aboutsummaryrefslogtreecommitdiff
path: root/src/modules/att_pos_estimator_ekf/KalmanNav.cpp
blob: 4ef150da1eea11c0862f24bfaeda002741fb56eb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/****************************************************************************
 *
 *   Copyright (C) 2012 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file KalmanNav.cpp
 *
 * kalman filter navigation code
 */

#include <poll.h>

#include "KalmanNav.hpp"

// constants
// Titterton pg. 52
static const float omega = 7.2921150e-5f; // earth rotation rate, rad/s
static const float R0 = 6378137.0f; // earth radius, m
static const float g0 = 9.806f; // standard gravitational accel. m/s^2
static const int8_t ret_ok = 0; 		// no error in function
static const int8_t ret_error = -1; 	// error occurred

KalmanNav::KalmanNav(SuperBlock *parent, const char *name) :
	SuperBlock(parent, name),
	// ekf matrices
	F(9, 9),
	G(9, 6),
	P(9, 9),
	P0(9, 9),
	V(6, 6),
	// attitude measurement ekf matrices
	HAtt(6, 9),
	RAtt(6, 6),
	// position measurement ekf matrices
	HPos(6, 9),
	RPos(6, 6),
	// attitude representations
	C_nb(),
	q(),
	// subscriptions
	_sensors(&getSubscriptions(), ORB_ID(sensor_combined), 5), // limit to 200 Hz
	_gps(&getSubscriptions(), ORB_ID(vehicle_gps_position), 100), // limit to 10 Hz
	_param_update(&getSubscriptions(), ORB_ID(parameter_update), 1000), // limit to 1 Hz
	// publications
	_pos(&getPublications(), ORB_ID(vehicle_global_position)),
	_att(&getPublications(), ORB_ID(vehicle_attitude)),
	// timestamps
	_pubTimeStamp(hrt_absolute_time()),
	_predictTimeStamp(hrt_absolute_time()),
	_attTimeStamp(hrt_absolute_time()),
	_outTimeStamp(hrt_absolute_time()),
	// frame count
	_navFrames(0),
	// miss counts
	_miss(0),
	// accelerations
	fN(0), fE(0), fD(0),
	// state
	phi(0), theta(0), psi(0),
	vN(0), vE(0), vD(0),
	lat(0), lon(0), alt(0),
	// parameters for ground station
	_vGyro(this, "V_GYRO"),
	_vAccel(this, "V_ACCEL"),
	_rMag(this, "R_MAG"),
	_rGpsVel(this, "R_GPS_VEL"),
	_rGpsPos(this, "R_GPS_POS"),
	_rGpsAlt(this, "R_GPS_ALT"),
	_rPressAlt(this, "R_PRESS_ALT"),
	_rAccel(this, "R_ACCEL"),
	_magDip(this, "ENV_MAG_DIP"),
	_magDec(this, "ENV_MAG_DEC"),
	_g(this, "ENV_G"),
	_faultPos(this, "FAULT_POS"),
	_faultAtt(this, "FAULT_ATT"),
	_attitudeInitialized(false),
	_positionInitialized(false),
	_attitudeInitCounter(0)
{
	using namespace math;

	// initial state covariance matrix
	P0 = Matrix::identity(9) * 0.01f;
	P = P0;

	// initial state
	phi = 0.0f;
	theta = 0.0f;
	psi = 0.0f;
	vN = 0.0f;
	vE = 0.0f;
	vD = 0.0f;
	lat = 0.0f;
	lon = 0.0f;
	alt = 0.0f;

	// initialize quaternions
	q = Quaternion(EulerAngles(phi, theta, psi));

	// initialize dcm
	C_nb = Dcm(q);

	// HPos is constant
	HPos(0, 3) = 1.0f;
	HPos(1, 4) = 1.0f;
	HPos(2, 6) = 1.0e7f * M_RAD_TO_DEG_F;
	HPos(3, 7) = 1.0e7f * M_RAD_TO_DEG_F;
	HPos(4, 8) = 1.0f;
	HPos(5, 8) = 1.0f;

	// initialize all parameters
	updateParams();
}

void KalmanNav::update()
{
	using namespace math;

	struct pollfd fds[1];
	fds[0].fd = _sensors.getHandle();
	fds[0].events = POLLIN;

	// poll for new data
	int ret = poll(fds, 1, 1000);

	if (ret < 0) {
		// XXX this is seriously bad - should be an emergency
		return;

