >>> rows = sc.parallelize([[1, 2, 3], [4, 5, 6],
        ...                        [7, 8, 9], [10, 11, 12]])

        >>> mat = RowMatrix(rows)
        >>> print(mat.numCols())
        3

        >>> mat = RowMatrix(rows, 7, 6)
        >>> print(mat.numCols())
        6
        """
        return self._java_matrix_wrapper.call("numCols")

    @since('2.0.0')
    def computeColumnSummaryStatistics(self):
        """
        Computes column-wise summary statistics.

        :return: :class:`MultivariateStatisticalSummary` object
                 containing column-wise summary statistics.

        >>> rows = sc.parallelize([[1, 2, 3], [4, 5, 6]])
        >>> mat = RowMatrix(rows)

        >>> colStats = mat.computeColumnSummaryStatistics()
        >>> colStats.mean()
        array([ 2.5,  3.5,  4.5])
        """
        java_col_stats = self._java_matrix_wrapper.call("computeColumnSummaryStatistics")
        return MultivariateStatisticalSummary(java_col_stats)

    @since('2.0.0')
    def computeCovariance(self):
        """
        Computes the covariance matrix, treating each row as an
        observation. Note that this cannot be computed on matrices
        with more than 65535 columns.

        >>> rows = sc.parallelize([[1, 2], [2, 1]])
        >>> mat = RowMatrix(rows)

        >>> mat.computeCovariance()
        DenseMatrix(2, 2, [0.5, -0.5, -0.5, 0.5], 0)
        """
        return self._java_matrix_wrapper.call("computeCovariance")

    @since('2.0.0')
    def computeGramianMatrix(self):
        """
        Computes the Gramian matrix `A^T A`. Note that this cannot be
        computed on matrices with more than 65535 columns.

        >>> rows = sc.parallelize([[1, 2, 3], [4, 5, 6]])
        >>> mat = RowMatrix(rows)

        >>> mat.computeGramianMatrix()
        DenseMatrix(3, 3, [17.0, 22.0, 27.0, 22.0, 29.0, 36.0, 27.0, 36.0, 45.0], 0)
        """
        return self._java_matrix_wrapper.call("computeGramianMatrix")

    @since('2.0.0')
    def columnSimilarities(self, threshold=0.0):
        """
        Compute similarities between columns of this matrix.

        The threshold parameter is a trade-off knob between estimate
        quality and computational cost.

        The default threshold setting of 0 guarantees deterministically
        correct results, but uses the brute-force approach of computing
        normalized dot products.

        Setting the threshold to positive values uses a sampling
        approach and incurs strictly less computational cost than the
        brute-force approach. However the similarities computed will
        be estimates.

        The sampling guarantees relative-error correctness for those
        pairs of columns that have similarity greater than the given
        similarity threshold.

        To describe the guarantee, we set some notation:
            * Let A be the smallest in magnitude non-zero element of
              this matrix.
            * Let B be the largest in magnitude non-zero element of
              this matrix.
            * Let L be the maximum number of non-zeros per row.

        For example, for {0,1} matrices: A=B=1.
        Another example, for the Netflix matrix: A=1, B=5

        For those column pairs that are above the threshold, the
        computed similarity is correct to within 20% relative error
        with probability at least 1 - (0.981)^10/B^

        The shuffle size is bounded by the *smaller* of the following
        two expressions:

            * O(n log(n) L / (threshold * A))
            * O(m L^2^)

        The latter is the cost of the brute-force approach, so for
        non-zero thresholds, the cost is always cheaper than the
        brute-force approach.

        :param: threshold: Set to 0 for deterministic guaranteed
                           correctness. Similarities above this
                           threshold are estimated with the cost vs
                           estimate quality trade-off described above.
        :return: An n x n sparse upper-triangular CoordinateMatrix of
                 cosine similarities between columns of this matrix.

        >>> rows = sc.parallelize([[1, 2], [1, 5]])
        >>> mat = RowMatrix(rows)

        >>> sims = mat.columnSimilarities()
        >>> sims.entries.first().value
        0.91914503...
        """
        java_sims_mat = self._java_matrix_wrapper.call("columnSimilarities", float(threshold))
        return CoordinateMatrix(java_sims_mat)

    @since('2.0.0')
    def tallSkinnyQR(self, computeQ=False):
        """
        Compute the QR decomposition of this RowMatrix.

        The implementation is designed to optimize the QR decomposition
        (factorization) for the RowMatrix of a tall and skinny shape.

        Reference:
         Paul G. Constantine, David F. Gleich. "Tall and skinny QR
         factorizations in MapReduce architectures"
         ([[http://dx.doi.org/10.1145/1996092.1996103]])

        :param: computeQ: whether to computeQ
        :return: QRDecomposition(Q: RowMatrix, R: Matrix), where
                 Q = None if computeQ = false.

