aboutsummaryrefslogtreecommitdiff
path: root/src/drivers/hmc5883/hmc5883.cpp
blob: 59e90d86c1067df7f9421b7eb8d47ef70d96228e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
/****************************************************************************
 *
 *   Copyright (c) 2012, 2013 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file hmc5883.cpp
 *
 * Driver for the HMC5883 magnetometer connected via I2C.
 */

#include <nuttx/config.h>

#include <drivers/device/i2c.h>

#include <sys/types.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <semaphore.h>
#include <string.h>
#include <fcntl.h>
#include <poll.h>
#include <errno.h>
#include <stdio.h>
#include <math.h>
#include <unistd.h>

#include <nuttx/arch.h>
#include <nuttx/wqueue.h>
#include <nuttx/clock.h>

#include <arch/board/board.h>

#include <systemlib/perf_counter.h>
#include <systemlib/err.h>

#include <drivers/drv_mag.h>
#include <drivers/drv_hrt.h>

#include <uORB/uORB.h>
#include <uORB/topics/subsystem_info.h>

#include <float.h>

/*
 * HMC5883 internal constants and data structures.
 */

#define HMC5883L_ADDRESS		PX4_I2C_OBDEV_HMC5883

/* Max measurement rate is 160Hz */
#define HMC5883_CONVERSION_INTERVAL	(1000000 / 160)	/* microseconds */

#define ADDR_CONF_A			0x00
#define ADDR_CONF_B			0x01
#define ADDR_MODE			0x02
#define ADDR_DATA_OUT_X_MSB		0x03
#define ADDR_DATA_OUT_X_LSB		0x04
#define ADDR_DATA_OUT_Z_MSB		0x05
#define ADDR_DATA_OUT_Z_LSB		0x06
#define ADDR_DATA_OUT_Y_MSB		0x07
#define ADDR_DATA_OUT_Y_LSB		0x08
#define ADDR_STATUS			0x09
#define ADDR_ID_A			0x0a
#define ADDR_ID_B			0x0b
#define ADDR_ID_C			0x0c

/* modes not changeable outside of driver */
#define HMC5883L_MODE_NORMAL		(0 << 0)  /* default */
#define HMC5883L_MODE_POSITIVE_BIAS	(1 << 0)  /* positive bias */
#define HMC5883L_MODE_NEGATIVE_BIAS	(1 << 1)  /* negative bias */

#define HMC5883L_AVERAGING_1		(0 << 5) /* conf a register */
#define HMC5883L_AVERAGING_2		(1 << 5)
#define HMC5883L_AVERAGING_4		(2 << 5)
#define HMC5883L_AVERAGING_8		(3 << 5)

#define MODE_REG_CONTINOUS_MODE		(0 << 0)
#define MODE_REG_SINGLE_MODE		(1 << 0) /* default */

#define STATUS_REG_DATA_OUT_LOCK	(1 << 1) /* page 16: set if data is only partially read, read device to reset */
#define STATUS_REG_DATA_READY		(1 << 0) /* page 16: set if all axes have valid measurements */

#define ID_A_WHO_AM_I			'H'
#define ID_B_WHO_AM_I			'4'
#define ID_C_WHO_AM_I			'3'


/* oddly, ERROR is not defined for c++ */
#ifdef ERROR
# undef ERROR
#endif
static const int ERROR = -1;

#ifndef CONFIG_SCHED_WORKQUEUE
# error This requires CONFIG_SCHED_WORKQUEUE.
#endif

class HMC5883 : public device::I2C
{
public:
	HMC5883(int bus);
	virtual ~HMC5883();

	virtual int		init();

	virtual ssize_t		read(struct file *filp, char *buffer, size_t buflen);
	virtual int		ioctl(struct file *filp, int cmd, unsigned long arg);

	/**
	 * Diagnostics - print some basic information about the driver.
	 */
	void			print_info();

protected:
	virtual int		probe();

private:
	work_s			_work;
	unsigned		_measure_ticks;

	unsigned		_num_reports;
	volatile unsigned	_next_report;
	volatile unsigned	_oldest_report;
	mag_report		*_reports;
	mag_scale		_scale;
	float 			_range_scale;
	float 			_range_ga;
	bool			_collect_phase;

	orb_advert_t		_mag_topic;

	perf_counter_t		_sample_perf;
	perf_counter_t		_comms_errors;
	perf_counter_t		_buffer_overflows;

	/* status reporting */
	bool			_sensor_ok;		/**< sensor was found and reports ok */
	bool			_calibrated;		/**< the calibration is valid */

	/**
	 * Test whether the device supported by the driver is present at a
	 * specific address.
	 *
	 * @param address	The I2C bus address to probe.
	 * @return		True if the device is present.
	 */
	int			probe_address(uint8_t address);

	/**
	 * Initialise the automatic measurement state machine and start it.
	 *
	 * @note This function is called at open and error time.  It might make sense
	 *       to make it more aggressive about resetting the bus in case of errors.
	 */
	void			start();

	/**
	 * Stop the automatic measurement state machine.
	 */
	void			stop();

