aboutsummaryrefslogtreecommitdiff
path: root/src/examples/fixedwing_control/main.c
blob: 1d590ae61ce06dd1167fa36bc4258e24c6c50152 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
/****************************************************************************
 *
 *   Copyright (c) 2013, 2014 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file main.c
 *
 * Example implementation of a fixed wing attitude controller. This file is a complete
 * fixed wing controller for manual attitude control or auto waypoint control.
 * There is no need to touch any other system components to extend / modify the
 * complete control architecture.
 *
 * @author Lorenz Meier <lm@inf.ethz.ch>
 */

#include <nuttx/config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <time.h>
#include <drivers/drv_hrt.h>
#include <uORB/uORB.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/position_setpoint_triplet.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_status.h>
#include <uORB/topics/vehicle_attitude_setpoint.h>
#include <uORB/topics/manual_control_setpoint.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/actuator_controls_0.h>
#include <uORB/topics/actuator_controls_1.h>
#include <uORB/topics/actuator_controls_2.h>
#include <uORB/topics/actuator_controls_3.h>
#include <uORB/topics/vehicle_rates_setpoint.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/parameter_update.h>
#include <systemlib/param/param.h>
#include <systemlib/pid/pid.h>
#include <geo/geo.h>
#include <systemlib/perf_counter.h>
#include <systemlib/systemlib.h>
#include <systemlib/err.h>

/* process-specific header files */
#include "params.h"

/* Prototypes */

/**
 * Daemon management function.
 *
 * This function allows to start / stop the background task (daemon).
 * The purpose of it is to be able to start the controller on the
 * command line, query its status and stop it, without giving up
 * the command line to one particular process or the need for bg/fg
 * ^Z support by the shell.
 */
__EXPORT int ex_fixedwing_control_main(int argc, char *argv[]);

/**
 * Mainloop of daemon.
 */
int fixedwing_control_thread_main(int argc, char *argv[]);

/**
 * Print the correct usage.
 */
static void usage(const char *reason);

/**
 * Control roll and pitch angle.
 *
 * This very simple roll and pitch controller takes the current roll angle
 * of the system and compares it to a reference. Pitch is controlled to zero and yaw remains
 * uncontrolled (tutorial code, not intended for flight).
 *
 * @param att_sp The current attitude setpoint - the values the system would like to reach.
 * @param att The current attitude. The controller should make the attitude match the setpoint
 * @param rates_sp The angular rate setpoint. This is the output of the controller.
 */
void control_attitude(const struct vehicle_attitude_setpoint_s *att_sp, const struct vehicle_attitude_s *att,
		      struct vehicle_rates_setpoint_s *rates_sp,
		      struct actuator_controls_s *actuators);

/**
 * Control heading.
 *
 * This very simple heading to roll angle controller outputs the desired roll angle based on
 * the current position of the system, the desired position (the setpoint) and the current
 * heading.
 *
 * @param pos The current position of the system
 * @param sp The current position setpoint
 * @param att The current attitude
 * @param att_sp The attitude setpoint. This is the output of the controller
 */
void control_heading(const struct vehicle_global_position_s *pos, const struct position_setpoint_s *sp,
		     const struct vehicle_attitude_s *att, struct vehicle_attitude_setpoint_s *att_sp);

/* Variables */
static bool thread_should_exit = false;		/**< Daemon exit flag */
static bool thread_running = false;		/**< Daemon status flag */
static int deamon_task;				/**< Handle of deamon task / thread */
static struct params p;
static struct param_handles ph;

void control_attitude(const struct vehicle_attitude_setpoint_s *att_sp, const struct vehicle_attitude_s *att,
		      struct vehicle_rates_setpoint_s *rates_sp,
		      struct actuator_controls_s *actuators)
{

	/*
	 * The PX4 architecture provides a mixer outside of the controller.
	 * The mixer is fed with a default vector of actuator controls, representing
	 * moments applied to the vehicle frame. This vector
	 * is structured as:
	 *
	 * Control Group 0 (attitude):
	 *
	 *    0  -  roll   (-1..+1)
	 *    1  -  pitch  (-1..+1)
	 *    2  -  yaw    (-1..+1)
	 *    3  -  thrust ( 0..+1)
	 *    4  -  flaps  (-1..+1)
	 *    ...
	 *
	 * Control Group 1 (payloads / special):
	 *
	 *    ...
	 */

	/*
	 * Calculate roll error and apply P gain
	 */
	float roll_err = att->roll - att_sp->roll_body;
	actuators->control[0] = roll_err * p.roll_p;