        >>> rows = sc.parallelize([[3, -6], [4, -8], [0, 1]])
        >>> mat = RowMatrix(rows)
        >>> decomp = mat.tallSkinnyQR(True)
        >>> Q = decomp.Q
        >>> R = decomp.R

        >>> # Test with absolute values
        >>> absQRows = Q.rows.map(lambda row: abs(row.toArray()).tolist())
        >>> absQRows.collect()
        [[0.6..., 0.0], [0.8..., 0.0], [0.0, 1.0]]

        >>> # Test with absolute values
        >>> abs(R.toArray()).tolist()
        [[5.0, 10.0], [0.0, 1.0]]
        """
        decomp = JavaModelWrapper(self._java_matrix_wrapper.call("tallSkinnyQR", computeQ))
        if computeQ:
            java_Q = decomp.call("Q")
            Q = RowMatrix(java_Q)
        else:
            Q = None
        R = decomp.call("R")
        return QRDecomposition(Q, R)


class IndexedRow(object):
    """
    .. note:: Experimental

    Represents a row of an IndexedRowMatrix.

    Just a wrapper over a (long, vector) tuple.

    :param index: The index for the given row.
    :param vector: The row in the matrix at the given index.
    """
    def __init__(self, index, vector):
        self.index = long(index)
        self.vector = _convert_to_vector(vector)

    def __repr__(self):
        return "IndexedRow(%s, %s)" % (self.index, self.vector)


def _convert_to_indexed_row(row):
    if isinstance(row, IndexedRow):
        return row
    elif isinstance(row, tuple) and len(row) == 2:
        return IndexedRow(*row)
    else:
        raise TypeError("Cannot convert type %s into IndexedRow" % type(row))


class IndexedRowMatrix(DistributedMatrix):
    """
    .. note:: Experimental

    Represents a row-oriented distributed Matrix with indexed rows.

    :param rows: An RDD of IndexedRows or (long, vector) tuples.
    :param numRows: Number of rows in the matrix. A non-positive
                    value means unknown, at which point the number
                    of rows will be determined by the max row
                    index plus one.
    :param numCols: Number of columns in the matrix. A non-positive
                    value means unknown, at which point the number
                    of columns will be determined by the size of
                    the first row.
    """
    def __init__(self, rows, numRows=0, numCols=0):
        """
        Note: This docstring is not shown publicly.

        Create a wrapper over a Java IndexedRowMatrix.

        Publicly, we require that `rows` be an RDD.  However, for
        internal usage, `rows` can also be a Java IndexedRowMatrix
        object, in which case we can wrap it directly.  This
        assists in clean matrix conversions.

        >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]),
        ...                        IndexedRow(1, [4, 5, 6])])
        >>> mat = IndexedRowMatrix(rows)

        >>> mat_diff = IndexedRowMatrix(rows)
        >>> (mat_diff._java_matrix_wrapper._java_model ==
        ...  mat._java_matrix_wrapper._java_model)
        False

        >>> mat_same = IndexedRowMatrix(mat._java_matrix_wrapper._java_model)
        >>> (mat_same._java_matrix_wrapper._java_model ==
        ...  mat._java_matrix_wrapper._java_model)
        True
        """
        if isinstance(rows, RDD):
            rows = rows.map(_convert_to_indexed_row)
            # We use DataFrames for serialization of IndexedRows from
            # Python, so first convert the RDD to a DataFrame on this
            # side. This will convert each IndexedRow to a Row
            # containing the 'index' and 'vector' values, which can
            # both be easily serialized.  We will convert back to
            # IndexedRows on the Scala side.
            java_matrix = callMLlibFunc("createIndexedRowMatrix", rows.toDF(),
                                        long(numRows), int(numCols))
        elif (isinstance(rows, JavaObject)
              and rows.getClass().getSimpleName() == "IndexedRowMatrix"):
            java_matrix = rows
        else:
            raise TypeError("rows should be an RDD of IndexedRows or (long, vector) tuples, "
                            "got %s" % type(rows))

        self._java_matrix_wrapper = JavaModelWrapper(java_matrix)

    @property
    def rows(self):
        """
        Rows of the IndexedRowMatrix stored as an RDD of IndexedRows.

        >>> mat = IndexedRowMatrix(sc.parallelize([IndexedRow(0, [1, 2, 3]),
        ...                                        IndexedRow(1, [4, 5, 6])]))
        >>> rows = mat.rows
        >>> rows.first()
        IndexedRow(0, [1.0,2.0,3.0])
        """
        # We use DataFrames for serialization of IndexedRows from
        # Java, so we first convert the RDD of rows to a DataFrame
        # on the Scala/Java side. Then we map each Row in the
        # DataFrame back to an IndexedRow on this side.
        rows_df = callMLlibFunc("getIndexedRows", self._java_matrix_wrapper._java_model)
        rows = rows_df.rdd.map(lambda row: IndexedRow(row[0], row[1]))
        return rows

    def numRows(self):
        """
        Get or compute the number of rows.

        >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]),
        ...                        IndexedRow(1, [4, 5, 6]),
        ...                        IndexedRow(2, [7, 8, 9]),
        ...                        IndexedRow(3, [10, 11, 12])])

        >>> mat = IndexedRowMatrix(rows)
        >>> print(mat.numRows())
        4

        >>> mat = IndexedRowMatrix(rows, 7, 6)
        >>> print(mat.numRows())
        7
        """
        return self._java_matrix_wrapper.call("numRows")

    def numCols(self):
        """
        Get or compute the number of cols.