	/**
	 * Perform the on-sensor scale calibration routine.
	 *
	 * @note The sensor will continue to provide measurements, these
	 *	 will however reflect the uncalibrated sensor state until
	 *	 the calibration routine has been completed.
	 *
	 * @param enable set to 1 to enable self-test strap, 0 to disable
	 */
	int			calibrate(struct file *filp, unsigned enable);

	/**
	 * Perform the on-sensor scale calibration routine.
	 *
	 * @note The sensor will continue to provide measurements, these
	 *	 will however reflect the uncalibrated sensor state until
	 *	 the calibration routine has been completed.
	 *
	 * @param enable set to 1 to enable self-test positive strap, -1 to enable
	 *        negative strap, 0 to set to normal mode
	 */
	int			set_excitement(unsigned enable);

	/**
	 * Set the sensor range.
	 *
	 * Sets the internal range to handle at least the argument in Gauss.
	 */
	int 			set_range(unsigned range);

	/**
	 * Perform a poll cycle; collect from the previous measurement
	 * and start a new one.
	 *
	 * This is the heart of the measurement state machine.  This function
	 * alternately starts a measurement, or collects the data from the
	 * previous measurement.
	 *
	 * When the interval between measurements is greater than the minimum
	 * measurement interval, a gap is inserted between collection
	 * and measurement to provide the most recent measurement possible
	 * at the next interval.
	 */
	void			cycle();

	/**
	 * Static trampoline from the workq context; because we don't have a
	 * generic workq wrapper yet.
	 *
	 * @param arg		Instance pointer for the driver that is polling.
	 */
	static void		cycle_trampoline(void *arg);

	/**
	 * Write a register.
	 *
	 * @param reg		The register to write.
	 * @param val		The value to write.
	 * @return		OK on write success.
	 */
	int			write_reg(uint8_t reg, uint8_t val);

	/**
	 * Read a register.
	 *
	 * @param reg		The register to read.
	 * @param val		The value read.
	 * @return		OK on read success.
	 */
	int			read_reg(uint8_t reg, uint8_t &val);

	/**
	 * Issue a measurement command.
	 *
	 * @return		OK if the measurement command was successful.
	 */
	int			measure();

	/**
	 * Collect the result of the most recent measurement.
	 */
	int			collect();

	/**
	 * Convert a big-endian signed 16-bit value to a float.
	 *
	 * @param in		A signed 16-bit big-endian value.
	 * @return		The floating-point representation of the value.
	 */
	float			meas_to_float(uint8_t in[2]);

	/**
	 * Check the current calibration and update device status
	 *
	 * @return 0 if calibration is ok, 1 else
	 */
	 int 			check_calibration();

	 /**
	 * Check the current scale calibration
	 *
	 * @return 0 if scale calibration is ok, 1 else
	 */
	 int 			check_scale();

	 /**
	 * Check the current offset calibration
	 *
	 * @return 0 if offset calibration is ok, 1 else
	 */
	 int 			check_offset();

};

/* helper macro for handling report buffer indices */
#define INCREMENT(_x, _lim)	do { _x++; if (_x >= _lim) _x = 0; } while(0)

/*
 * Driver 'main' command.
 */
extern "C" __EXPORT int hmc5883_main(int argc, char *argv[]);


HMC5883::HMC5883(int bus) :
	I2C("HMC5883", MAG_DEVICE_PATH, bus, HMC5883L_ADDRESS, 400000),
	_measure_ticks(0),
	_num_reports(0),
	_next_report(0),
	_oldest_report(0),
	_reports(nullptr),
	_range_scale(0), /* default range scale from counts to gauss */
	_range_ga(1.3f),
	_mag_topic(-1),
	_sample_perf(perf_alloc(PC_ELAPSED, "hmc5883_read")),
	_comms_errors(perf_alloc(PC_COUNT, "hmc5883_comms_errors")),
	_buffer_overflows(perf_alloc(PC_COUNT, "hmc5883_buffer_overflows")),
	_sensor_ok(false),
	_calibrated(false)
{
	// enable debug() calls
	_debug_enabled = false;

	// default scaling
	_scale.x_offset = 0;
	_scale.x_scale = 1.0f;
	_scale.y_offset = 0;
	_scale.y_scale = 1.0f;
	_scale.z_offset = 0;
	_scale.z_scale = 1.0f;

	// work_cancel in the dtor will explode if we don't do this...
	memset(&_work, 0, sizeof(_work));
}

HMC5883::~HMC5883()
{
	/* make sure we are truly inactive */
	stop();

	/* free any existing reports */
	if (_reports != nullptr)
		delete[] _reports;
}

int
HMC5883::init()
{
	int ret = ERROR;

	/* do I2C init (and probe) first */
	if (I2C::init() != OK)
		goto out;

	/* allocate basic report buffers */
	_num_reports = 2;
	_reports = new struct mag_report[_num_reports];

	if (_reports == nullptr)
		goto out;

	_oldest_report = _next_report = 0;

	/* get a publish handle on the mag topic */
	memset(&_reports[0], 0, sizeof(_reports[0]));
	_mag_topic = orb_advertise(ORB_ID(sensor_mag), &_reports[0]);

	if (_mag_topic < 0)
		debug("failed to create sensor_mag object");