	/*
	 * Calculate pitch error and apply P gain
	 */
	float pitch_err = att->pitch - att_sp->pitch_body;
	actuators->control[1] = pitch_err * p.pitch_p;
}

void control_heading(const struct vehicle_global_position_s *pos, const struct position_setpoint_s *sp,
		     const struct vehicle_attitude_s *att, struct vehicle_attitude_setpoint_s *att_sp)
{

	/*
	 * Calculate heading error of current position to desired position
	 */

	float bearing = get_bearing_to_next_waypoint(pos->lat, pos->lon, sp->lat, sp->lon);

	/* calculate heading error */
	float yaw_err = att->yaw - bearing;
	/* apply control gain */
	att_sp->roll_body = yaw_err * p.hdng_p;

	/* limit output, this commonly is a tuning parameter, too */
	if (att_sp->roll_body < -0.6f) {
		att_sp->roll_body = -0.6f;

	} else if (att_sp->roll_body > 0.6f) {
		att_sp->roll_body = 0.6f;
	}
}

/* Main Thread */
int fixedwing_control_thread_main(int argc, char *argv[])
{
	/* read arguments */
	bool verbose = false;

	for (int i = 1; i < argc; i++) {
		if (strcmp(argv[i], "-v") == 0 || strcmp(argv[i], "--verbose") == 0) {
			verbose = true;
		}
	}

	/* welcome user (warnx prints a line, including an appended\n, with variable arguments */
	warnx("[example fixedwing control] started");

	/* initialize parameters, first the handles, then the values */
	parameters_init(&ph);
	parameters_update(&ph, &p);


	/*
	 * PX4 uses a publish/subscribe design pattern to enable
	 * multi-threaded communication.
	 *
	 * The most elegant aspect of this is that controllers and
	 * other processes can either 'react' to new data, or run
	 * at their own pace.
	 *
	 * PX4 developer guide:
	 * https://pixhawk.ethz.ch/px4/dev/shared_object_communication
	 *
	 * Wikipedia description:
	 * http://en.wikipedia.org/wiki/Publish–subscribe_pattern
	 *
	 */




	/*
	 * Declare and safely initialize all structs to zero.
	 *
	 * These structs contain the system state and things
	 * like attitude, position, the current waypoint, etc.
	 */
	struct vehicle_attitude_s att;
	memset(&att, 0, sizeof(att));
	struct vehicle_attitude_setpoint_s att_sp;
	memset(&att_sp, 0, sizeof(att_sp));
	struct vehicle_rates_setpoint_s rates_sp;
	memset(&rates_sp, 0, sizeof(rates_sp));
	struct vehicle_global_position_s global_pos;
	memset(&global_pos, 0, sizeof(global_pos));
	struct manual_control_setpoint_s manual_sp;
	memset(&manual_sp, 0, sizeof(manual_sp));
	struct vehicle_status_s vstatus;
	memset(&vstatus, 0, sizeof(vstatus));
	struct position_setpoint_s global_sp;
	memset(&global_sp, 0, sizeof(global_sp));

	/* output structs - this is what is sent to the mixer */
	struct actuator_controls_s actuators;
	memset(&actuators, 0, sizeof(actuators));


	/* publish actuator controls with zero values */
	for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++) {
		actuators.control[i] = 0.0f;
	}

	/*
	 * Advertise that this controller will publish actuator
	 * control values and the rate setpoint
	 */
	orb_advert_t actuator_pub = orb_advertise(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, &actuators);
	orb_advert_t rates_pub = orb_advertise(ORB_ID(vehicle_rates_setpoint), &rates_sp);

	/* subscribe to topics. */
	int att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	int global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
	int manual_sp_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	int vstatus_sub = orb_subscribe(ORB_ID(vehicle_status));
	int global_sp_sub = orb_subscribe(ORB_ID(position_setpoint_triplet));
	int param_sub = orb_subscribe(ORB_ID(parameter_update));

	/* Setup of loop */

	struct pollfd fds[2] = {{ .fd = param_sub, .events = POLLIN },
		{ .fd = att_sub, .events = POLLIN }
	};

	while (!thread_should_exit) {

		/*
		 * Wait for a sensor or param update, check for exit condition every 500 ms.
		 * This means that the execution will block here without consuming any resources,
		 * but will continue to execute the very moment a new attitude measurement or
		 * a param update is published. So no latency in contrast to the polling
		 * design pattern (do not confuse the poll() system call with polling).
		 *
		 * This design pattern makes the controller also agnostic of the attitude
		 * update speed - it runs as fast as the attitude updates with minimal latency.
		 */
		int ret = poll(fds, 2, 500);

		if (ret < 0) {
			/*
			 * Poll error, this will not really happen in practice,
			 * but its good design practice to make output an error message.
			 */
			warnx("poll error");