        >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]),
        ...                        IndexedRow(1, [4, 5, 6]),
        ...                        IndexedRow(2, [7, 8, 9]),
        ...                        IndexedRow(3, [10, 11, 12])])

        >>> mat = IndexedRowMatrix(rows)
        >>> print(mat.numCols())
        3

        >>> mat = IndexedRowMatrix(rows, 7, 6)
        >>> print(mat.numCols())
        6
        """
        return self._java_matrix_wrapper.call("numCols")

    def columnSimilarities(self):
        """
        Compute all cosine similarities between columns.

        >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]),
        ...                        IndexedRow(6, [4, 5, 6])])
        >>> mat = IndexedRowMatrix(rows)
        >>> cs = mat.columnSimilarities()
        >>> print(cs.numCols())
        3
        """
        java_coordinate_matrix = self._java_matrix_wrapper.call("columnSimilarities")
        return CoordinateMatrix(java_coordinate_matrix)

    @since('2.0.0')
    def computeGramianMatrix(self):
        """
        Computes the Gramian matrix `A^T A`. Note that this cannot be
        computed on matrices with more than 65535 columns.

        >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]),
        ...                        IndexedRow(1, [4, 5, 6])])
        >>> mat = IndexedRowMatrix(rows)

        >>> mat.computeGramianMatrix()
        DenseMatrix(3, 3, [17.0, 22.0, 27.0, 22.0, 29.0, 36.0, 27.0, 36.0, 45.0], 0)
        """
        return self._java_matrix_wrapper.call("computeGramianMatrix")

    def toRowMatrix(self):
        """
        Convert this matrix to a RowMatrix.

        >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]),
        ...                        IndexedRow(6, [4, 5, 6])])
        >>> mat = IndexedRowMatrix(rows).toRowMatrix()
        >>> mat.rows.collect()
        [DenseVector([1.0, 2.0, 3.0]), DenseVector([4.0, 5.0, 6.0])]
        """
        java_row_matrix = self._java_matrix_wrapper.call("toRowMatrix")
        return RowMatrix(java_row_matrix)

    def toCoordinateMatrix(self):
        """
        Convert this matrix to a CoordinateMatrix.

        >>> rows = sc.parallelize([IndexedRow(0, [1, 0]),
        ...                        IndexedRow(6, [0, 5])])
        >>> mat = IndexedRowMatrix(rows).toCoordinateMatrix()
        >>> mat.entries.take(3)
        [MatrixEntry(0, 0, 1.0), MatrixEntry(0, 1, 0.0), MatrixEntry(6, 0, 0.0)]
        """
        java_coordinate_matrix = self._java_matrix_wrapper.call("toCoordinateMatrix")
        return CoordinateMatrix(java_coordinate_matrix)

    def toBlockMatrix(self, rowsPerBlock=1024, colsPerBlock=1024):
        """
        Convert this matrix to a BlockMatrix.

        :param rowsPerBlock: Number of rows that make up each block.
                             The blocks forming the final rows are not
                             required to have the given number of rows.
        :param colsPerBlock: Number of columns that make up each block.
                             The blocks forming the final columns are not
                             required to have the given number of columns.

        >>> rows = sc.parallelize([IndexedRow(0, [1, 2, 3]),
        ...                        IndexedRow(6, [4, 5, 6])])
        >>> mat = IndexedRowMatrix(rows).toBlockMatrix()

        >>> # This IndexedRowMatrix will have 7 effective rows, due to
        >>> # the highest row index being 6, and the ensuing
        >>> # BlockMatrix will have 7 rows as well.
        >>> print(mat.numRows())
        7

        >>> print(mat.numCols())
        3
        """
        java_block_matrix = self._java_matrix_wrapper.call("toBlockMatrix",
                                                           rowsPerBlock,
                                                           colsPerBlock)
        return BlockMatrix(java_block_matrix, rowsPerBlock, colsPerBlock)


class MatrixEntry(object):
    """
    .. note:: Experimental

    Represents an entry of a CoordinateMatrix.

    Just a wrapper over a (long, long, float) tuple.

    :param i: The row index of the matrix.
    :param j: The column index of the matrix.
    :param value: The (i, j)th entry of the matrix, as a float.
    """
    def __init__(self, i, j, value):
        self.i = long(i)
        self.j = long(j)
        self.value = float(value)

    def __repr__(self):
        return "MatrixEntry(%s, %s, %s)" % (self.i, self.j, self.value)


def _convert_to_matrix_entry(entry):
    if isinstance(entry, MatrixEntry):
        return entry
    elif isinstance(entry, tuple) and len(entry) == 3:
        return MatrixEntry(*entry)
    else:
        raise TypeError("Cannot convert type %s into MatrixEntry" % type(entry))


class CoordinateMatrix(DistributedMatrix):
    """
    .. note:: Experimental

    Represents a matrix in coordinate format.