	/* set range */
	set_range(_range_ga);

	ret = OK;
	/* sensor is ok, but not calibrated */
	_sensor_ok = true;
out:
	return ret;
}

int HMC5883::set_range(unsigned range)
{
	uint8_t range_bits;

	if (range < 1) {
		range_bits = 0x00;
		_range_scale = 1.0f / 1370.0f;
		_range_ga = 0.88f;

	} else if (range <= 1) {
		range_bits = 0x01;
		_range_scale = 1.0f / 1090.0f;
		_range_ga = 1.3f;

	} else if (range <= 2) {
		range_bits = 0x02;
		_range_scale = 1.0f / 820.0f;
		_range_ga = 1.9f;

	} else if (range <= 3) {
		range_bits = 0x03;
		_range_scale = 1.0f / 660.0f;
		_range_ga = 2.5f;

	} else if (range <= 4) {
		range_bits = 0x04;
		_range_scale = 1.0f / 440.0f;
		_range_ga = 4.0f;

	} else if (range <= 4.7f) {
		range_bits = 0x05;
		_range_scale = 1.0f / 390.0f;
		_range_ga = 4.7f;

	} else if (range <= 5.6f) {
		range_bits = 0x06;
		_range_scale = 1.0f / 330.0f;
		_range_ga = 5.6f;

	} else {
		range_bits = 0x07;
		_range_scale = 1.0f / 230.0f;
		_range_ga = 8.1f;
	}

	int ret;

	/*
	 * Send the command to set the range
	 */
	ret = write_reg(ADDR_CONF_B, (range_bits << 5));

	if (OK != ret)
		perf_count(_comms_errors);

	uint8_t range_bits_in;
	ret = read_reg(ADDR_CONF_B, range_bits_in);

	if (OK != ret)
		perf_count(_comms_errors);

	return !(range_bits_in == (range_bits << 5));
}

int
HMC5883::probe()
{
	uint8_t data[3] = {0, 0, 0};

	_retries = 10;

	if (read_reg(ADDR_ID_A, data[0]) ||
	    read_reg(ADDR_ID_B, data[1]) ||
	    read_reg(ADDR_ID_C, data[2]))
		debug("read_reg fail");

	_retries = 2;

	if ((data[0] != ID_A_WHO_AM_I) ||
	    (data[1] != ID_B_WHO_AM_I) ||
	    (data[2] != ID_C_WHO_AM_I)) {
		debug("ID byte mismatch (%02x,%02x,%02x)", data[0], data[1], data[2]);
		return -EIO;
	}

	return OK;
}

ssize_t
HMC5883::read(struct file *filp, char *buffer, size_t buflen)
{
	unsigned count = buflen / sizeof(struct mag_report);
	int ret = 0;

	/* buffer must be large enough */
	if (count < 1)
		return -ENOSPC;

	/* if automatic measurement is enabled */
	if (_measure_ticks > 0) {

		/*
		 * While there is space in the caller's buffer, and reports, copy them.
		 * Note that we may be pre-empted by the workq thread while we are doing this;
		 * we are careful to avoid racing with them.
		 */
		while (count--) {
			if (_oldest_report != _next_report) {
				memcpy(buffer, _reports + _oldest_report, sizeof(*_reports));
				ret += sizeof(_reports[0]);
				INCREMENT(_oldest_report, _num_reports);
			}
		}

		/* if there was no data, warn the caller */
		return ret ? ret : -EAGAIN;
	}

	/* manual measurement - run one conversion */
	/* XXX really it'd be nice to lock against other readers here */
	do {
		_oldest_report = _next_report = 0;

		/* trigger a measurement */
		if (OK != measure()) {
			ret = -EIO;
			break;
		}

		/* wait for it to complete */
		usleep(HMC5883_CONVERSION_INTERVAL);

		/* run the collection phase */
		if (OK != collect()) {
			ret = -EIO;
			break;
		}

		/* state machine will have generated a report, copy it out */
		memcpy(buffer, _reports, sizeof(*_reports));
		ret = sizeof(*_reports);

	} while (0);

	return ret;
}

int
HMC5883::ioctl(struct file *filp, int cmd, unsigned long arg)
{
	switch (cmd) {

	case SENSORIOCSPOLLRATE: {
			switch (arg) {

				/* switching to manual polling */
			case SENSOR_POLLRATE_MANUAL:
				stop();
				_measure_ticks = 0;
				return OK;

				/* external signalling (DRDY) not supported */
			case SENSOR_POLLRATE_EXTERNAL:

				/* zero would be bad */
			case 0:
				return -EINVAL;

				/* set default/max polling rate */
			case SENSOR_POLLRATE_MAX:
			case SENSOR_POLLRATE_DEFAULT: {
					/* do we need to start internal polling? */
					bool want_start = (_measure_ticks == 0);

					/* set interval for next measurement to minimum legal value */
					_measure_ticks = USEC2TICK(HMC5883_CONVERSION_INTERVAL);

