aboutsummaryrefslogtreecommitdiff
path: root/mavlink/include/mavlink/v1.0/mavlink_conversions.h
blob: 51afac87c3cce1d0b2933e4f4c90b763382f86b2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#ifndef  _MAVLINK_CONVERSIONS_H_
#define  _MAVLINK_CONVERSIONS_H_

/* enable math defines on Windows */
#ifdef _MSC_VER
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif
#endif
#include <math.h>

#ifndef M_PI_2
    #define M_PI_2 ((float)asin(1))
#endif

/**
 * @file mavlink_conversions.h
 *
 * These conversion functions follow the NASA rotation standards definition file
 * available online.
 *
 * Their intent is to lower the barrier for MAVLink adopters to use gimbal-lock free
 * (both rotation matrices, sometimes called DCM, and quaternions are gimbal-lock free)
 * rotation representations. Euler angles (roll, pitch, yaw) will be phased out of the
 * protocol as widely as possible.
 *
 * @author James Goppert
 */

MAVLINK_HELPER void mavlink_quaternion_to_dcm(const float quaternion[4], float dcm[3][3])
{
    double a = quaternion[0];
    double b = quaternion[1];
    double c = quaternion[2];
    double d = quaternion[3];
    double aSq = a * a;
    double bSq = b * b;
    double cSq = c * c;
    double dSq = d * d;
    dcm[0][0] = aSq + bSq - cSq - dSq;
    dcm[0][1] = 2.0 * (b * c - a * d);
    dcm[0][2] = 2.0 * (a * c + b * d);
    dcm[1][0] = 2.0 * (b * c + a * d);
    dcm[1][1] = aSq - bSq + cSq - dSq;
    dcm[1][2] = 2.0 * (c * d - a * b);
    dcm[2][0] = 2.0 * (b * d - a * c);
    dcm[2][1] = 2.0 * (a * b + c * d);
    dcm[2][2] = aSq - bSq - cSq + dSq;
}

MAVLINK_HELPER void mavlink_dcm_to_euler(const float dcm[3][3], float* roll, float* pitch, float* yaw)
{
    float phi, theta, psi;
    theta = asin(-dcm[2][0]);

    if (fabsf(theta - (float)M_PI_2) < 1.0e-3f) {
        phi = 0.0f;
        psi = (atan2f(dcm[1][2] - dcm[0][1],
                dcm[0][2] + dcm[1][1]) + phi);

    } else if (fabsf(theta + (float)M_PI_2) < 1.0e-3f) {
        phi = 0.0f;
        psi = atan2f(dcm[1][2] - dcm[0][1],
                  dcm[0][2] + dcm[1][1] - phi);

    } else {
        phi = atan2f(dcm[2][1], dcm[2][2]);
        psi = atan2f(dcm[1][0], dcm[0][0]);
    }

    *roll = phi;
    *pitch = theta;
    *yaw = psi;
}

MAVLINK_HELPER void mavlink_quaternion_to_euler(const float quaternion[4], float* roll, float* pitch, float* yaw)
{
    float dcm[3][3];
    mavlink_quaternion_to_dcm(quaternion, dcm);
    mavlink_dcm_to_euler(dcm, roll, pitch, yaw);
}

MAVLINK_HELPER void mavlink_euler_to_quaternion(float roll, float pitch, float yaw, float quaternion[4])
{
    double cosPhi_2 = cos((double)roll / 2.0);
    double sinPhi_2 = sin((double)roll / 2.0);
    double cosTheta_2 = cos((double)pitch / 2.0);
    double sinTheta_2 = sin((double)pitch / 2.0);
    double cosPsi_2 = cos((double)yaw / 2.0);
    double sinPsi_2 = sin((double)yaw / 2.0);
    quaternion[0] = (cosPhi_2 * cosTheta_2 * cosPsi_2 +
            sinPhi_2 * sinTheta_2 * sinPsi_2);
    quaternion[1] = (sinPhi_2 * cosTheta_2 * cosPsi_2 -
            cosPhi_2 * sinTheta_2 * sinPsi_2);
    quaternion[2] = (cosPhi_2 * sinTheta_2 * cosPsi_2 +
            sinPhi_2 * cosTheta_2 * sinPsi_2);
    quaternion[3] = (cosPhi_2 * cosTheta_2 * sinPsi_2 -
            sinPhi_2 * sinTheta_2 * cosPsi_2);
}

MAVLINK_HELPER void mavlink_dcm_to_quaternion(const float dcm[3][3], float quaternion[4])
{
    quaternion[0] = (0.5 * sqrt(1.0 +
            (double)(dcm[0][0] + dcm[1][1] + dcm[2][2])));
    quaternion[1] = (0.5 * sqrt(1.0 +
            (double)(dcm[0][0] - dcm[1][1] - dcm[2][2])));
    quaternion[2] = (0.5 * sqrt(1.0 +
            (double)(-dcm[0][0] + dcm[1][1] - dcm[2][2])));
    quaternion[3] = (0.5 * sqrt(1.0 +
            (double)(-dcm[0][0] - dcm[1][1] + dcm[2][2])));
}

MAVLINK_HELPER void mavlink_euler_to_dcm(float roll, float pitch, float yaw, float dcm[3][3])
{
    double cosPhi = cos(roll);
    double sinPhi = sin(roll);
    double cosThe = cos(pitch);
    double sinThe = sin(pitch);
    double cosPsi = cos(yaw);
    double sinPsi = sin(yaw);

    dcm[0][0] = cosThe * cosPsi;
    dcm[0][1] = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi;
    dcm[0][2] = sinPhi * sinPsi + cosPhi * sinThe * cosPsi;

    dcm[1][0] = cosThe * sinPsi;
    dcm[1][1] = cosPhi * cosPsi + sinPhi * sinThe * sinPsi;
    dcm[1][2] = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi;

    dcm[2][0] = -sinThe;
    dcm[2][1] = sinPhi * cosThe;
    dcm[2][2] = cosPhi * cosThe;
}

#endif