    :param entries: An RDD of MatrixEntry inputs or
                    (long, long, float) tuples.
    :param numRows: Number of rows in the matrix. A non-positive
                    value means unknown, at which point the number
                    of rows will be determined by the max row
                    index plus one.
    :param numCols: Number of columns in the matrix. A non-positive
                    value means unknown, at which point the number
                    of columns will be determined by the max row
                    index plus one.
    """
    def __init__(self, entries, numRows=0, numCols=0):
        """
        Note: This docstring is not shown publicly.

        Create a wrapper over a Java CoordinateMatrix.

        Publicly, we require that `rows` be an RDD.  However, for
        internal usage, `rows` can also be a Java CoordinateMatrix
        object, in which case we can wrap it directly.  This
        assists in clean matrix conversions.

        >>> entries = sc.parallelize([MatrixEntry(0, 0, 1.2),
        ...                           MatrixEntry(6, 4, 2.1)])
        >>> mat = CoordinateMatrix(entries)

        >>> mat_diff = CoordinateMatrix(entries)
        >>> (mat_diff._java_matrix_wrapper._java_model ==
        ...  mat._java_matrix_wrapper._java_model)
        False

        >>> mat_same = CoordinateMatrix(mat._java_matrix_wrapper._java_model)
        >>> (mat_same._java_matrix_wrapper._java_model ==
        ...  mat._java_matrix_wrapper._java_model)
        True
        """
        if isinstance(entries, RDD):
            entries = entries.map(_convert_to_matrix_entry)
            # We use DataFrames for serialization of MatrixEntry entries
            # from Python, so first convert the RDD to a DataFrame on
            # this side. This will convert each MatrixEntry to a Row
            # containing the 'i', 'j', and 'value' values, which can
            # each be easily serialized. We will convert back to
            # MatrixEntry inputs on the Scala side.
            java_matrix = callMLlibFunc("createCoordinateMatrix", entries.toDF(),
                                        long(numRows), long(numCols))
        elif (isinstance(entries, JavaObject)
              and entries.getClass().getSimpleName() == "CoordinateMatrix"):
            java_matrix = entries
        else:
            raise TypeError("entries should be an RDD of MatrixEntry entries or "
                            "(long, long, float) tuples, got %s" % type(entries))

        self._java_matrix_wrapper = JavaModelWrapper(java_matrix)

    @property
    def entries(self):
        """
        Entries of the CoordinateMatrix stored as an RDD of
        MatrixEntries.

        >>> mat = CoordinateMatrix(sc.parallelize([MatrixEntry(0, 0, 1.2),
        ...                                        MatrixEntry(6, 4, 2.1)]))
        >>> entries = mat.entries
        >>> entries.first()
        MatrixEntry(0, 0, 1.2)
        """
        # We use DataFrames for serialization of MatrixEntry entries
        # from Java, so we first convert the RDD of entries to a
        # DataFrame on the Scala/Java side. Then we map each Row in
        # the DataFrame back to a MatrixEntry on this side.
        entries_df = callMLlibFunc("getMatrixEntries", self._java_matrix_wrapper._java_model)
        entries = entries_df.rdd.map(lambda row: MatrixEntry(row[0], row[1], row[2]))
        return entries

    def numRows(self):
        """
        Get or compute the number of rows.

        >>> entries = sc.parallelize([MatrixEntry(0, 0, 1.2),
        ...                           MatrixEntry(1, 0, 2),
        ...                           MatrixEntry(2, 1, 3.7)])

        >>> mat = CoordinateMatrix(entries)
        >>> print(mat.numRows())
        3

        >>> mat = CoordinateMatrix(entries, 7, 6)
        >>> print(mat.numRows())
        7
        """
        return self._java_matrix_wrapper.call("numRows")

    def numCols(self):
        """
        Get or compute the number of cols.

        >>> entries = sc.parallelize([MatrixEntry(0, 0, 1.2),
        ...                           MatrixEntry(1, 0, 2),
        ...                           MatrixEntry(2, 1, 3.7)])

        >>> mat = CoordinateMatrix(entries)
        >>> print(mat.numCols())
        2

        >>> mat = CoordinateMatrix(entries, 7, 6)
        >>> print(mat.numCols())
        6
        """
        return self._java_matrix_wrapper.call("numCols")

    @since('2.0.0')
    def transpose(self):
        """
        Transpose this CoordinateMatrix.

        >>> entries = sc.parallelize([MatrixEntry(0, 0, 1.2),
        ...                           MatrixEntry(1, 0, 2),
        ...                           MatrixEntry(2, 1, 3.7)])
        >>> mat = CoordinateMatrix(entries)
        >>> mat_transposed = mat.transpose()

        >>> print(mat_transposed.numRows())
        2

        >>> print(mat_transposed.numCols())
        3
        """
        java_transposed_matrix = self._java_matrix_wrapper.call("transpose")
        return CoordinateMatrix(java_transposed_matrix)

    def toRowMatrix(self):
        """
        Convert this matrix to a RowMatrix.