		} else if (ret == 0) {
			/* no return value = nothing changed for 500 ms, ignore */
		} else {

			/* only update parameters if they changed */
			if (fds[0].revents & POLLIN) {
				/* read from param to clear updated flag (uORB API requirement) */
				struct parameter_update_s update;
				orb_copy(ORB_ID(parameter_update), param_sub, &update);

				/* if a param update occured, re-read our parameters */
				parameters_update(&ph, &p);
			}

			/* only run controller if attitude changed */
			if (fds[1].revents & POLLIN) {


				/* Check if there is a new position measurement or position setpoint */
				bool pos_updated;
				orb_check(global_pos_sub, &pos_updated);
				bool global_sp_updated;
				orb_check(global_sp_sub, &global_sp_updated);
				bool manual_sp_updated;
				orb_check(manual_sp_sub, &manual_sp_updated);

				/* get a local copy of attitude */
				orb_copy(ORB_ID(vehicle_attitude), att_sub, &att);

				if (global_sp_updated) {
					struct position_setpoint_triplet_s triplet;
					orb_copy(ORB_ID(position_setpoint_triplet), global_sp_sub, &triplet);
					memcpy(&global_sp, &triplet.current, sizeof(global_sp));
				}

				if (manual_sp_updated)
					/* get the RC (or otherwise user based) input */
				{
					orb_copy(ORB_ID(manual_control_setpoint), manual_sp_sub, &manual_sp);
				}

				/* check if the throttle was ever more than 50% - go later only to failsafe if yes */
				if (isfinite(manual_sp.z) &&
				    (manual_sp.z >= 0.6f) &&
				    (manual_sp.z <= 1.0f)) {
				}

				/* get the system status and the flight mode we're in */
				orb_copy(ORB_ID(vehicle_status), vstatus_sub, &vstatus);

				/* publish rates */
				orb_publish(ORB_ID(vehicle_rates_setpoint), rates_pub, &rates_sp);

				/* sanity check and publish actuator outputs */
				if (isfinite(actuators.control[0]) &&
				    isfinite(actuators.control[1]) &&
				    isfinite(actuators.control[2]) &&
				    isfinite(actuators.control[3])) {
					orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators);

					if (verbose) {
						warnx("published");
					}
				}
			}
		}
	}

	printf("[ex_fixedwing_control] exiting, stopping all motors.\n");
	thread_running = false;

	/* kill all outputs */
	for (unsigned i = 0; i < NUM_ACTUATOR_CONTROLS; i++) {
		actuators.control[i] = 0.0f;
	}

	orb_publish(ORB_ID_VEHICLE_ATTITUDE_CONTROLS, actuator_pub, &actuators);

	fflush(stdout);

	return 0;
}

/* Startup Functions */

static void
usage(const char *reason)
{
	if (reason) {
		fprintf(stderr, "%s\n", reason);
	}

	fprintf(stderr, "usage: ex_fixedwing_control {start|stop|status}\n\n");
	exit(1);
}

/**
 * The daemon app only briefly exists to start
 * the background job. The stack size assigned in the
 * Makefile does only apply to this management task.
 *
 * The actual stack size should be set in the call
 * to task_spawn_cmd().
 */
int ex_fixedwing_control_main(int argc, char *argv[])
{
	if (argc < 2) {
		usage("missing command");
	}

	if (!strcmp(argv[1], "start")) {

		if (thread_running) {
			printf("ex_fixedwing_control already running\n");
			/* this is not an error */
			exit(0);
		}

		thread_should_exit = false;
		deamon_task = task_spawn_cmd("ex_fixedwing_control",
					     SCHED_DEFAULT,
					     SCHED_PRIORITY_MAX - 20,
					     2048,
					     fixedwing_control_thread_main,
					     (argv) ? (char * const *)&argv[2] : (char * const *)NULL);
		thread_running = true;
		exit(0);
	}

	if (!strcmp(argv[1], "stop")) {
		thread_should_exit = true;
		exit(0);
	}

	if (!strcmp(argv[1], "status")) {
		if (thread_running) {
			printf("\tex_fixedwing_control is running\n");

		} else {
			printf("\tex_fixedwing_control not started\n");
		}

		exit(0);
	}

	usage("unrecognized command");
	exit(1);
}