					/* if we need to start the poll state machine, do it */
					if (want_start)
						start();

					return OK;
				}

				/* adjust to a legal polling interval in Hz */
			default: {
					/* do we need to start internal polling? */
					bool want_start = (_measure_ticks == 0);

					/* convert hz to tick interval via microseconds */
					unsigned ticks = USEC2TICK(1000000 / arg);

					/* check against maximum rate */
					if (ticks < USEC2TICK(HMC5883_CONVERSION_INTERVAL))
						return -EINVAL;

					/* update interval for next measurement */
					_measure_ticks = ticks;

					/* if we need to start the poll state machine, do it */
					if (want_start)
						start();

					return OK;
				}
			}
		}

	case SENSORIOCGPOLLRATE:
		if (_measure_ticks == 0)
			return SENSOR_POLLRATE_MANUAL;

		return (1000 / _measure_ticks);

	case SENSORIOCSQUEUEDEPTH: {
			/* add one to account for the sentinel in the ring */
			arg++;

			/* lower bound is mandatory, upper bound is a sanity check */
			if ((arg < 2) || (arg > 100))
				return -EINVAL;

			/* allocate new buffer */
			struct mag_report *buf = new struct mag_report[arg];

			if (nullptr == buf)
				return -ENOMEM;

			/* reset the measurement state machine with the new buffer, free the old */
			stop();
			delete[] _reports;
			_num_reports = arg;
			_reports = buf;
			start();

			return OK;
		}

	case SENSORIOCGQUEUEDEPTH:
		return _num_reports - 1;

	case SENSORIOCRESET:
		/* XXX implement this */
		return -EINVAL;

	case MAGIOCSSAMPLERATE:
		/* not supported, always 1 sample per poll */
		return -EINVAL;

	case MAGIOCSRANGE:
		return set_range(arg);

	case MAGIOCSLOWPASS:
		/* not supported, no internal filtering */
		return -EINVAL;

	case MAGIOCSSCALE:
		/* set new scale factors */
		memcpy(&_scale, (mag_scale *)arg, sizeof(_scale));
		/* check calibration, but not actually return an error */
		(void)check_calibration();
		return 0;

	case MAGIOCGSCALE:
		/* copy out scale factors */
		memcpy((mag_scale *)arg, &_scale, sizeof(_scale));
		return 0;

	case MAGIOCCALIBRATE:
		return calibrate(filp, arg);

	case MAGIOCEXSTRAP:
		return set_excitement(arg);

	case MAGIOCSELFTEST:
		return check_calibration();

	default:
		/* give it to the superclass */
		return I2C::ioctl(filp, cmd, arg);
	}
}

void
HMC5883::start()
{
	/* reset the report ring and state machine */
	_collect_phase = false;
	_oldest_report = _next_report = 0;

	/* schedule a cycle to start things */
	work_queue(HPWORK, &_work, (worker_t)&HMC5883::cycle_trampoline, this, 1);
}

void
HMC5883::stop()
{
	work_cancel(HPWORK, &_work);
}

void
HMC5883::cycle_trampoline(void *arg)
{
	HMC5883 *dev = (HMC5883 *)arg;

	dev->cycle();
}

void
HMC5883::cycle()
{
	/* collection phase? */
	if (_collect_phase) {

		/* perform collection */
		if (OK != collect()) {
			log("collection error");
			/* restart the measurement state machine */
			start();
			return;
		}

		/* next phase is measurement */
		_collect_phase = false;

		/*
		 * Is there a collect->measure gap?
		 */
		if (_measure_ticks > USEC2TICK(HMC5883_CONVERSION_INTERVAL)) {

			/* schedule a fresh cycle call when we are ready to measure again */
			work_queue(HPWORK,
				   &_work,
				   (worker_t)&HMC5883::cycle_trampoline,
				   this,
				   _measure_ticks - USEC2TICK(HMC5883_CONVERSION_INTERVAL));

			return;
		}
	}

	/* measurement phase */
	if (OK != measure())
		log("measure error");

	/* next phase is collection */
	_collect_phase = true;

	/* schedule a fresh cycle call when the measurement is done */
	work_queue(HPWORK,
		   &_work,
		   (worker_t)&HMC5883::cycle_trampoline,
		   this,
		   USEC2TICK(HMC5883_CONVERSION_INTERVAL));
}

int
HMC5883::measure()
{
	int ret;

	/*
	 * Send the command to begin a measurement.
	 */
	ret = write_reg(ADDR_MODE, MODE_REG_SINGLE_MODE);

	if (OK != ret)
		perf_count(_comms_errors);

	return ret;
}

int
HMC5883::collect()
{
#pragma pack(push, 1)
	struct { /* status register and data as read back from the device */
		uint8_t		x[2];
		uint8_t		z[2];
		uint8_t		y[2];
	}	hmc_report;
#pragma pack(pop)
	struct {
		int16_t		x, y, z;
	} report;
	int	ret = -EIO;
	uint8_t	cmd;


	perf_begin(_sample_perf);

	/* this should be fairly close to the end of the measurement, so the best approximation of the time */
	_reports[_next_report].timestamp = hrt_absolute_time();

