aboutsummaryrefslogtreecommitdiff
path: root/src/modules/attitude_estimator_ekf/attitude_estimator_ekf_main.cpp
blob: a70a14fe4b7f3a42290eb88f5df70172a09dcbe7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/****************************************************************************
 *
 *   Copyright (C) 2012 PX4 Development Team. All rights reserved.
 *   Author: Tobias Naegeli <naegelit@student.ethz.ch>
 *           Lorenz Meier <lm@inf.ethz.ch>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/*
 * @file attitude_estimator_ekf_main.c
 *
 * Extended Kalman Filter for Attitude Estimation.
 */

#include <nuttx/config.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <poll.h>
#include <fcntl.h>
#include <float.h>
#include <nuttx/sched.h>
#include <sys/prctl.h>
#include <termios.h>
#include <errno.h>
#include <limits.h>
#include <math.h>
#include <uORB/uORB.h>
#include <uORB/topics/debug_key_value.h>
#include <uORB/topics/sensor_combined.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_control_mode.h>
#include <uORB/topics/parameter_update.h>
#include <drivers/drv_hrt.h>

#include <systemlib/systemlib.h>
#include <systemlib/perf_counter.h>
#include <systemlib/err.h>

#ifdef __cplusplus
extern "C" {
#endif
#include "codegen/attitudeKalmanfilter_initialize.h"
#include "codegen/attitudeKalmanfilter.h"
#include "attitude_estimator_ekf_params.h"
#ifdef __cplusplus
}
#endif

extern "C" __EXPORT int attitude_estimator_ekf_main(int argc, char *argv[]);

static bool thread_should_exit = false;		/**< Deamon exit flag */
static bool thread_running = false;		/**< Deamon status flag */
static int attitude_estimator_ekf_task;				/**< Handle of deamon task / thread */

/**
 * Mainloop of attitude_estimator_ekf.
 */
int attitude_estimator_ekf_thread_main(int argc, char *argv[]);

/**
 * Print the correct usage.
 */
static void usage(const char *reason);

static void
usage(const char *reason)
{
	if (reason)
		fprintf(stderr, "%s\n", reason);

	fprintf(stderr, "usage: attitude_estimator_ekf {start|stop|status} [-p <additional params>]\n\n");
	exit(1);
}

/**
 * The attitude_estimator_ekf app only briefly exists to start
 * the background job. The stack size assigned in the
 * Makefile does only apply to this management task.
 *
 * The actual stack size should be set in the call
 * to task_create().
 */
int attitude_estimator_ekf_main(int argc, char *argv[])
{
	if (argc < 1)
		usage("missing command");

	if (!strcmp(argv[1], "start")) {

		if (thread_running) {
			printf("attitude_estimator_ekf already running\n");
			/* this is not an error */
			exit(0);
		}

		thread_should_exit = false;
		attitude_estimator_ekf_task = task_spawn_cmd("attitude_estimator_ekf",
					      SCHED_DEFAULT,
					      SCHED_PRIORITY_MAX - 5,
					      14000,
					      attitude_estimator_ekf_thread_main,
					      (argv) ? (const char **)&argv[2] : (const char **)NULL);
		exit(0);
	}

	if (!strcmp(argv[1], "stop")) {
		thread_should_exit = true;
		exit(0);
	}

	if (!strcmp(argv[1], "status")) {
		if (thread_running) {
			warnx("running");
			exit(0);

		} else {
			warnx("not started");
			exit(1);
		}

		exit(0);
	}

	usage("unrecognized command");
	exit(1);
}

/*
 * [Rot_matrix,x_aposteriori,P_aposteriori] = attitudeKalmanfilter(dt,z_k,x_aposteriori_k,P_aposteriori_k,knownConst)
 */