	} else if (ret == 0) { // timeout
		return;
	}

	// get new timestamp
	uint64_t newTimeStamp = hrt_absolute_time();

	// check updated subscriptions
	if (_param_update.updated()) updateParams();

	bool gpsUpdate = _gps.updated();
	bool sensorsUpdate = _sensors.updated();

	// get new information from subscriptions
	// this clears update flag
	updateSubscriptions();

	// initialize attitude when sensors online
	if (!_attitudeInitialized && sensorsUpdate &&
	    _sensors.accelerometer_counter > 10 &&
	    _sensors.gyro_counter > 10 &&
	    _sensors.magnetometer_counter > 10) {
		if (correctAtt() == ret_ok) _attitudeInitCounter++;

		if (_attitudeInitCounter > 100) {
			printf("[kalman_demo] initialized EKF attitude\n");
			printf("phi: %8.4f, theta: %8.4f, psi: %8.4f\n",
			       double(phi), double(theta), double(psi));
			_attitudeInitialized = true;
		}
	}

	// initialize position when gps received
	if (!_positionInitialized &&
	    _attitudeInitialized && // wait for attitude first
	    gpsUpdate &&
	    _gps.fix_type > 2
	    //&& _gps.counter_pos_valid > 10
	   ) {
		vN = _gps.vel_n_m_s;
		vE = _gps.vel_e_m_s;
		vD = _gps.vel_d_m_s;
		setLatDegE7(_gps.lat);
		setLonDegE7(_gps.lon);
		setAltE3(_gps.alt);
		_positionInitialized = true;
		printf("[kalman_demo] initialized EKF state with GPS\n");
		printf("vN: %8.4f, vE: %8.4f, vD: %8.4f, lat: %8.4f, lon: %8.4f, alt: %8.4f\n",
		       double(vN), double(vE), double(vD),
		       lat, lon, alt);
	}

	// prediciton step
	// using sensors timestamp so we can account for packet lag
	float dt = (_sensors.timestamp - _predictTimeStamp) / 1.0e6f;
	//printf("dt: %15.10f\n", double(dt));
	_predictTimeStamp = _sensors.timestamp;

	// don't predict if time greater than a second
	if (dt < 1.0f) {
		predictState(dt);
		predictStateCovariance(dt);
		// count fast frames
		_navFrames += 1;
	}

	// count times 100 Hz rate isn't met
	if (dt > 0.01f) _miss++;

	// gps correction step
	if (_positionInitialized && gpsUpdate) {
		correctPos();
	}

	// attitude correction step
	if (_attitudeInitialized 								// initialized
	    && sensorsUpdate 								// new data
	    && _sensors.timestamp - _attTimeStamp > 1e6 / 20 	// 20 Hz
	   ) {
		_attTimeStamp = _sensors.timestamp;
		correctAtt();
	}

	// publication
	if (newTimeStamp - _pubTimeStamp > 1e6 / 50) { // 50 Hz
		_pubTimeStamp = newTimeStamp;

		updatePublications();
	}

	// output
	if (newTimeStamp - _outTimeStamp > 10e6) { // 0.1 Hz
		_outTimeStamp = newTimeStamp;
		//printf("nav: %4d Hz, miss #: %4d\n",
		//       _navFrames / 10, _miss / 10);
		_navFrames = 0;
		_miss = 0;
	}
}

void KalmanNav::updatePublications()
{
	using namespace math;

	// position publication
	_pos.timestamp = _pubTimeStamp;
	_pos.time_gps_usec = _gps.timestamp_position;
	_pos.valid = true;
	_pos.lat = getLatDegE7();
	_pos.lon = getLonDegE7();
	_pos.alt = float(alt);
	_pos.relative_alt = float(alt); // TODO, make relative
	_pos.vx = vN;
	_pos.vy = vE;
	_pos.vz = vD;
	_pos.hdg = psi;

	// attitude publication
	_att.timestamp = _pubTimeStamp;
	_att.roll = phi;
	_att.pitch = theta;
	_att.yaw = psi;
	_att.rollspeed = _sensors.gyro_rad_s[0];
	_att.pitchspeed = _sensors.gyro_rad_s[1];
	_att.yawspeed = _sensors.gyro_rad_s[2];
	// TODO, add gyro offsets to filter
	_att.rate_offsets[0] = 0.0f;
	_att.rate_offsets[1] = 0.0f;
	_att.rate_offsets[2] = 0.0f;

	for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++)
			_att.R[i][j] = C_nb(i, j);

	for (int i = 0; i < 4; i++) _att.q[i] = q(i);

