aboutsummaryrefslogtreecommitdiff
path: root/sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala
blob: 4b9bf8daae37c626978be216c4befea0c83d5537 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.spark.sql.sources

import scala.collection.mutable
import scala.util.Try

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileStatus, FileSystem, Path}
import org.apache.hadoop.mapred.{FileInputFormat, JobConf}
import org.apache.hadoop.mapreduce.{Job, TaskAttemptContext}

import org.apache.spark.SparkContext
import org.apache.spark.annotation.{DeveloperApi, Experimental}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.internal.Logging
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.catalyst.{expressions, CatalystTypeConverters, InternalRow}
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.execution.FileRelation
import org.apache.spark.sql.execution.datasources._
import org.apache.spark.sql.execution.streaming.{Sink, Source}
import org.apache.spark.sql.types.{StringType, StructType}
import org.apache.spark.util.SerializableConfiguration
import org.apache.spark.util.collection.BitSet

/**
 * ::DeveloperApi::
 * Data sources should implement this trait so that they can register an alias to their data source.
 * This allows users to give the data source alias as the format type over the fully qualified
 * class name.
 *
 * A new instance of this class will be instantiated each time a DDL call is made.
 *
 * @since 1.5.0
 */
@DeveloperApi
trait DataSourceRegister {

  /**
   * The string that represents the format that this data source provider uses. This is
   * overridden by children to provide a nice alias for the data source. For example:
   *
   * {{{
   *   override def shortName(): String = "parquet"
   * }}}
   *
   * @since 1.5.0
   */
  def shortName(): String
}

/**
 * ::DeveloperApi::
 * Implemented by objects that produce relations for a specific kind of data source.  When
 * Spark SQL is given a DDL operation with a USING clause specified (to specify the implemented
 * RelationProvider), this interface is used to pass in the parameters specified by a user.
 *
 * Users may specify the fully qualified class name of a given data source.  When that class is
 * not found Spark SQL will append the class name `DefaultSource` to the path, allowing for
 * less verbose invocation.  For example, 'org.apache.spark.sql.json' would resolve to the
 * data source 'org.apache.spark.sql.json.DefaultSource'
 *
 * A new instance of this class will be instantiated each time a DDL call is made.
 *
 * @since 1.3.0
 */
@DeveloperApi
trait RelationProvider {
  /**
   * Returns a new base relation with the given parameters.
   * Note: the parameters' keywords are case insensitive and this insensitivity is enforced
   * by the Map that is passed to the function.
   */
  def createRelation(sqlContext: SQLContext, parameters: Map[String, String]): BaseRelation
}

/**
 * ::DeveloperApi::
 * Implemented by objects that produce relations for a specific kind of data source
 * with a given schema.  When Spark SQL is given a DDL operation with a USING clause specified (
 * to specify the implemented SchemaRelationProvider) and a user defined schema, this interface
 * is used to pass in the parameters specified by a user.
 *
 * Users may specify the fully qualified class name of a given data source.  When that class is
 * not found Spark SQL will append the class name `DefaultSource` to the path, allowing for
 * less verbose invocation.  For example, 'org.apache.spark.sql.json' would resolve to the
 * data source 'org.apache.spark.sql.json.DefaultSource'
 *
 * A new instance of this class will be instantiated each time a DDL call is made.
 *
 * The difference between a [[RelationProvider]] and a [[SchemaRelationProvider]] is that
 * users need to provide a schema when using a [[SchemaRelationProvider]].
 * A relation provider can inherits both [[RelationProvider]] and [[SchemaRelationProvider]]
 * if it can support both schema inference and user-specified schemas.
 *
 * @since 1.3.0
 */
@DeveloperApi
trait SchemaRelationProvider {
  /**
   * Returns a new base relation with the given parameters and user defined schema.
   * Note: the parameters' keywords are case insensitive and this insensitivity is enforced
   * by the Map that is passed to the function.
   */
  def createRelation(
      sqlContext: SQLContext,
      parameters: Map[String, String],
      schema: StructType): BaseRelation
}

/**
 * Implemented by objects that can produce a streaming [[Source]] for a specific format or system.
 */
trait StreamSourceProvider {