/*
 * EKF Attitude Estimator main function.
 *
 * Estimates the attitude recursively once started.
 *
 * @param argc number of commandline arguments (plus command name)
 * @param argv strings containing the arguments
 */
int attitude_estimator_ekf_thread_main(int argc, char *argv[])
{

const unsigned int loop_interval_alarm = 6500;	// loop interval in microseconds

	float dt = 0.005f;
/* state vector x has the following entries [ax,ay,az||mx,my,mz||wox,woy,woz||wx,wy,wz]' */
	float z_k[9] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 9.81f, 0.2f, -0.2f, 0.2f};					/**< Measurement vector */
	float x_aposteriori_k[12];		/**< states */
	float P_aposteriori_k[144] = {100.f, 0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
				     0, 100.f,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,
				     0,   0, 100.f,   0,   0,   0,   0,   0,   0,   0,   0,   0,
				     0,   0,   0, 100.f,   0,   0,   0,   0,   0,   0,   0,   0,
				     0,   0,   0,   0,  100.f,  0,   0,   0,   0,   0,   0,   0,
				     0,   0,   0,   0,   0, 100.f,   0,   0,   0,   0,   0,   0,
				     0,   0,   0,   0,   0,   0, 100.f,   0,   0,   0,   0,   0,
				     0,   0,   0,   0,   0,   0,   0, 100.f,   0,   0,   0,   0,
				     0,   0,   0,   0,   0,   0,   0,   0, 100.f,   0,   0,   0,
				     0,   0,   0,   0,   0,   0,   0,   0,  0.0f, 100.0f,   0,   0,
				     0,   0,   0,   0,   0,   0,   0,   0,  0.0f,   0,   100.0f,   0,
				     0,   0,   0,   0,   0,   0,   0,   0,  0.0f,   0,   0,   100.0f,
				    }; /**< init: diagonal matrix with big values */

	float x_aposteriori[12];
	float P_aposteriori[144];

	/* output euler angles */
	float euler[3] = {0.0f, 0.0f, 0.0f};

	float Rot_matrix[9] = {1.f,  0,  0,
			      0,  1.f,  0,
			      0,  0,  1.f
			     };		/**< init: identity matrix */

	// print text
	printf("Extended Kalman Filter Attitude Estimator initialized..\n\n");
	fflush(stdout);

	int overloadcounter = 19;

	/* Initialize filter */
	attitudeKalmanfilter_initialize();

	/* store start time to guard against too slow update rates */
	uint64_t last_run = hrt_absolute_time();

	struct sensor_combined_s raw;
	memset(&raw, 0, sizeof(raw));
	struct vehicle_attitude_s att;
	memset(&att, 0, sizeof(att));
	struct vehicle_control_mode_s control_mode;
	memset(&control_mode, 0, sizeof(control_mode));

	uint64_t last_data = 0;
	uint64_t last_measurement = 0;

	/* subscribe to raw data */
	int sub_raw = orb_subscribe(ORB_ID(sensor_combined));
	/* rate-limit raw data updates to 333 Hz (sensors app publishes at 200, so this is just paranoid) */
	orb_set_interval(sub_raw, 3);

	/* subscribe to param changes */
	int sub_params = orb_subscribe(ORB_ID(parameter_update));

	/* subscribe to control mode*/
	int sub_control_mode = orb_subscribe(ORB_ID(vehicle_control_mode));

	/* advertise attitude */
	orb_advert_t pub_att = orb_advertise(ORB_ID(vehicle_attitude), &att);

	int loopcounter = 0;
	int printcounter = 0;

	thread_running = true;

	/* advertise debug value */
	// struct debug_key_value_s dbg = { .key = "", .value = 0.0f };
	// orb_advert_t pub_dbg = -1;

	float sensor_update_hz[3] = {0.0f, 0.0f, 0.0f};
	// XXX write this out to perf regs

	/* keep track of sensor updates */
	uint32_t sensor_last_count[3] = {0, 0, 0};
	uint64_t sensor_last_timestamp[3] = {0, 0, 0};

	struct attitude_estimator_ekf_params ekf_params;

	struct attitude_estimator_ekf_param_handles ekf_param_handles;