	/*
	 * @note  We could read the status register here, which could tell us that
	 *        we were too early and that the output registers are still being
	 *        written.  In the common case that would just slow us down, and
	 *        we're better off just never being early.
	 */

	/* get measurements from the device */
	cmd = ADDR_DATA_OUT_X_MSB;
	ret = transfer(&cmd, 1, (uint8_t *)&hmc_report, sizeof(hmc_report));

	if (ret != OK) {
		perf_count(_comms_errors);
		debug("data/status read error");
		goto out;
	}

	/* swap the data we just received */
	report.x = (((int16_t)hmc_report.x[0]) << 8) + hmc_report.x[1];
	report.y = (((int16_t)hmc_report.y[0]) << 8) + hmc_report.y[1];
	report.z = (((int16_t)hmc_report.z[0]) << 8) + hmc_report.z[1];

	/*
	 * If any of the values are -4096, there was an internal math error in the sensor.
	 * Generalise this to a simple range check that will also catch some bit errors.
	 */
	if ((abs(report.x) > 2048) ||
	    (abs(report.y) > 2048) ||
	    (abs(report.z) > 2048))
		goto out;

	/*
	 * RAW outputs
	 *
	 * to align the sensor axes with the board, x and y need to be flipped
	 * and y needs to be negated
	 */
	_reports[_next_report].x_raw = report.y;
	_reports[_next_report].y_raw = ((report.x == -32768) ? 32767 : -report.x);
	/* z remains z */
	_reports[_next_report].z_raw = report.z;

	/* scale values for output */

	/*
	 * 1) Scale raw value to SI units using scaling from datasheet.
	 * 2) Subtract static offset (in SI units)
	 * 3) Scale the statically calibrated values with a linear
	 *    dynamically obtained factor
	 *
	 * Note: the static sensor offset is the number the sensor outputs
	 * 	 at a nominally 'zero' input. Therefore the offset has to
	 * 	 be subtracted.
	 *
	 *	 Example: A gyro outputs a value of 74 at zero angular rate
	 *	 	  the offset is 74 from the origin and subtracting
	 *		  74 from all measurements centers them around zero.
	 */

#ifdef PX4_I2C_BUS_ONBOARD
	if (_bus == PX4_I2C_BUS_ONBOARD) {
		/* to align the sensor axes with the board, x and y need to be flipped */
		_reports[_next_report].x = ((report.y * _range_scale) - _scale.x_offset) * _scale.x_scale;
		/* flip axes and negate value for y */
		_reports[_next_report].y = ((((report.x == -32768) ? 32767 : -report.x) * _range_scale) - _scale.y_offset) * _scale.y_scale;
		/* z remains z */
		_reports[_next_report].z = ((report.z * _range_scale) - _scale.z_offset) * _scale.z_scale;
	} else {
#endif
		/* XXX axis assignment of external sensor is yet unknown */
		_reports[_next_report].x = ((report.y * _range_scale) - _scale.x_offset) * _scale.x_scale;
		/* flip axes and negate value for y */
		_reports[_next_report].y = ((((report.x == -32768) ? 32767 : -report.x) * _range_scale) - _scale.y_offset) * _scale.y_scale;
		/* z remains z */
		_reports[_next_report].z = ((report.z * _range_scale) - _scale.z_offset) * _scale.z_scale;
#ifdef PX4_I2C_BUS_ONBOARD
	}
#endif

	/* publish it */
	orb_publish(ORB_ID(sensor_mag), _mag_topic, &_reports[_next_report]);

	/* post a report to the ring - note, not locked */
	INCREMENT(_next_report, _num_reports);

	/* if we are running up against the oldest report, toss it */
	if (_next_report == _oldest_report) {
		perf_count(_buffer_overflows);
		INCREMENT(_oldest_report, _num_reports);
	}

	/* notify anyone waiting for data */
	poll_notify(POLLIN);

	ret = OK;

out:
	perf_end(_sample_perf);
	return ret;
}

int HMC5883::calibrate(struct file *filp, unsigned enable)
{
	struct mag_report report;
	ssize_t sz;
	int ret = 1;

	// XXX do something smarter here
	int fd = (int)enable;

	struct mag_scale mscale_previous = {
		0.0f,
		1.0f,
		0.0f,
		1.0f,
		0.0f,
		1.0f,
	};

	struct mag_scale mscale_null = {
		0.0f,
		1.0f,
		0.0f,
		1.0f,
		0.0f,
		1.0f,
	};

	float avg_excited[3] = {0.0f, 0.0f, 0.0f};
	unsigned i;

	warnx("starting mag scale calibration");

	/* do a simple demand read */
	sz = read(filp, (char *)&report, sizeof(report));

	if (sz != sizeof(report)) {
		warn("immediate read failed");
		ret = 1;
		goto out;
	}

	warnx("current measurement: %.6f  %.6f  %.6f", (double)report.x, (double)report.y, (double)report.z);
	warnx("time:        %lld", report.timestamp);
	warnx("sampling 500 samples for scaling offset");

	/* set the queue depth to 10 */
	if (OK != ioctl(filp, SENSORIOCSQUEUEDEPTH, 10)) {
		warn("failed to set queue depth");
		ret = 1;
		goto out;
	}