  /** Returns the name and schema of the source that can be used to continually read data. */
  def sourceSchema(
      sqlContext: SQLContext,
      schema: Option[StructType],
      providerName: String,
      parameters: Map[String, String]): (String, StructType)

  def createSource(
      sqlContext: SQLContext,
      metadataPath: String,
      schema: Option[StructType],
      providerName: String,
      parameters: Map[String, String]): Source
}

/**
 * Implemented by objects that can produce a streaming [[Sink]] for a specific format or system.
 */
trait StreamSinkProvider {
  def createSink(
      sqlContext: SQLContext,
      parameters: Map[String, String],
      partitionColumns: Seq[String]): Sink
}

/**
 * @since 1.3.0
 */
@DeveloperApi
trait CreatableRelationProvider {
  /**
   * Creates a relation with the given parameters based on the contents of the given
   * DataFrame. The mode specifies the expected behavior of createRelation when
   * data already exists.
   * Right now, there are three modes, Append, Overwrite, and ErrorIfExists.
   * Append mode means that when saving a DataFrame to a data source, if data already exists,
   * contents of the DataFrame are expected to be appended to existing data.
   * Overwrite mode means that when saving a DataFrame to a data source, if data already exists,
   * existing data is expected to be overwritten by the contents of the DataFrame.
   * ErrorIfExists mode means that when saving a DataFrame to a data source,
   * if data already exists, an exception is expected to be thrown.
   *
   * @since 1.3.0
   */
  def createRelation(
      sqlContext: SQLContext,
      mode: SaveMode,
      parameters: Map[String, String],
      data: DataFrame): BaseRelation
}

/**
 * ::DeveloperApi::
 * Represents a collection of tuples with a known schema. Classes that extend BaseRelation must
 * be able to produce the schema of their data in the form of a [[StructType]]. Concrete
 * implementation should inherit from one of the descendant `Scan` classes, which define various
 * abstract methods for execution.
 *
 * BaseRelations must also define an equality function that only returns true when the two
 * instances will return the same data. This equality function is used when determining when
 * it is safe to substitute cached results for a given relation.
 *
 * @since 1.3.0
 */
@DeveloperApi
abstract class BaseRelation {
  def sqlContext: SQLContext
  def schema: StructType

  /**
   * Returns an estimated size of this relation in bytes. This information is used by the planner
   * to decide when it is safe to broadcast a relation and can be overridden by sources that
   * know the size ahead of time. By default, the system will assume that tables are too
   * large to broadcast. This method will be called multiple times during query planning
   * and thus should not perform expensive operations for each invocation.
   *
   * Note that it is always better to overestimate size than underestimate, because underestimation
   * could lead to execution plans that are suboptimal (i.e. broadcasting a very large table).
   *
   * @since 1.3.0
   */
  def sizeInBytes: Long = sqlContext.conf.defaultSizeInBytes

  /**
   * Whether does it need to convert the objects in Row to internal representation, for example:
   *  java.lang.String -> UTF8String
   *  java.lang.Decimal -> Decimal
   *
   * If `needConversion` is `false`, buildScan() should return an [[RDD]] of [[InternalRow]]
   *
   * Note: The internal representation is not stable across releases and thus data sources outside
   * of Spark SQL should leave this as true.
   *
   * @since 1.4.0
   */
  def needConversion: Boolean = true

  /**
   * Returns the list of [[Filter]]s that this datasource may not be able to handle.
   * These returned [[Filter]]s will be evaluated by Spark SQL after data is output by a scan.
   * By default, this function will return all filters, as it is always safe to
   * double evaluate a [[Filter]]. However, specific implementations can override this function to
   * avoid double filtering when they are capable of processing a filter internally.
   *
   * @since 1.6.0
   */
  def unhandledFilters(filters: Array[Filter]): Array[Filter] = filters
}

/**
 * ::DeveloperApi::
 * A BaseRelation that can produce all of its tuples as an RDD of Row objects.
 *
 * @since 1.3.0
 */
@DeveloperApi
trait TableScan {
  def buildScan(): RDD[Row]
}

/**
 * ::DeveloperApi::
 * A BaseRelation that can eliminate unneeded columns before producing an RDD
 * containing all of its tuples as Row objects.
 *
 * @since 1.3.0
 */
@DeveloperApi
trait PrunedScan {
  def buildScan(requiredColumns: Array[String]): RDD[Row]
}