        >>> entries = sc.parallelize([MatrixEntry(0, 0, 1.2),
        ...                           MatrixEntry(6, 4, 2.1)])
        >>> mat = CoordinateMatrix(entries).toRowMatrix()

        >>> # This CoordinateMatrix will have 7 effective rows, due to
        >>> # the highest row index being 6, but the ensuing RowMatrix
        >>> # will only have 2 rows since there are only entries on 2
        >>> # unique rows.
        >>> print(mat.numRows())
        2

        >>> # This CoordinateMatrix will have 5 columns, due to the
        >>> # highest column index being 4, and the ensuing RowMatrix
        >>> # will have 5 columns as well.
        >>> print(mat.numCols())
        5
        """
        java_row_matrix = self._java_matrix_wrapper.call("toRowMatrix")
        return RowMatrix(java_row_matrix)

    def toIndexedRowMatrix(self):
        """
        Convert this matrix to an IndexedRowMatrix.

        >>> entries = sc.parallelize([MatrixEntry(0, 0, 1.2),
        ...                           MatrixEntry(6, 4, 2.1)])
        >>> mat = CoordinateMatrix(entries).toIndexedRowMatrix()

        >>> # This CoordinateMatrix will have 7 effective rows, due to
        >>> # the highest row index being 6, and the ensuing
        >>> # IndexedRowMatrix will have 7 rows as well.
        >>> print(mat.numRows())
        7

        >>> # This CoordinateMatrix will have 5 columns, due to the
        >>> # highest column index being 4, and the ensuing
        >>> # IndexedRowMatrix will have 5 columns as well.
        >>> print(mat.numCols())
        5
        """
        java_indexed_row_matrix = self._java_matrix_wrapper.call("toIndexedRowMatrix")
        return IndexedRowMatrix(java_indexed_row_matrix)

    def toBlockMatrix(self, rowsPerBlock=1024, colsPerBlock=1024):
        """
        Convert this matrix to a BlockMatrix.

        :param rowsPerBlock: Number of rows that make up each block.
                             The blocks forming the final rows are not
                             required to have the given number of rows.
        :param colsPerBlock: Number of columns that make up each block.
                             The blocks forming the final columns are not
                             required to have the given number of columns.

        >>> entries = sc.parallelize([MatrixEntry(0, 0, 1.2),
        ...                           MatrixEntry(6, 4, 2.1)])
        >>> mat = CoordinateMatrix(entries).toBlockMatrix()

        >>> # This CoordinateMatrix will have 7 effective rows, due to
        >>> # the highest row index being 6, and the ensuing
        >>> # BlockMatrix will have 7 rows as well.
        >>> print(mat.numRows())
        7

        >>> # This CoordinateMatrix will have 5 columns, due to the
        >>> # highest column index being 4, and the ensuing
        >>> # BlockMatrix will have 5 columns as well.
        >>> print(mat.numCols())
        5
        """
        java_block_matrix = self._java_matrix_wrapper.call("toBlockMatrix",
                                                           rowsPerBlock,
                                                           colsPerBlock)
        return BlockMatrix(java_block_matrix, rowsPerBlock, colsPerBlock)


def _convert_to_matrix_block_tuple(block):
    if (isinstance(block, tuple) and len(block) == 2
            and isinstance(block[0], tuple) and len(block[0]) == 2
            and isinstance(block[1], Matrix)):
        blockRowIndex = int(block[0][0])
        blockColIndex = int(block[0][1])
        subMatrix = block[1]
        return ((blockRowIndex, blockColIndex), subMatrix)
    else:
        raise TypeError("Cannot convert type %s into a sub-matrix block tuple" % type(block))


class BlockMatrix(DistributedMatrix):
    """
    .. note:: Experimental

    Represents a distributed matrix in blocks of local matrices.

    :param blocks: An RDD of sub-matrix blocks
                   ((blockRowIndex, blockColIndex), sub-matrix) that
                   form this distributed matrix. If multiple blocks
                   with the same index exist, the results for
                   operations like add and multiply will be
                   unpredictable.
    :param rowsPerBlock: Number of rows that make up each block.
                         The blocks forming the final rows are not
                         required to have the given number of rows.
    :param colsPerBlock: Number of columns that make up each block.
                         The blocks forming the final columns are not
                         required to have the given number of columns.
    :param numRows: Number of rows of this matrix. If the supplied
                    value is less than or equal to zero, the number
                    of rows will be calculated when `numRows` is
                    invoked.
    :param numCols: Number of columns of this matrix. If the supplied
                    value is less than or equal to zero, the number
                    of columns will be calculated when `numCols` is
                    invoked.
    """
    def __init__(self, blocks, rowsPerBlock, colsPerBlock, numRows=0, numCols=0):
        """
        Note: This docstring is not shown publicly.

        Create a wrapper over a Java BlockMatrix.