	/* start the sensor polling at 50 Hz */
	if (OK != ioctl(filp, SENSORIOCSPOLLRATE, 50)) {
		warn("failed to set 2Hz poll rate");
		ret = 1;
		goto out;
	}

	/* Set to 2.5 Gauss */
	if (OK != ioctl(filp, MAGIOCSRANGE, 2)) {
		warnx("failed to set 2.5 Ga range");
		ret = 1;
		goto out;
	}

	if (OK != ioctl(filp, MAGIOCEXSTRAP, 1)) {
		warnx("failed to enable sensor calibration mode");
		ret = 1;
		goto out;
	}

	if (OK != ioctl(filp, MAGIOCGSCALE, (long unsigned int)&mscale_previous)) {
		warn("WARNING: failed to get scale / offsets for mag");
		ret = 1;
		goto out;
	}

	if (OK != ioctl(filp, MAGIOCSSCALE, (long unsigned int)&mscale_null)) {
		warn("WARNING: failed to set null scale / offsets for mag");
		ret = 1;
		goto out;
	}

	/* read the sensor 10x and report each value */
	for (i = 0; i < 500; i++) {
		struct pollfd fds;

		/* wait for data to be ready */
		fds.fd = fd;
		fds.events = POLLIN;
		ret = ::poll(&fds, 1, 2000);

		if (ret != 1) {
			warn("timed out waiting for sensor data");
			goto out;
		}

		/* now go get it */
		sz = ::read(fd, &report, sizeof(report));

		if (sz != sizeof(report)) {
			warn("periodic read failed");
			goto out;

		} else {
			avg_excited[0] += report.x;
			avg_excited[1] += report.y;
			avg_excited[2] += report.z;
		}

		//warnx("periodic read %u", i);
		//warnx("measurement: %.6f  %.6f  %.6f", (double)report.x, (double)report.y, (double)report.z);
	}

	avg_excited[0] /= i;
	avg_excited[1] /= i;
	avg_excited[2] /= i;

	warnx("done. Performed %u reads", i);
	warnx("measurement avg: %.6f  %.6f  %.6f", (double)avg_excited[0], (double)avg_excited[1], (double)avg_excited[2]);

	float scaling[3];

	/* calculate axis scaling */
	scaling[0] = fabsf(1.16f / avg_excited[0]);
	/* second axis inverted */
	scaling[1] = fabsf(1.16f / -avg_excited[1]);
	scaling[2] = fabsf(1.08f / avg_excited[2]);

	warnx("axes scaling: %.6f  %.6f  %.6f", (double)scaling[0], (double)scaling[1], (double)scaling[2]);

	/* set back to normal mode */
	/* Set to 1.1 Gauss */
	if (OK != ::ioctl(fd, MAGIOCSRANGE, 1)) {
		warnx("failed to set 1.1 Ga range");
		goto out;
	}

	if (OK != ::ioctl(fd, MAGIOCEXSTRAP, 0)) {
		warnx("failed to disable sensor calibration mode");
		goto out;
	}

	/* set scaling in device */
	mscale_previous.x_scale = scaling[0];
	mscale_previous.y_scale = scaling[1];
	mscale_previous.z_scale = scaling[2];

	if (OK != ioctl(filp, MAGIOCSSCALE, (long unsigned int)&mscale_previous)) {
		warn("WARNING: failed to set new scale / offsets for mag");
		goto out;
	}

	ret = OK;

out:

	if (ret == OK) {
		if (!check_scale()) {
			warnx("mag scale calibration successfully finished.");
		} else {
			warnx("mag scale calibration finished with invalid results.");
			ret = ERROR;
		}

	} else {
		warnx("mag scale calibration failed.");
	}

	return ret;
}

int HMC5883::check_scale()
{
	bool scale_valid;

	if ((-FLT_EPSILON + 1.0f < _scale.x_scale && _scale.x_scale < FLT_EPSILON + 1.0f) &&
		(-FLT_EPSILON + 1.0f < _scale.y_scale && _scale.y_scale < FLT_EPSILON + 1.0f) &&
		(-FLT_EPSILON + 1.0f < _scale.z_scale && _scale.z_scale < FLT_EPSILON + 1.0f)) {
		/* scale is one */
		scale_valid = false;
	} else {
		scale_valid = true;
	}

	/* return 0 if calibrated, 1 else */
	return !scale_valid;
}

int HMC5883::check_offset()
{
	bool offset_valid;

	if ((-2.0f * FLT_EPSILON < _scale.x_offset && _scale.x_offset < 2.0f * FLT_EPSILON) &&
		(-2.0f * FLT_EPSILON < _scale.y_offset && _scale.y_offset < 2.0f * FLT_EPSILON) &&
		(-2.0f * FLT_EPSILON < _scale.z_offset && _scale.z_offset < 2.0f * FLT_EPSILON)) {
		/* offset is zero */
		offset_valid = false;
	} else {
		offset_valid = true;
	}