/**
 * ::DeveloperApi::
 * A BaseRelation that can eliminate unneeded columns and filter using selected
 * predicates before producing an RDD containing all matching tuples as Row objects.
 *
 * The actual filter should be the conjunction of all `filters`,
 * i.e. they should be "and" together.
 *
 * The pushed down filters are currently purely an optimization as they will all be evaluated
 * again.  This means it is safe to use them with methods that produce false positives such
 * as filtering partitions based on a bloom filter.
 *
 * @since 1.3.0
 */
@DeveloperApi
trait PrunedFilteredScan {
  def buildScan(requiredColumns: Array[String], filters: Array[Filter]): RDD[Row]
}

/**
 * ::DeveloperApi::
 * A BaseRelation that can be used to insert data into it through the insert method.
 * If overwrite in insert method is true, the old data in the relation should be overwritten with
 * the new data. If overwrite in insert method is false, the new data should be appended.
 *
 * InsertableRelation has the following three assumptions.
 * 1. It assumes that the data (Rows in the DataFrame) provided to the insert method
 * exactly matches the ordinal of fields in the schema of the BaseRelation.
 * 2. It assumes that the schema of this relation will not be changed.
 * Even if the insert method updates the schema (e.g. a relation of JSON or Parquet data may have a
 * schema update after an insert operation), the new schema will not be used.
 * 3. It assumes that fields of the data provided in the insert method are nullable.
 * If a data source needs to check the actual nullability of a field, it needs to do it in the
 * insert method.
 *
 * @since 1.3.0
 */
@DeveloperApi
trait InsertableRelation {
  def insert(data: DataFrame, overwrite: Boolean): Unit
}

/**
 * ::Experimental::
 * An interface for experimenting with a more direct connection to the query planner.  Compared to
 * [[PrunedFilteredScan]], this operator receives the raw expressions from the
 * [[org.apache.spark.sql.catalyst.plans.logical.LogicalPlan]].  Unlike the other APIs this
 * interface is NOT designed to be binary compatible across releases and thus should only be used
 * for experimentation.
 *
 * @since 1.3.0
 */
@Experimental
trait CatalystScan {
  def buildScan(requiredColumns: Seq[Attribute], filters: Seq[Expression]): RDD[Row]
}

/**
 * ::Experimental::
 * A factory that produces [[OutputWriter]]s.  A new [[OutputWriterFactory]] is created on driver
 * side for each write job issued when writing to a [[HadoopFsRelation]], and then gets serialized
 * to executor side to create actual [[OutputWriter]]s on the fly.
 *
 * @since 1.4.0
 */
@Experimental
abstract class OutputWriterFactory extends Serializable {
  /**
   * When writing to a [[HadoopFsRelation]], this method gets called by each task on executor side
   * to instantiate new [[OutputWriter]]s.
   *
   * @param path Path of the file to which this [[OutputWriter]] is supposed to write.  Note that
   *        this may not point to the final output file.  For example, `FileOutputFormat` writes to
   *        temporary directories and then merge written files back to the final destination.  In
   *        this case, `path` points to a temporary output file under the temporary directory.
   * @param dataSchema Schema of the rows to be written. Partition columns are not included in the
   *        schema if the relation being written is partitioned.
   * @param context The Hadoop MapReduce task context.
   * @since 1.4.0
   */
  private[sql] def newInstance(
      path: String,
      bucketId: Option[Int], // TODO: This doesn't belong here...
      dataSchema: StructType,
      context: TaskAttemptContext): OutputWriter
}

/**
 * ::Experimental::
 * [[OutputWriter]] is used together with [[HadoopFsRelation]] for persisting rows to the
 * underlying file system.  Subclasses of [[OutputWriter]] must provide a zero-argument constructor.
 * An [[OutputWriter]] instance is created and initialized when a new output file is opened on
 * executor side.  This instance is used to persist rows to this single output file.
 *
 * @since 1.4.0
 */
@Experimental
abstract class OutputWriter {
  /**
   * Persists a single row.  Invoked on the executor side.  When writing to dynamically partitioned
   * tables, dynamic partition columns are not included in rows to be written.
   *
   * @since 1.4.0
   */
  def write(row: Row): Unit