	_att.R_valid = true;
	_att.q_valid = true;

	// selectively update publications,
	// do NOT call superblock do-all method
	if (_positionInitialized)
		_pos.update();

	if (_attitudeInitialized)
		_att.update();
}

int KalmanNav::predictState(float dt)
{
	using namespace math;

	// trig
	float sinL = sinf(lat);
	float cosL = cosf(lat);
	float cosLSing = cosf(lat);

	// prevent singularity
	if (fabsf(cosLSing) < 0.01f) {
		if (cosLSing > 0) cosLSing = 0.01;
		else cosLSing = -0.01;
	}

	// attitude prediction
	if (_attitudeInitialized) {
		Vector3 w(_sensors.gyro_rad_s);

		// attitude
		q = q + q.derivative(w) * dt;

		// renormalize quaternion if needed
		if (fabsf(q.norm() - 1.0f) > 1e-4f) {
			q = q.unit();
		}

		// C_nb update
		C_nb = Dcm(q);

		// euler update
		EulerAngles euler(C_nb);
		phi = euler.getPhi();
		theta = euler.getTheta();
		psi = euler.getPsi();

		// specific acceleration in nav frame
		Vector3 accelB(_sensors.accelerometer_m_s2);
		Vector3 accelN = C_nb * accelB;
		fN = accelN(0);
		fE = accelN(1);
		fD = accelN(2);
	}

	// position prediction
	if (_positionInitialized) {
		// neglects angular deflections in local gravity
		// see Titerton pg. 70
		float R = R0 + float(alt);
		float LDot = vN / R;
		float lDot = vE / (cosLSing * R);
		float rotRate = 2 * omega + lDot;

		// XXX position prediction using speed
		float vNDot = fN - vE * rotRate * sinL +
			      vD * LDot;
		float vDDot = fD - vE * rotRate * cosL -
			      vN * LDot + _g.get();
		float vEDot = fE + vN * rotRate * sinL +
			      vDDot * rotRate * cosL;

		// rectangular integration
		vN += vNDot * dt;
		vE += vEDot * dt;
		vD += vDDot * dt;
		lat += double(LDot * dt);
		lon += double(lDot * dt);
		alt += double(-vD * dt);
	}

	return ret_ok;
}

int KalmanNav::predictStateCovariance(float dt)
{
	using namespace math;

	// trig
	float sinL = sinf(lat);
	float cosL = cosf(lat);
	float cosLSq = cosL * cosL;
	float tanL = tanf(lat);

	// prepare for matrix
	float R = R0 + float(alt);
	float RSq = R * R;

	// F Matrix
	// Titterton pg. 291

	F(0, 1) = -(omega * sinL + vE * tanL / R);
	F(0, 2) = vN / R;
	F(0, 4) = 1.0f / R;
	F(0, 6) = -omega * sinL;
	F(0, 8) = -vE / RSq;

	F(1, 0) = omega * sinL + vE * tanL / R;
	F(1, 2) = omega * cosL + vE / R;
	F(1, 3) = -1.0f / R;
	F(1, 8) = vN / RSq;

	F(2, 0) = -vN / R;
	F(2, 1) = -omega * cosL - vE / R;
	F(2, 4) = -tanL / R;
	F(2, 6) = -omega * cosL - vE / (R * cosLSq);
	F(2, 8) = vE * tanL / RSq;

	F(3, 1) = -fD;
	F(3, 2) = fE;
	F(3, 3) = vD / R;
	F(3, 4) = -2 * (omega * sinL + vE * tanL / R);
	F(3, 5) = vN / R;
	F(3, 6) = -vE * (2 * omega * cosL + vE / (R * cosLSq));
	F(3, 8) = (vE * vE * tanL - vN * vD) / RSq;

	F(4, 0) = fD;
	F(4, 2) = -fN;
	F(4, 3) = 2 * omega * sinL + vE * tanL / R;
	F(4, 4) = (vN * tanL + vD) / R;
	F(4, 5) = 2 * omega * cosL + vE / R;
	F(4, 6) = 2 * omega * (vN * cosL - vD * sinL) +
		  vN * vE / (R * cosLSq);
	F(4, 8) = -vE * (vN * tanL + vD) / RSq;