        Publicly, we require that `blocks` be an RDD.  However, for
        internal usage, `blocks` can also be a Java BlockMatrix
        object, in which case we can wrap it directly.  This
        assists in clean matrix conversions.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])
        >>> mat = BlockMatrix(blocks, 3, 2)

        >>> mat_diff = BlockMatrix(blocks, 3, 2)
        >>> (mat_diff._java_matrix_wrapper._java_model ==
        ...  mat._java_matrix_wrapper._java_model)
        False

        >>> mat_same = BlockMatrix(mat._java_matrix_wrapper._java_model, 3, 2)
        >>> (mat_same._java_matrix_wrapper._java_model ==
        ...  mat._java_matrix_wrapper._java_model)
        True
        """
        if isinstance(blocks, RDD):
            blocks = blocks.map(_convert_to_matrix_block_tuple)
            # We use DataFrames for serialization of sub-matrix blocks
            # from Python, so first convert the RDD to a DataFrame on
            # this side. This will convert each sub-matrix block
            # tuple to a Row containing the 'blockRowIndex',
            # 'blockColIndex', and 'subMatrix' values, which can
            # each be easily serialized.  We will convert back to
            # ((blockRowIndex, blockColIndex), sub-matrix) tuples on
            # the Scala side.
            java_matrix = callMLlibFunc("createBlockMatrix", blocks.toDF(),
                                        int(rowsPerBlock), int(colsPerBlock),
                                        long(numRows), long(numCols))
        elif (isinstance(blocks, JavaObject)
              and blocks.getClass().getSimpleName() == "BlockMatrix"):
            java_matrix = blocks
        else:
            raise TypeError("blocks should be an RDD of sub-matrix blocks as "
                            "((int, int), matrix) tuples, got %s" % type(blocks))

        self._java_matrix_wrapper = JavaModelWrapper(java_matrix)

    @property
    def blocks(self):
        """
        The RDD of sub-matrix blocks
        ((blockRowIndex, blockColIndex), sub-matrix) that form this
        distributed matrix.

        >>> mat = BlockMatrix(
        ...     sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                     ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))]), 3, 2)
        >>> blocks = mat.blocks
        >>> blocks.first()
        ((0, 0), DenseMatrix(3, 2, [1.0, 2.0, 3.0, 4.0, 5.0, 6.0], 0))

        """
        # We use DataFrames for serialization of sub-matrix blocks
        # from Java, so we first convert the RDD of blocks to a
        # DataFrame on the Scala/Java side. Then we map each Row in
        # the DataFrame back to a sub-matrix block on this side.
        blocks_df = callMLlibFunc("getMatrixBlocks", self._java_matrix_wrapper._java_model)
        blocks = blocks_df.rdd.map(lambda row: ((row[0][0], row[0][1]), row[1]))
        return blocks

    @property
    def rowsPerBlock(self):
        """
        Number of rows that make up each block.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])
        >>> mat = BlockMatrix(blocks, 3, 2)
        >>> mat.rowsPerBlock
        3
        """
        return self._java_matrix_wrapper.call("rowsPerBlock")

    @property
    def colsPerBlock(self):
        """
        Number of columns that make up each block.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])
        >>> mat = BlockMatrix(blocks, 3, 2)
        >>> mat.colsPerBlock
        2
        """
        return self._java_matrix_wrapper.call("colsPerBlock")

    @property
    def numRowBlocks(self):
        """
        Number of rows of blocks in the BlockMatrix.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])
        >>> mat = BlockMatrix(blocks, 3, 2)
        >>> mat.numRowBlocks
        2
        """
        return self._java_matrix_wrapper.call("numRowBlocks")

    @property
    def numColBlocks(self):
        """
        Number of columns of blocks in the BlockMatrix.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])
        >>> mat = BlockMatrix(blocks, 3, 2)
        >>> mat.numColBlocks
        1
        """
        return self._java_matrix_wrapper.call("numColBlocks")

    def numRows(self):
        """
        Get or compute the number of rows.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])

        >>> mat = BlockMatrix(blocks, 3, 2)
        >>> print(mat.numRows())
        6

        >>> mat = BlockMatrix(blocks, 3, 2, 7, 6)
        >>> print(mat.numRows())
        7
        """
        return self._java_matrix_wrapper.call("numRows")

    def numCols(self):
        """
        Get or compute the number of cols.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])

        >>> mat = BlockMatrix(blocks, 3, 2)
        >>> print(mat.numCols())
        2

        >>> mat = BlockMatrix(blocks, 3, 2, 7, 6)
        >>> print(mat.numCols())
        6
        """
        return self._java_matrix_wrapper.call("numCols")

    @since('2.0.0')
    def cache(self):
        """
        Caches the underlying RDD.
        """
        self._java_matrix_wrapper.call("cache")
        return self

    @since('2.0.0')
    def persist(self, storageLevel):
        """
        Persists the underlying RDD with the specified storage level.
        """
        if not isinstance(storageLevel, StorageLevel):
            raise TypeError("`storageLevel` should be a StorageLevel, got %s" % type(storageLevel))
        javaStorageLevel = self._java_matrix_wrapper._sc._getJavaStorageLevel(storageLevel)
        self._java_matrix_wrapper.call("persist", javaStorageLevel)
        return self

    @since('2.0.0')
    def validate(self):
        """
        Validates the block matrix info against the matrix data (`blocks`)
        and throws an exception if any error is found.
        """
        self._java_matrix_wrapper.call("validate")

    def add(self, other):
        """
        Adds two block matrices together. The matrices must have the
        same size and matching `rowsPerBlock` and `colsPerBlock` values.
        If one of the sub matrix blocks that are being added is a
        SparseMatrix, the resulting sub matrix block will also be a
        SparseMatrix, even if it is being added to a DenseMatrix. If
        two dense sub matrix blocks are added, the output block will
        also be a DenseMatrix.