  /**
   * Closes the [[OutputWriter]]. Invoked on the executor side after all rows are persisted, before
   * the task output is committed.
   *
   * @since 1.4.0
   */
  def close(): Unit

  private var converter: InternalRow => Row = _

  protected[sql] def initConverter(dataSchema: StructType) = {
    converter =
      CatalystTypeConverters.createToScalaConverter(dataSchema).asInstanceOf[InternalRow => Row]
  }

  protected[sql] def writeInternal(row: InternalRow): Unit = {
    write(converter(row))
  }
}

/**
 * Acts as a container for all of the metadata required to read from a datasource. All discovery,
 * resolution and merging logic for schemas and partitions has been removed.
 *
 * @param location A [[FileCatalog]] that can enumerate the locations of all the files that comprise
 *                 this relation.
 * @param partitionSchema The schema of the columns (if any) that are used to partition the relation
 * @param dataSchema The schema of any remaining columns.  Note that if any partition columns are
 *                   present in the actual data files as well, they are preserved.
 * @param bucketSpec Describes the bucketing (hash-partitioning of the files by some column values).
 * @param fileFormat A file format that can be used to read and write the data in files.
 * @param options Configuration used when reading / writing data.
 */
case class HadoopFsRelation(
    sqlContext: SQLContext,
    location: FileCatalog,
    partitionSchema: StructType,
    dataSchema: StructType,
    bucketSpec: Option[BucketSpec],
    fileFormat: FileFormat,
    options: Map[String, String]) extends BaseRelation with FileRelation {

  val schema: StructType = {
    val dataSchemaColumnNames = dataSchema.map(_.name.toLowerCase).toSet
    StructType(dataSchema ++ partitionSchema.filterNot { column =>
      dataSchemaColumnNames.contains(column.name.toLowerCase)
    })
  }

  def partitionSchemaOption: Option[StructType] =
    if (partitionSchema.isEmpty) None else Some(partitionSchema)
  def partitionSpec: PartitionSpec = location.partitionSpec()

  def refresh(): Unit = location.refresh()

  override def toString: String =
    s"HadoopFiles"

  /** Returns the list of files that will be read when scanning this relation. */
  override def inputFiles: Array[String] =
    location.allFiles().map(_.getPath.toUri.toString).toArray

  override def sizeInBytes: Long = location.allFiles().map(_.getLen).sum
}

/**
 * Used to read and write data stored in files to/from the [[InternalRow]] format.
 */
trait FileFormat {
  /**
   * When possible, this method should return the schema of the given `files`.  When the format
   * does not support inference, or no valid files are given should return None.  In these cases
   * Spark will require that user specify the schema manually.
   */
  def inferSchema(
      sqlContext: SQLContext,
      options: Map[String, String],
      files: Seq[FileStatus]): Option[StructType]

  /**
   * Prepares a read job and returns a potentially updated data source option [[Map]]. This method
   * can be useful for collecting necessary global information for scanning input data.
   */
  def prepareRead(
      sqlContext: SQLContext,
      options: Map[String, String],
      files: Seq[FileStatus]): Map[String, String] = options

  /**
   * Prepares a write job and returns an [[OutputWriterFactory]].  Client side job preparation can
   * be put here.  For example, user defined output committer can be configured here
   * by setting the output committer class in the conf of spark.sql.sources.outputCommitterClass.
   */
  def prepareWrite(
      sqlContext: SQLContext,
      job: Job,
      options: Map[String, String],
      dataSchema: StructType): OutputWriterFactory

  /**
   * Returns whether this format support returning columnar batch or not.
   *
   * TODO: we should just have different traits for the different formats.
   */
  def supportBatch(sqlContext: SQLContext, dataSchema: StructType): Boolean = {
    false
  }