	/* return 0 if calibrated, 1 else */
	return !offset_valid;
}

int HMC5883::check_calibration()
{
	bool offset_valid = (check_offset() == OK);
	bool scale_valid  = (check_scale() == OK);

	if (_calibrated != (offset_valid && scale_valid)) {
		warnx("mag cal status changed %s%s", (scale_valid) ? "" : "scale invalid ",
					  (offset_valid) ? "" : "offset invalid");
		_calibrated = (offset_valid && scale_valid);


		// XXX Change advertisement

		/* notify about state change */
		struct subsystem_info_s info = {
			true,
			true,
			_calibrated,
			SUBSYSTEM_TYPE_MAG};
		static orb_advert_t pub = -1;

		if (pub > 0) {
			orb_publish(ORB_ID(subsystem_info), pub, &info);
		} else {
			pub = orb_advertise(ORB_ID(subsystem_info), &info);
		}
	}

	/* return 0 if calibrated, 1 else */
	return (!_calibrated);
}

int HMC5883::set_excitement(unsigned enable)
{
	int ret;
	/* arm the excitement strap */
	uint8_t conf_reg;
	ret = read_reg(ADDR_CONF_A, conf_reg);

	if (OK != ret)
		perf_count(_comms_errors);

	if (((int)enable) < 0) {
		conf_reg |= 0x01;

	} else if (enable > 0) {
		conf_reg |= 0x02;

	} else {
		conf_reg &= ~0x03;
	}

	ret = write_reg(ADDR_CONF_A, conf_reg);

	if (OK != ret)
		perf_count(_comms_errors);

	uint8_t conf_reg_ret;
	read_reg(ADDR_CONF_A, conf_reg_ret);

	return !(conf_reg == conf_reg_ret);
}

int
HMC5883::write_reg(uint8_t reg, uint8_t val)
{
	uint8_t cmd[] = { reg, val };

	return transfer(&cmd[0], 2, nullptr, 0);
}

int
HMC5883::read_reg(uint8_t reg, uint8_t &val)
{
	return transfer(&reg, 1, &val, 1);
}

float
HMC5883::meas_to_float(uint8_t in[2])
{
	union {
		uint8_t	b[2];
		int16_t	w;
	} u;

	u.b[0] = in[1];
	u.b[1] = in[0];

	return (float) u.w;
}

void
HMC5883::print_info()
{
	perf_print_counter(_sample_perf);
	perf_print_counter(_comms_errors);
	perf_print_counter(_buffer_overflows);
	printf("poll interval:  %u ticks\n", _measure_ticks);
	printf("report queue:   %u (%u/%u @ %p)\n",
	       _num_reports, _oldest_report, _next_report, _reports);
}

/**
 * Local functions in support of the shell command.
 */
namespace hmc5883
{

/* oddly, ERROR is not defined for c++ */
#ifdef ERROR
# undef ERROR
#endif
const int ERROR = -1;

HMC5883	*g_dev;

void	start();
void	test();
void	reset();
void	info();
int	calibrate();

/**
 * Start the driver.
 */
void
start()
{
	int fd;

	if (g_dev != nullptr)
		errx(1, "already started");

	/* create the driver, attempt expansion bus first */
	g_dev = new HMC5883(PX4_I2C_BUS_EXPANSION);
	if (g_dev != nullptr && OK != g_dev->init()) {
		delete g_dev;
		g_dev = nullptr;
	}
			

#ifdef PX4_I2C_BUS_ONBOARD
	/* if this failed, attempt onboard sensor */
	if (g_dev == nullptr) {
		g_dev = new HMC5883(PX4_I2C_BUS_ONBOARD);
		if (g_dev != nullptr && OK != g_dev->init()) {
			goto fail;
		}
	}
#endif

	if (g_dev == nullptr)
		goto fail;

	/* set the poll rate to default, starts automatic data collection */
	fd = open(MAG_DEVICE_PATH, O_RDONLY);

	if (fd < 0)
		goto fail;

	if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0)
		goto fail;

	exit(0);

fail:

	if (g_dev != nullptr) {
		delete g_dev;
		g_dev = nullptr;
	}

	errx(1, "driver start failed");
}

/**
 * Perform some basic functional tests on the driver;
 * make sure we can collect data from the sensor in polled
 * and automatic modes.
 */
void
test()
{
	struct mag_report report;
	ssize_t sz;
	int ret;

	int fd = open(MAG_DEVICE_PATH, O_RDONLY);

	if (fd < 0)
		err(1, "%s open failed (try 'hmc5883 start' if the driver is not running", MAG_DEVICE_PATH);

	/* do a simple demand read */
	sz = read(fd, &report, sizeof(report));

	if (sz != sizeof(report))
		err(1, "immediate read failed");

	warnx("single read");
	warnx("measurement: %.6f  %.6f  %.6f", (double)report.x, (double)report.y, (double)report.z);
	warnx("time:        %lld", report.timestamp);

	/* set the queue depth to 10 */
	if (OK != ioctl(fd, SENSORIOCSQUEUEDEPTH, 10))
		errx(1, "failed to set queue depth");

	/* start the sensor polling at 2Hz */
	if (OK != ioctl(fd, SENSORIOCSPOLLRATE, 2))
		errx(1, "failed to set 2Hz poll rate");