	F(5, 0) = -fE;
	F(5, 1) = fN;
	F(5, 3) = -2 * vN / R;
	F(5, 4) = -2 * (omega * cosL + vE / R);
	F(5, 6) = 2 * omega * vE * sinL;
	F(5, 8) = (vN * vN + vE * vE) / RSq;

	F(6, 3) = 1 / R;
	F(6, 8) = -vN / RSq;

	F(7, 4) = 1 / (R * cosL);
	F(7, 6) = vE * tanL / (R * cosL);
	F(7, 8) = -vE / (cosL * RSq);

	F(8, 5) = -1;

	// G Matrix
	// Titterton pg. 291
	G(0, 0) = -C_nb(0, 0);
	G(0, 1) = -C_nb(0, 1);
	G(0, 2) = -C_nb(0, 2);
	G(1, 0) = -C_nb(1, 0);
	G(1, 1) = -C_nb(1, 1);
	G(1, 2) = -C_nb(1, 2);
	G(2, 0) = -C_nb(2, 0);
	G(2, 1) = -C_nb(2, 1);
	G(2, 2) = -C_nb(2, 2);

	G(3, 3) = C_nb(0, 0);
	G(3, 4) = C_nb(0, 1);
	G(3, 5) = C_nb(0, 2);
	G(4, 3) = C_nb(1, 0);
	G(4, 4) = C_nb(1, 1);
	G(4, 5) = C_nb(1, 2);
	G(5, 3) = C_nb(2, 0);
	G(5, 4) = C_nb(2, 1);
	G(5, 5) = C_nb(2, 2);

	// continuous predictioon equations
	// for discrte time EKF
	// http://en.wikipedia.org/wiki/Extended_Kalman_filter
	P = P + (F * P + P * F.transpose() + G * V * G.transpose()) * dt;

	return ret_ok;
}

int KalmanNav::correctAtt()
{
	using namespace math;

	// trig
	float cosPhi = cosf(phi);
	float cosTheta = cosf(theta);
	float cosPsi = cosf(psi);
	float sinPhi = sinf(phi);
	float sinTheta = sinf(theta);
	float sinPsi = sinf(psi);

	// mag measurement
	Vector3 zMag(_sensors.magnetometer_ga);
	//float magNorm = zMag.norm();
	zMag = zMag.unit();

	// mag predicted measurement
	// choosing some typical magnetic field properties,
	//  TODO dip/dec depend on lat/ lon/ time
	float dip = _magDip.get() / M_RAD_TO_DEG_F; // dip, inclination with level
	float dec = _magDec.get() / M_RAD_TO_DEG_F; // declination, clockwise rotation from north
	float bN = cosf(dip) * cosf(dec);
	float bE = cosf(dip) * sinf(dec);
	float bD = sinf(dip);
	Vector3 bNav(bN, bE, bD);
	Vector3 zMagHat = (C_nb.transpose() * bNav).unit();

	// accel measurement
	Vector3 zAccel(_sensors.accelerometer_m_s2);
	float accelMag = zAccel.norm();
	zAccel = zAccel.unit();

	// ignore accel correction when accel mag not close to g
	Matrix RAttAdjust = RAtt;

	bool ignoreAccel = fabsf(accelMag - _g.get()) > 1.1f;

	if (ignoreAccel) {
		RAttAdjust(3, 3) = 1.0e10;
		RAttAdjust(4, 4) = 1.0e10;
		RAttAdjust(5, 5) = 1.0e10;

	} else {
		//printf("correcting attitude with accel\n");
	}

	// accel predicted measurement
	Vector3 zAccelHat = (C_nb.transpose() * Vector3(0, 0, -_g.get())).unit();

	// combined measurement
	Vector zAtt(6);
	Vector zAttHat(6);

	for (int i = 0; i < 3; i++) {
		zAtt(i) = zMag(i);
		zAtt(i + 3) = zAccel(i);
		zAttHat(i) = zMagHat(i);
		zAttHat(i + 3) = zAccelHat(i);
	}