  /**
   * Returns a function that can be used to read a single file in as an Iterator of InternalRow.
   *
   * @param dataSchema The global data schema. It can be either specified by the user, or
   *                   reconciled/merged from all underlying data files. If any partition columns
   *                   are contained in the files, they are preserved in this schema.
   * @param partitionSchema The schema of the partition column row that will be present in each
   *                        PartitionedFile. These columns should be appended to the rows that
   *                        are produced by the iterator.
   * @param requiredSchema The schema of the data that should be output for each row.  This may be a
   *                       subset of the columns that are present in the file if column pruning has
   *                       occurred.
   * @param filters A set of filters than can optionally be used to reduce the number of rows output
   * @param options A set of string -> string configuration options.
   * @return
   */
  def buildReader(
      sqlContext: SQLContext,
      dataSchema: StructType,
      partitionSchema: StructType,
      requiredSchema: StructType,
      filters: Seq[Filter],
      options: Map[String, String]): PartitionedFile => Iterator[InternalRow] = {
    // TODO: Remove this default implementation when the other formats have been ported
    // Until then we guard in [[FileSourceStrategy]] to only call this method on supported formats.
    throw new UnsupportedOperationException(s"buildReader is not supported for $this")
  }
}

/**
 * A collection of data files from a partitioned relation, along with the partition values in the
 * form of an [[InternalRow]].
 */
case class Partition(values: InternalRow, files: Seq[FileStatus])

/**
 * An interface for objects capable of enumerating the files that comprise a relation as well
 * as the partitioning characteristics of those files.
 */
trait FileCatalog {
  def paths: Seq[Path]

  def partitionSpec(): PartitionSpec

  /**
   * Returns all valid files grouped into partitions when the data is partitioned. If the data is
   * unpartitioned, this will return a single partition with not partition values.
   *
   * @param filters the filters used to prune which partitions are returned.  These filters must
   *                only refer to partition columns and this method will only return files
   *                where these predicates are guaranteed to evaluate to `true`.  Thus, these
   *                filters will not need to be evaluated again on the returned data.
   */
  def listFiles(filters: Seq[Expression]): Seq[Partition]

  def allFiles(): Seq[FileStatus]

  def getStatus(path: Path): Array[FileStatus]

  def refresh(): Unit
}

/**
 * A file catalog that caches metadata gathered by scanning all the files present in `paths`
 * recursively.
 *
 * @param parameters as set of options to control discovery
 * @param paths a list of paths to scan
 * @param partitionSchema an optional partition schema that will be use to provide types for the
 *                        discovered partitions
 */
class HDFSFileCatalog(
    val sqlContext: SQLContext,
    val parameters: Map[String, String],
    val paths: Seq[Path],
    val partitionSchema: Option[StructType])
  extends FileCatalog with Logging {

  private val hadoopConf = new Configuration(sqlContext.sparkContext.hadoopConfiguration)

  var leafFiles = mutable.LinkedHashMap.empty[Path, FileStatus]
  var leafDirToChildrenFiles = mutable.Map.empty[Path, Array[FileStatus]]
  var cachedPartitionSpec: PartitionSpec = _

  def partitionSpec(): PartitionSpec = {
    if (cachedPartitionSpec == null) {
      cachedPartitionSpec = inferPartitioning(partitionSchema)
    }

    cachedPartitionSpec
  }

  refresh()

  override def listFiles(filters: Seq[Expression]): Seq[Partition] = {
    if (partitionSpec().partitionColumns.isEmpty) {
      Partition(InternalRow.empty, allFiles().filterNot(_.getPath.getName startsWith "_")) :: Nil
    } else {
      prunePartitions(filters, partitionSpec()).map {
        case PartitionDirectory(values, path) =>
          Partition(
            values,
            getStatus(path).filterNot(_.getPath.getName startsWith "_"))
      }
    }
  }

  protected def prunePartitions(
      predicates: Seq[Expression],
      partitionSpec: PartitionSpec): Seq[PartitionDirectory] = {
    val PartitionSpec(partitionColumns, partitions) = partitionSpec
    val partitionColumnNames = partitionColumns.map(_.name).toSet
    val partitionPruningPredicates = predicates.filter {
      _.references.map(_.name).toSet.subsetOf(partitionColumnNames)
    }

    if (partitionPruningPredicates.nonEmpty) {
      val predicate = partitionPruningPredicates.reduce(expressions.And)

      val boundPredicate = InterpretedPredicate.create(predicate.transform {
        case a: AttributeReference =>
          val index = partitionColumns.indexWhere(a.name == _.name)
          BoundReference(index, partitionColumns(index).dataType, nullable = true)
      })

      val selected = partitions.filter {
        case PartitionDirectory(values, _) => boundPredicate(values)
      }
      logInfo {
        val total = partitions.length
        val selectedSize = selected.length
        val percentPruned = (1 - selectedSize.toDouble / total.toDouble) * 100
        s"Selected $selectedSize partitions out of $total, pruned $percentPruned% partitions."
      }