	/* initialize parameter handles */
	parameters_init(&ekf_param_handles);

	uint64_t start_time = hrt_absolute_time();
	bool initialized = false;

	float gyro_offsets[3] = { 0.0f, 0.0f, 0.0f };
	unsigned offset_count = 0;

	/* register the perf counter */
	perf_counter_t ekf_loop_perf = perf_alloc(PC_ELAPSED, "attitude_estimator_ekf");

	/* Main loop*/
	while (!thread_should_exit) {

		struct pollfd fds[2];
		fds[0].fd = sub_raw;
		fds[0].events = POLLIN;
		fds[1].fd = sub_params;
		fds[1].events = POLLIN;
		int ret = poll(fds, 2, 1000);

		if (ret < 0) {
			/* XXX this is seriously bad - should be an emergency */
		} else if (ret == 0) {
			/* check if we're in HIL - not getting sensor data is fine then */
			orb_copy(ORB_ID(vehicle_control_mode), sub_control_mode, &control_mode);

			if (!control_mode.flag_system_hil_enabled) {
				fprintf(stderr,
					"[att ekf] WARNING: Not getting sensors - sensor app running?\n");
			}

		} else {

			/* only update parameters if they changed */
			if (fds[1].revents & POLLIN) {
				/* read from param to clear updated flag */
				struct parameter_update_s update;
				orb_copy(ORB_ID(parameter_update), sub_params, &update);

				/* update parameters */
				parameters_update(&ekf_param_handles, &ekf_params);
			}

			/* only run filter if sensor values changed */
			if (fds[0].revents & POLLIN) {

				/* get latest measurements */
				orb_copy(ORB_ID(sensor_combined), sub_raw, &raw);

				if (!initialized) {
					// XXX disabling init for now
					initialized = true;

					// gyro_offsets[0] += raw.gyro_rad_s[0];
					// gyro_offsets[1] += raw.gyro_rad_s[1];
					// gyro_offsets[2] += raw.gyro_rad_s[2];
					// offset_count++;

					// if (hrt_absolute_time() - start_time > 3000000LL) {
					// 	initialized = true;
					// 	gyro_offsets[0] /= offset_count;
					// 	gyro_offsets[1] /= offset_count;
					// 	gyro_offsets[2] /= offset_count;
					// }

				} else {

					perf_begin(ekf_loop_perf);

					/* Calculate data time difference in seconds */
					dt = (raw.timestamp - last_measurement) / 1000000.0f;
					last_measurement = raw.timestamp;
					uint8_t update_vect[3] = {0, 0, 0};

					/* Fill in gyro measurements */
					if (sensor_last_count[0] != raw.gyro_counter) {
						update_vect[0] = 1;
						sensor_last_count[0] = raw.gyro_counter;
						sensor_update_hz[0] = 1e6f / (raw.timestamp - sensor_last_timestamp[0]);
						sensor_last_timestamp[0] = raw.timestamp;
					}

					z_k[0] =  raw.gyro_rad_s[0] - gyro_offsets[0];
					z_k[1] =  raw.gyro_rad_s[1] - gyro_offsets[1];
					z_k[2] =  raw.gyro_rad_s[2] - gyro_offsets[2];

					/* update accelerometer measurements */
					if (sensor_last_count[1] != raw.accelerometer_counter) {
						update_vect[1] = 1;
						sensor_last_count[1] = raw.accelerometer_counter;
						sensor_update_hz[1] = 1e6f / (raw.timestamp - sensor_last_timestamp[1]);
						sensor_last_timestamp[1] = raw.timestamp;
					}

					z_k[3] = raw.accelerometer_m_s2[0];
					z_k[4] = raw.accelerometer_m_s2[1];
					z_k[5] = raw.accelerometer_m_s2[2];