	// HMag , HAtt (0-2,:)
	float tmp1 =
		cosPsi * cosTheta * bN +
		sinPsi * cosTheta * bE -
		sinTheta * bD;
	HAtt(0, 1) = -(
			     cosPsi * sinTheta * bN +
			     sinPsi * sinTheta * bE +
			     cosTheta * bD
		     );
	HAtt(0, 2) = -cosTheta * (sinPsi * bN - cosPsi * bE);
	HAtt(1, 0) =
		(cosPhi * cosPsi * sinTheta + sinPhi * sinPsi) * bN +
		(cosPhi * sinPsi * sinTheta - sinPhi * cosPsi) * bE +
		cosPhi * cosTheta * bD;
	HAtt(1, 1) = sinPhi * tmp1;
	HAtt(1, 2) = -(
			     (sinPhi * sinPsi * sinTheta + cosPhi * cosPsi) * bN -
			     (sinPhi * cosPsi * sinTheta - cosPhi * sinPsi) * bE
		     );
	HAtt(2, 0) = -(
			     (sinPhi * cosPsi * sinTheta - cosPhi * sinPsi) * bN +
			     (sinPhi * sinPsi * sinTheta + cosPhi * cosPsi) * bE +
			     (sinPhi * cosTheta) * bD
		     );
	HAtt(2, 1) = cosPhi * tmp1;
	HAtt(2, 2) = -(
			     (cosPhi * sinPsi * sinTheta - sinPhi * cosTheta) * bN -
			     (cosPhi * cosPsi * sinTheta + sinPhi * sinPsi) * bE
		     );

	// HAccel , HAtt (3-5,:)
	HAtt(3, 1) = cosTheta;
	HAtt(4, 0) = -cosPhi * cosTheta;
	HAtt(4, 1) = sinPhi * sinTheta;
	HAtt(5, 0) = sinPhi * cosTheta;
	HAtt(5, 1) = cosPhi * sinTheta;

	// compute correction
	// http://en.wikipedia.org/wiki/Extended_Kalman_filter
	Vector y = zAtt - zAttHat; // residual
	Matrix S = HAtt * P * HAtt.transpose() + RAttAdjust; // residual covariance
	Matrix K = P * HAtt.transpose() * S.inverse();
	Vector xCorrect = K * y;

	// check correciton is sane
	for (size_t i = 0; i < xCorrect.getRows(); i++) {
		float val = xCorrect(i);

		if (isnan(val) || isinf(val)) {
			// abort correction and return
			printf("[kalman_demo] numerical failure in att correction\n");
			// reset P matrix to P0
			P = P0;
			return ret_error;
		}
	}

	// correct state
	if (!ignoreAccel) {
		phi += xCorrect(PHI);
		theta += xCorrect(THETA);
	}

	psi += xCorrect(PSI);

	// attitude also affects nav velocities
	if (_positionInitialized) {
		vN += xCorrect(VN);
		vE += xCorrect(VE);
		vD += xCorrect(VD);
	}

	// update state covariance
	// http://en.wikipedia.org/wiki/Extended_Kalman_filter
	P = P - K * HAtt * P;

	// fault detection
	float beta = y.dot(S.inverse() * y);

	if (beta > _faultAtt.get()) {
		printf("fault in attitude: beta = %8.4f\n", (double)beta);
		printf("y:\n"); y.print();
		printf("zMagHat:\n"); zMagHat.print();
		printf("zMag:\n"); zMag.print();
		printf("bNav:\n"); bNav.print();
	}

	// update quaternions from euler
	// angle correction
	q = Quaternion(EulerAngles(phi, theta, psi));

	return ret_ok;
}

int KalmanNav::correctPos()
{
	using namespace math;

	// residual
	Vector y(6);
	y(0) = _gps.vel_n_m_s - vN;
	y(1) = _gps.vel_e_m_s - vE;
	y(2) = double(_gps.lat) - lat * 1.0e7 * M_RAD_TO_DEG;
	y(3) = double(_gps.lon) - lon * 1.0e7 * M_RAD_TO_DEG;
	y(4) = double(_gps.alt) / 1.0e3 - alt;
	y(5) = double(_sensors.baro_alt_meter) - alt;

	// compute correction
	// http://en.wikipedia.org/wiki/Extended_Kalman_filter
	Matrix S = HPos * P * HPos.transpose() + RPos; // residual covariance
	Matrix K = P * HPos.transpose() * S.inverse();
	Vector xCorrect = K * y;

	// check correction is sane
	for (size_t i = 0; i < xCorrect.getRows(); i++) {
		float val = xCorrect(i);

		if (isnan(val) || isinf(val)) {
			// abort correction and return
			printf("[kalman_demo] numerical failure in gps correction\n");
			// fallback to GPS
			vN = _gps.vel_n_m_s;
			vE = _gps.vel_e_m_s;
			vD = _gps.vel_d_m_s;
			setLatDegE7(_gps.lat);
			setLonDegE7(_gps.lon);
			setAltE3(_gps.alt);
			// reset P matrix to P0
			P = P0;
			return ret_error;
		}
	}