      selected
    } else {
      partitions
    }
  }

  def allFiles(): Seq[FileStatus] = leafFiles.values.toSeq

  def getStatus(path: Path): Array[FileStatus] = leafDirToChildrenFiles(path)

  private def listLeafFiles(paths: Seq[Path]): mutable.LinkedHashSet[FileStatus] = {
    if (paths.length >= sqlContext.conf.parallelPartitionDiscoveryThreshold) {
      HadoopFsRelation.listLeafFilesInParallel(paths, hadoopConf, sqlContext.sparkContext)
    } else {
      val statuses = paths.flatMap { path =>
        val fs = path.getFileSystem(hadoopConf)
        logInfo(s"Listing $path on driver")
        // Dummy jobconf to get to the pathFilter defined in configuration
        val jobConf = new JobConf(hadoopConf, this.getClass())
        val pathFilter = FileInputFormat.getInputPathFilter(jobConf)
        if (pathFilter != null) {
          Try(fs.listStatus(path, pathFilter)).getOrElse(Array.empty)
        } else {
          Try(fs.listStatus(path)).getOrElse(Array.empty)
        }
      }.filterNot { status =>
        val name = status.getPath.getName
        HadoopFsRelation.shouldFilterOut(name)
      }

      val (dirs, files) = statuses.partition(_.isDirectory)

      // It uses [[LinkedHashSet]] since the order of files can affect the results. (SPARK-11500)
      if (dirs.isEmpty) {
        mutable.LinkedHashSet(files: _*)
      } else {
        mutable.LinkedHashSet(files: _*) ++ listLeafFiles(dirs.map(_.getPath))
      }
    }
  }

   def inferPartitioning(schema: Option[StructType]): PartitionSpec = {
    // We use leaf dirs containing data files to discover the schema.
    val leafDirs = leafDirToChildrenFiles.keys.toSeq
    schema match {
      case Some(userProvidedSchema) if userProvidedSchema.nonEmpty =>
        val spec = PartitioningUtils.parsePartitions(
          leafDirs,
          PartitioningUtils.DEFAULT_PARTITION_NAME,
          typeInference = false,
          basePaths = basePaths)

        // Without auto inference, all of value in the `row` should be null or in StringType,
        // we need to cast into the data type that user specified.
        def castPartitionValuesToUserSchema(row: InternalRow) = {
          InternalRow((0 until row.numFields).map { i =>
            Cast(
              Literal.create(row.getUTF8String(i), StringType),
              userProvidedSchema.fields(i).dataType).eval()
          }: _*)
        }

        PartitionSpec(userProvidedSchema, spec.partitions.map { part =>
          part.copy(values = castPartitionValuesToUserSchema(part.values))
        })
      case _ =>
        PartitioningUtils.parsePartitions(
          leafDirs,
          PartitioningUtils.DEFAULT_PARTITION_NAME,
          typeInference = sqlContext.conf.partitionColumnTypeInferenceEnabled(),
          basePaths = basePaths)
    }
  }

  /**
   * Contains a set of paths that are considered as the base dirs of the input datasets.
   * The partitioning discovery logic will make sure it will stop when it reaches any
   * base path. By default, the paths of the dataset provided by users will be base paths.
   * For example, if a user uses `sqlContext.read.parquet("/path/something=true/")`, the base path
   * will be `/path/something=true/`, and the returned DataFrame will not contain a column of
   * `something`. If users want to override the basePath. They can set `basePath` in the options
   * to pass the new base path to the data source.
   * For the above example, if the user-provided base path is `/path/`, the returned
   * DataFrame will have the column of `something`.
   */
  private def basePaths: Set[Path] = {
    val userDefinedBasePath = parameters.get("basePath").map(basePath => Set(new Path(basePath)))
    userDefinedBasePath.getOrElse {
      // If the user does not provide basePath, we will just use paths.
      paths.toSet
    }.map { hdfsPath =>
      // Make the path qualified (consistent with listLeafFiles and listLeafFilesInParallel).
      val fs = hdfsPath.getFileSystem(hadoopConf)
      hdfsPath.makeQualified(fs.getUri, fs.getWorkingDirectory)
    }
  }