        >>> dm1 = Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])
        >>> dm2 = Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12])
        >>> sm = Matrices.sparse(3, 2, [0, 1, 3], [0, 1, 2], [7, 11, 12])
        >>> blocks1 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)])
        >>> blocks2 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)])
        >>> blocks3 = sc.parallelize([((0, 0), sm), ((1, 0), dm2)])
        >>> mat1 = BlockMatrix(blocks1, 3, 2)
        >>> mat2 = BlockMatrix(blocks2, 3, 2)
        >>> mat3 = BlockMatrix(blocks3, 3, 2)

        >>> mat1.add(mat2).toLocalMatrix()
        DenseMatrix(6, 2, [2.0, 4.0, 6.0, 14.0, 16.0, 18.0, 8.0, 10.0, 12.0, 20.0, 22.0, 24.0], 0)

        >>> mat1.add(mat3).toLocalMatrix()
        DenseMatrix(6, 2, [8.0, 2.0, 3.0, 14.0, 16.0, 18.0, 4.0, 16.0, 18.0, 20.0, 22.0, 24.0], 0)
        """
        if not isinstance(other, BlockMatrix):
            raise TypeError("Other should be a BlockMatrix, got %s" % type(other))

        other_java_block_matrix = other._java_matrix_wrapper._java_model
        java_block_matrix = self._java_matrix_wrapper.call("add", other_java_block_matrix)
        return BlockMatrix(java_block_matrix, self.rowsPerBlock, self.colsPerBlock)

    @since('2.0.0')
    def subtract(self, other):
        """
        Subtracts the given block matrix `other` from this block matrix:
        `this - other`. The matrices must have the same size and
        matching `rowsPerBlock` and `colsPerBlock` values.  If one of
        the sub matrix blocks that are being subtracted is a
        SparseMatrix, the resulting sub matrix block will also be a
        SparseMatrix, even if it is being subtracted from a DenseMatrix.
        If two dense sub matrix blocks are subtracted, the output block
        will also be a DenseMatrix.

        >>> dm1 = Matrices.dense(3, 2, [3, 1, 5, 4, 6, 2])
        >>> dm2 = Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12])
        >>> sm = Matrices.sparse(3, 2, [0, 1, 3], [0, 1, 2], [1, 2, 3])
        >>> blocks1 = sc.parallelize([((0, 0), dm1), ((1, 0), dm2)])
        >>> blocks2 = sc.parallelize([((0, 0), dm2), ((1, 0), dm1)])
        >>> blocks3 = sc.parallelize([((0, 0), sm), ((1, 0), dm2)])
        >>> mat1 = BlockMatrix(blocks1, 3, 2)
        >>> mat2 = BlockMatrix(blocks2, 3, 2)
        >>> mat3 = BlockMatrix(blocks3, 3, 2)

        >>> mat1.subtract(mat2).toLocalMatrix()
        DenseMatrix(6, 2, [-4.0, -7.0, -4.0, 4.0, 7.0, 4.0, -6.0, -5.0, -10.0, 6.0, 5.0, 10.0], 0)

        >>> mat2.subtract(mat3).toLocalMatrix()
        DenseMatrix(6, 2, [6.0, 8.0, 9.0, -4.0, -7.0, -4.0, 10.0, 9.0, 9.0, -6.0, -5.0, -10.0], 0)
        """
        if not isinstance(other, BlockMatrix):
            raise TypeError("Other should be a BlockMatrix, got %s" % type(other))

        other_java_block_matrix = other._java_matrix_wrapper._java_model
        java_block_matrix = self._java_matrix_wrapper.call("subtract", other_java_block_matrix)
        return BlockMatrix(java_block_matrix, self.rowsPerBlock, self.colsPerBlock)

    def multiply(self, other):
        """
        Left multiplies this BlockMatrix by `other`, another
        BlockMatrix. The `colsPerBlock` of this matrix must equal the
        `rowsPerBlock` of `other`. If `other` contains any SparseMatrix
        blocks, they will have to be converted to DenseMatrix blocks.
        The output BlockMatrix will only consist of DenseMatrix blocks.
        This may cause some performance issues until support for
        multiplying two sparse matrices is added.