	/* read the sensor 5x and report each value */
	for (unsigned i = 0; i < 5; i++) {
		struct pollfd fds;

		/* wait for data to be ready */
		fds.fd = fd;
		fds.events = POLLIN;
		ret = poll(&fds, 1, 2000);

		if (ret != 1)
			errx(1, "timed out waiting for sensor data");

		/* now go get it */
		sz = read(fd, &report, sizeof(report));

		if (sz != sizeof(report))
			err(1, "periodic read failed");

		warnx("periodic read %u", i);
		warnx("measurement: %.6f  %.6f  %.6f", (double)report.x, (double)report.y, (double)report.z);
		warnx("time:        %lld", report.timestamp);
	}

	errx(0, "PASS");
}


/**
 * Automatic scale calibration.
 *
 * Basic idea:
 *
 *   output = (ext field +- 1.1 Ga self-test) * scale factor
 *
 * and consequently:
 *
 *   1.1 Ga = (excited - normal) * scale factor
 *   scale factor = (excited - normal) / 1.1 Ga
 *
 *   sxy = (excited - normal) / 766	| for conf reg. B set to 0x60 / Gain = 3
 *   sz  = (excited - normal) / 713	| for conf reg. B set to 0x60 / Gain = 3
 *
 * By subtracting the non-excited measurement the pure 1.1 Ga reading
 * can be extracted and the sensitivity of all axes can be matched.
 *
 * SELF TEST OPERATION
 * To check the HMC5883L for proper operation, a self test feature in incorporated
 * in which the sensor offset straps are excited to create a nominal field strength
 * (bias field) to be measured. To implement self test, the least significant bits
 * (MS1 and MS0) of configuration register A are changed from 00 to 01 (positive bias)
 * or 10 (negetive bias), e.g. 0x11 or 0x12.
 * Then, by placing the mode register into single-measurement mode (0x01),
 * two data acquisition cycles will be made on each magnetic vector.
 * The first acquisition will be a set pulse followed shortly by measurement
 * data of the external field. The second acquisition will have the offset strap
 * excited (about 10 mA) in the positive bias mode for X, Y, and Z axes to create
 * about a ±1.1 gauss self test field plus the external field. The first acquisition
 * values will be subtracted from the second acquisition, and the net measurement
 * will be placed into the data output registers.
 * Since self test adds ~1.1 Gauss additional field to the existing field strength,
 * using a reduced gain setting prevents sensor from being saturated and data registers
 * overflowed. For example, if the configuration register B is set to 0x60 (Gain=3),
 * values around +766 LSB (1.16 Ga * 660 LSB/Ga) will be placed in the X and Y data
 * output registers and around +713 (1.08 Ga * 660 LSB/Ga) will be placed in Z data
 * output register. To leave the self test mode, change MS1 and MS0 bit of the
 * configuration register A back to 00 (Normal Measurement Mode), e.g. 0x10.
 * Using the self test method described above, the user can scale sensor
 */
int calibrate()
{
	int ret;

	int fd = open(MAG_DEVICE_PATH, O_RDONLY);

	if (fd < 0)
		err(1, "%s open failed (try 'hmc5883 start' if the driver is not running", MAG_DEVICE_PATH);

	if (OK != (ret = ioctl(fd, MAGIOCCALIBRATE, fd))) {
		warnx("failed to enable sensor calibration mode");
	}

	close(fd);

	if (ret == OK) {
		errx(0, "PASS");

	} else {
		errx(1, "FAIL");
	}
}

/**
 * Reset the driver.
 */
void
reset()
{
	int fd = open(MAG_DEVICE_PATH, O_RDONLY);

	if (fd < 0)
		err(1, "failed ");

	if (ioctl(fd, SENSORIOCRESET, 0) < 0)
		err(1, "driver reset failed");

	if (ioctl(fd, SENSORIOCSPOLLRATE, SENSOR_POLLRATE_DEFAULT) < 0)
		err(1, "driver poll restart failed");

	exit(0);
}

/**
 * Print a little info about the driver.
 */
void
info()
{
	if (g_dev == nullptr)
		errx(1, "driver not running");

	printf("state @ %p\n", g_dev);
	g_dev->print_info();

	exit(0);
}

} // namespace

int
hmc5883_main(int argc, char *argv[])
{
	/*
	 * Start/load the driver.
	 */
	if (!strcmp(argv[1], "start"))
		hmc5883::start();

	/*
	 * Test the driver/device.
	 */
	if (!strcmp(argv[1], "test"))
		hmc5883::test();

	/*
	 * Reset the driver.
	 */
	if (!strcmp(argv[1], "reset"))
		hmc5883::reset();

	/*
	 * Print driver information.
	 */
	if (!strcmp(argv[1], "info") || !strcmp(argv[1], "status"))
		hmc5883::info();

	/*
	 * Autocalibrate the scaling
	 */
	if (!strcmp(argv[1], "calibrate")) {
		if (hmc5883::calibrate() == 0) {
			errx(0, "calibration successful");

		} else {
			errx(1, "calibration failed");
		}
	}

	errx(1, "unrecognized command, try 'start', 'test', 'reset' 'calibrate' or 'info'");
}