  def refresh(): Unit = {
    val files = listLeafFiles(paths)

    leafFiles.clear()
    leafDirToChildrenFiles.clear()

    leafFiles ++= files.map(f => f.getPath -> f)
    leafDirToChildrenFiles ++= files.toArray.groupBy(_.getPath.getParent)

    cachedPartitionSpec = null
  }

  override def equals(other: Any): Boolean = other match {
    case hdfs: HDFSFileCatalog => paths.toSet == hdfs.paths.toSet
    case _ => false
  }

  override def hashCode(): Int = paths.toSet.hashCode()
}

/**
 * Helper methods for gathering metadata from HDFS.
 */
private[sql] object HadoopFsRelation extends Logging {

  /** Checks if we should filter out this path name. */
  def shouldFilterOut(pathName: String): Boolean = {
    // TODO: We should try to filter out all files/dirs starting with "." or "_".
    // The only reason that we are not doing it now is that Parquet needs to find those
    // metadata files from leaf files returned by this methods. We should refactor
    // this logic to not mix metadata files with data files.
    pathName == "_SUCCESS" || pathName == "_temporary" || pathName.startsWith(".")
  }

  // We don't filter files/directories whose name start with "_" except "_temporary" here, as
  // specific data sources may take advantages over them (e.g. Parquet _metadata and
  // _common_metadata files). "_temporary" directories are explicitly ignored since failed
  // tasks/jobs may leave partial/corrupted data files there.  Files and directories whose name
  // start with "." are also ignored.
  def listLeafFiles(fs: FileSystem, status: FileStatus): Array[FileStatus] = {
    logInfo(s"Listing ${status.getPath}")
    val name = status.getPath.getName.toLowerCase
    if (shouldFilterOut(name)) {
      Array.empty
    } else {
      // Dummy jobconf to get to the pathFilter defined in configuration
      val jobConf = new JobConf(fs.getConf, this.getClass())
      val pathFilter = FileInputFormat.getInputPathFilter(jobConf)
      val statuses =
        if (pathFilter != null) {
          val (dirs, files) = fs.listStatus(status.getPath, pathFilter).partition(_.isDirectory)
          files ++ dirs.flatMap(dir => listLeafFiles(fs, dir))
        } else {
          val (dirs, files) = fs.listStatus(status.getPath).partition(_.isDirectory)
          files ++ dirs.flatMap(dir => listLeafFiles(fs, dir))
        }
      statuses.filterNot(status => shouldFilterOut(status.getPath.getName))
    }
  }

  // `FileStatus` is Writable but not serializable.  What make it worse, somehow it doesn't play
  // well with `SerializableWritable`.  So there seems to be no way to serialize a `FileStatus`.
  // Here we use `FakeFileStatus` to extract key components of a `FileStatus` to serialize it from
  // executor side and reconstruct it on driver side.
  case class FakeFileStatus(
      path: String,
      length: Long,
      isDir: Boolean,
      blockReplication: Short,
      blockSize: Long,
      modificationTime: Long,
      accessTime: Long)

  def listLeafFilesInParallel(
      paths: Seq[Path],
      hadoopConf: Configuration,
      sparkContext: SparkContext): mutable.LinkedHashSet[FileStatus] = {
    logInfo(s"Listing leaf files and directories in parallel under: ${paths.mkString(", ")}")

    val serializableConfiguration = new SerializableConfiguration(hadoopConf)
    val serializedPaths = paths.map(_.toString)

    val fakeStatuses = sparkContext.parallelize(serializedPaths).map(new Path(_)).flatMap { path =>
      val fs = path.getFileSystem(serializableConfiguration.value)
      Try(listLeafFiles(fs, fs.getFileStatus(path))).getOrElse(Array.empty)
    }.map { status =>
      FakeFileStatus(
        status.getPath.toString,
        status.getLen,
        status.isDirectory,
        status.getReplication,
        status.getBlockSize,
        status.getModificationTime,
        status.getAccessTime)
    }.collect()

    val hadoopFakeStatuses = fakeStatuses.map { f =>
      new FileStatus(
        f.length, f.isDir, f.blockReplication, f.blockSize, f.modificationTime, new Path(f.path))
    }
    mutable.LinkedHashSet(hadoopFakeStatuses: _*)
  }
}