        >>> dm1 = Matrices.dense(2, 3, [1, 2, 3, 4, 5, 6])
        >>> dm2 = Matrices.dense(2, 3, [7, 8, 9, 10, 11, 12])
        >>> dm3 = Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])
        >>> dm4 = Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12])
        >>> sm = Matrices.sparse(3, 2, [0, 1, 3], [0, 1, 2], [7, 11, 12])
        >>> blocks1 = sc.parallelize([((0, 0), dm1), ((0, 1), dm2)])
        >>> blocks2 = sc.parallelize([((0, 0), dm3), ((1, 0), dm4)])
        >>> blocks3 = sc.parallelize([((0, 0), sm), ((1, 0), dm4)])
        >>> mat1 = BlockMatrix(blocks1, 2, 3)
        >>> mat2 = BlockMatrix(blocks2, 3, 2)
        >>> mat3 = BlockMatrix(blocks3, 3, 2)

        >>> mat1.multiply(mat2).toLocalMatrix()
        DenseMatrix(2, 2, [242.0, 272.0, 350.0, 398.0], 0)

        >>> mat1.multiply(mat3).toLocalMatrix()
        DenseMatrix(2, 2, [227.0, 258.0, 394.0, 450.0], 0)
        """
        if not isinstance(other, BlockMatrix):
            raise TypeError("Other should be a BlockMatrix, got %s" % type(other))

        other_java_block_matrix = other._java_matrix_wrapper._java_model
        java_block_matrix = self._java_matrix_wrapper.call("multiply", other_java_block_matrix)
        return BlockMatrix(java_block_matrix, self.rowsPerBlock, self.colsPerBlock)

    @since('2.0.0')
    def transpose(self):
        """
        Transpose this BlockMatrix. Returns a new BlockMatrix
        instance sharing the same underlying data. Is a lazy operation.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])
        >>> mat = BlockMatrix(blocks, 3, 2)

        >>> mat_transposed = mat.transpose()
        >>> mat_transposed.toLocalMatrix()
        DenseMatrix(2, 6, [1.0, 4.0, 2.0, 5.0, 3.0, 6.0, 7.0, 10.0, 8.0, 11.0, 9.0, 12.0], 0)
        """
        java_transposed_matrix = self._java_matrix_wrapper.call("transpose")
        return BlockMatrix(java_transposed_matrix, self.colsPerBlock, self.rowsPerBlock)

    def toLocalMatrix(self):
        """
        Collect the distributed matrix on the driver as a DenseMatrix.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])
        >>> mat = BlockMatrix(blocks, 3, 2).toLocalMatrix()

        >>> # This BlockMatrix will have 6 effective rows, due to
        >>> # having two sub-matrix blocks stacked, each with 3 rows.
        >>> # The ensuing DenseMatrix will also have 6 rows.
        >>> print(mat.numRows)
        6

        >>> # This BlockMatrix will have 2 effective columns, due to
        >>> # having two sub-matrix blocks stacked, each with 2
        >>> # columns. The ensuing DenseMatrix will also have 2 columns.
        >>> print(mat.numCols)
        2
        """
        return self._java_matrix_wrapper.call("toLocalMatrix")

    def toIndexedRowMatrix(self):
        """
        Convert this matrix to an IndexedRowMatrix.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(3, 2, [1, 2, 3, 4, 5, 6])),
        ...                          ((1, 0), Matrices.dense(3, 2, [7, 8, 9, 10, 11, 12]))])
        >>> mat = BlockMatrix(blocks, 3, 2).toIndexedRowMatrix()

        >>> # This BlockMatrix will have 6 effective rows, due to
        >>> # having two sub-matrix blocks stacked, each with 3 rows.
        >>> # The ensuing IndexedRowMatrix will also have 6 rows.
        >>> print(mat.numRows())
        6

        >>> # This BlockMatrix will have 2 effective columns, due to
        >>> # having two sub-matrix blocks stacked, each with 2 columns.
        >>> # The ensuing IndexedRowMatrix will also have 2 columns.
        >>> print(mat.numCols())
        2
        """
        java_indexed_row_matrix = self._java_matrix_wrapper.call("toIndexedRowMatrix")
        return IndexedRowMatrix(java_indexed_row_matrix)

    def toCoordinateMatrix(self):
        """
        Convert this matrix to a CoordinateMatrix.

        >>> blocks = sc.parallelize([((0, 0), Matrices.dense(1, 2, [1, 2])),
        ...                          ((1, 0), Matrices.dense(1, 2, [7, 8]))])
        >>> mat = BlockMatrix(blocks, 1, 2).toCoordinateMatrix()
        >>> mat.entries.take(3)
        [MatrixEntry(0, 0, 1.0), MatrixEntry(0, 1, 2.0), MatrixEntry(1, 0, 7.0)]
        """
        java_coordinate_matrix = self._java_matrix_wrapper.call("toCoordinateMatrix")
        return CoordinateMatrix(java_coordinate_matrix)


def _test():
    import doctest
    from pyspark import SparkContext
    from pyspark.sql import SQLContext
    from pyspark.mllib.linalg import Matrices
    import pyspark.mllib.linalg.distributed
    globs = pyspark.mllib.linalg.distributed.__dict__.copy()
    globs['sc'] = SparkContext('local[2]', 'PythonTest', batchSize=2)
    globs['sqlContext'] = SQLContext(globs['sc'])
    globs['Matrices'] = Matrices
    (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
    globs['sc'].stop()
    if failure_count:
        exit(-1)

if __name__ == "__main__":
    _test()