	// correct state
	vN += xCorrect(VN);
	vE += xCorrect(VE);
	vD += xCorrect(VD);
	lat += double(xCorrect(LAT));
	lon += double(xCorrect(LON));
	alt += double(xCorrect(ALT));

	// update state covariance
	// http://en.wikipedia.org/wiki/Extended_Kalman_filter
	P = P - K * HPos * P;

	// fault detetcion
	float beta = y.dot(S.inverse() * y);

	if (beta > _faultPos.get()) {
		printf("fault in gps: beta = %8.4f\n", (double)beta);
		printf("Y/N: vN: %8.4f, vE: %8.4f, lat: %8.4f, lon: %8.4f, alt: %8.4f\n",
		       double(y(0) / sqrtf(RPos(0, 0))),
		       double(y(1) / sqrtf(RPos(1, 1))),
		       double(y(2) / sqrtf(RPos(2, 2))),
		       double(y(3) / sqrtf(RPos(3, 3))),
		       double(y(4) / sqrtf(RPos(4, 4))),
		       double(y(5) / sqrtf(RPos(5, 5))));
	}

	return ret_ok;
}

void KalmanNav::updateParams()
{
	using namespace math;
	using namespace control;
	SuperBlock::updateParams();

	// gyro noise
	V(0, 0) = _vGyro.get();   // gyro x, rad/s
	V(1, 1) = _vGyro.get();   // gyro y
	V(2, 2) = _vGyro.get();   // gyro z

	// accel noise
	V(3, 3) = _vAccel.get();   // accel x, m/s^2
	V(4, 4) = _vAccel.get();   // accel y
	V(5, 5) = _vAccel.get();   // accel z

	// magnetometer noise
	float noiseMin = 1e-6f;
	float noiseMagSq = _rMag.get() * _rMag.get();

	if (noiseMagSq < noiseMin) noiseMagSq = noiseMin;

	RAtt(0, 0) = noiseMagSq; // normalized direction
	RAtt(1, 1) = noiseMagSq;
	RAtt(2, 2) = noiseMagSq;

	// accelerometer noise
	float noiseAccelSq = _rAccel.get() * _rAccel.get();

	// bound noise to prevent singularities
	if (noiseAccelSq < noiseMin) noiseAccelSq = noiseMin;

	RAtt(3, 3) = noiseAccelSq; // normalized direction
	RAtt(4, 4) = noiseAccelSq;
	RAtt(5, 5) = noiseAccelSq;

	// gps noise
	float R = R0 + float(alt);
	float cosLSing = cosf(lat);

	// prevent singularity
	if (fabsf(cosLSing) < 0.01f) {
		if (cosLSing > 0) cosLSing = 0.01;
		else cosLSing = -0.01;
	}

	float noiseVel = _rGpsVel.get();
	float noiseLatDegE7 = 1.0e7f * M_RAD_TO_DEG_F * _rGpsPos.get() / R;
	float noiseLonDegE7 = noiseLatDegE7 / cosLSing;
	float noiseGpsAlt = _rGpsAlt.get();
	float noisePressAlt = _rPressAlt.get();

	// bound noise to prevent singularities
	if (noiseVel < noiseMin) noiseVel = noiseMin;

	if (noiseLatDegE7 < noiseMin) noiseLatDegE7 = noiseMin;

	if (noiseLonDegE7 < noiseMin) noiseLonDegE7 = noiseMin;

	if (noiseGpsAlt < noiseMin) noiseGpsAlt = noiseMin;

	if (noisePressAlt < noiseMin) noisePressAlt = noiseMin;

	RPos(0, 0) = noiseVel * noiseVel; // vn
	RPos(1, 1) = noiseVel * noiseVel; // ve
	RPos(2, 2) = noiseLatDegE7 * noiseLatDegE7; // lat
	RPos(3, 3) = noiseLonDegE7 * noiseLonDegE7; // lon
	RPos(4, 4) = noiseGpsAlt * noiseGpsAlt; // h
	RPos(5, 5) = noisePressAlt * noisePressAlt; // h
	// XXX, note that RPos depends on lat, so updateParams should
	// be called if lat changes significantly
}