					/* update magnetometer measurements */
					if (sensor_last_count[2] != raw.magnetometer_counter) {
						update_vect[2] = 1;
						sensor_last_count[2] = raw.magnetometer_counter;
						sensor_update_hz[2] = 1e6f / (raw.timestamp - sensor_last_timestamp[2]);
						sensor_last_timestamp[2] = raw.timestamp;
					}

					z_k[6] = raw.magnetometer_ga[0];
					z_k[7] = raw.magnetometer_ga[1];
					z_k[8] = raw.magnetometer_ga[2];

					uint64_t now = hrt_absolute_time();
					unsigned int time_elapsed = now - last_run;
					last_run = now;

					if (time_elapsed > loop_interval_alarm) {
						//TODO: add warning, cpu overload here
						// if (overloadcounter == 20) {
						// 	printf("CPU OVERLOAD DETECTED IN ATTITUDE ESTIMATOR EKF (%lu > %lu)\n", time_elapsed, loop_interval_alarm);
						// 	overloadcounter = 0;
						// }

						overloadcounter++;
					}

					static bool const_initialized = false;

					/* initialize with good values once we have a reasonable dt estimate */
					if (!const_initialized && dt < 0.05f && dt > 0.001f) {
						dt = 0.005f;
						parameters_update(&ekf_param_handles, &ekf_params);

						x_aposteriori_k[0] = z_k[0];
						x_aposteriori_k[1] = z_k[1];
						x_aposteriori_k[2] = z_k[2];
						x_aposteriori_k[3] = 0.0f;
						x_aposteriori_k[4] = 0.0f;
						x_aposteriori_k[5] = 0.0f;
						x_aposteriori_k[6] = z_k[3];
						x_aposteriori_k[7] = z_k[4];
						x_aposteriori_k[8] = z_k[5];
						x_aposteriori_k[9] = z_k[6];
						x_aposteriori_k[10] = z_k[7];
						x_aposteriori_k[11] = z_k[8];

						const_initialized = true;
					}

					/* do not execute the filter if not initialized */
					if (!const_initialized) {
						continue;
					}

					uint64_t timing_start = hrt_absolute_time();

					attitudeKalmanfilter(update_vect, dt, z_k, x_aposteriori_k, P_aposteriori_k, ekf_params.q, ekf_params.r,
							     euler, Rot_matrix, x_aposteriori, P_aposteriori);

					/* swap values for next iteration, check for fatal inputs */
					if (isfinite(euler[0]) && isfinite(euler[1]) && isfinite(euler[2])) {
						memcpy(P_aposteriori_k, P_aposteriori, sizeof(P_aposteriori_k));
						memcpy(x_aposteriori_k, x_aposteriori, sizeof(x_aposteriori_k));

					} else {
						/* due to inputs or numerical failure the output is invalid, skip it */
						continue;
					}

					if (last_data > 0 && raw.timestamp - last_data > 12000)
						printf("[attitude estimator ekf] sensor data missed! (%llu)\n", raw.timestamp - last_data);

					last_data = raw.timestamp;

					/* send out */
					att.timestamp = raw.timestamp;

					// XXX Apply the same transformation to the rotation matrix
					att.roll = euler[0] - ekf_params.roll_off;
					att.pitch = euler[1] - ekf_params.pitch_off;
					att.yaw = euler[2] - ekf_params.yaw_off;

					att.rollspeed = x_aposteriori[0];
					att.pitchspeed = x_aposteriori[1];
					att.yawspeed = x_aposteriori[2];
					att.rollacc = x_aposteriori[3];
					att.pitchacc = x_aposteriori[4];
					att.yawacc = x_aposteriori[5];

					//att.yawspeed =z_k[2] ;
					/* copy offsets */
					memcpy(&att.rate_offsets, &(x_aposteriori[3]), sizeof(att.rate_offsets));

					/* copy rotation matrix */
					memcpy(&att.R, Rot_matrix, sizeof(Rot_matrix));
					att.R_valid = true;

					if (isfinite(att.roll) && isfinite(att.pitch) && isfinite(att.yaw)) {
						// Broadcast
						orb_publish(ORB_ID(vehicle_attitude), pub_att, &att);

					} else {
						warnx("NaN in roll/pitch/yaw estimate!");
					}

					perf_end(ekf_loop_perf);
				}
			}
		}

		loopcounter++;
	}

	thread_running = false;

	return 0;
}