aboutsummaryrefslogtreecommitdiff
path: root/src/modules/commander/accelerometer_calibration.cpp
blob: 409c2ea0032ac823425d879e4d7725512972756f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/****************************************************************************
 *
 *   Copyright (c) 2013-2015 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file accelerometer_calibration.cpp
 *
 * Implementation of accelerometer calibration.
 *
 * Transform acceleration vector to true orientation, scale and offset
 *
 * ===== Model =====
 * accel_corr = accel_T * (accel_raw - accel_offs)
 *
 * accel_corr[3] - fully corrected acceleration vector in body frame
 * accel_T[3][3] - accelerometers transform matrix, rotation and scaling transform
 * accel_raw[3]  - raw acceleration vector
 * accel_offs[3] - acceleration offset vector
 *
 * ===== Calibration =====
 *
 * Reference vectors
 * accel_corr_ref[6][3] = [  g  0  0 ]     // nose up
 *                        | -g  0  0 |     // nose down
 *                        |  0  g  0 |     // left side down
 *                        |  0 -g  0 |     // right side down
 *                        |  0  0  g |     // on back
 *                        [  0  0 -g ]     // level
 * accel_raw_ref[6][3]
 *
 * accel_corr_ref[i] = accel_T * (accel_raw_ref[i] - accel_offs), i = 0...5
 *
 * 6 reference vectors * 3 axes = 18 equations
 * 9 (accel_T) + 3 (accel_offs) = 12 unknown constants
 *
 * Find accel_offs
 *
 * accel_offs[i] = (accel_raw_ref[i*2][i] + accel_raw_ref[i*2+1][i]) / 2
 *
 * Find accel_T
 *
 * 9 unknown constants
 * need 9 equations -> use 3 of 6 measurements -> 3 * 3 = 9 equations
 *
 * accel_corr_ref[i*2] = accel_T * (accel_raw_ref[i*2] - accel_offs), i = 0...2
 *
 * Solve separate system for each row of accel_T:
 *
 * accel_corr_ref[j*2][i] = accel_T[i] * (accel_raw_ref[j*2] - accel_offs), j = 0...2
 *
 * A * x = b
 *
 * x = [ accel_T[0][i] ]
 *     | accel_T[1][i] |
 *     [ accel_T[2][i] ]
 *
 * b = [ accel_corr_ref[0][i] ]	// One measurement per side is enough
 *     | accel_corr_ref[2][i] |
 *     [ accel_corr_ref[4][i] ]
 *
 * a[i][j] = accel_raw_ref[i][j] - accel_offs[j], i = 0;2;4, j = 0...2
 *
 * Matrix A is common for all three systems:
 * A = [ a[0][0]  a[0][1]  a[0][2] ]
 *     | a[2][0]  a[2][1]  a[2][2] |
 *     [ a[4][0]  a[4][1]  a[4][2] ]
 *
 * x = A^-1 * b
 *
 * accel_T = A^-1 * g
 * g = 9.80665
 *
 * ===== Rotation =====
 *
 * Calibrating using model:
 * accel_corr = accel_T_r * (rot * accel_raw - accel_offs_r)
 *
 * Actual correction:
 * accel_corr = rot * accel_T * (accel_raw - accel_offs)
 *
 * Known: accel_T_r, accel_offs_r, rot
 * Unknown: accel_T, accel_offs
 *
 * Solution:
 * accel_T_r * (rot * accel_raw - accel_offs_r) = rot * accel_T * (accel_raw - accel_offs)
 * rot^-1 * accel_T_r * (rot * accel_raw - accel_offs_r) = accel_T * (accel_raw - accel_offs)
 * rot^-1 * accel_T_r * rot * accel_raw - rot^-1 * accel_T_r * accel_offs_r = accel_T * accel_raw - accel_T * accel_offs)
 * => accel_T = rot^-1 * accel_T_r * rot
 * => accel_offs = rot^-1 * accel_offs_r
 *
 * @author Anton Babushkin <anton.babushkin@me.com>
 */

// FIXME: Can some of these headers move out with detect_ move?

#include "accelerometer_calibration.h"
#include "calibration_messages.h"
#include "calibration_routines.h"
#include "commander_helper.h"

#include <unistd.h>
#include <stdio.h>
#include <poll.h>
#include <fcntl.h>
#include <sys/prctl.h>
#include <math.h>
#include <float.h>
#include <mathlib/mathlib.h>
#include <string.h>
#include <drivers/drv_hrt.h>
#include <drivers/drv_accel.h>
#include <geo/geo.h>
#include <conversion/rotation.h>
#include <systemlib/param/param.h>
#include <systemlib/err.h>
#include <mavlink/mavlink_log.h>

/* oddly, ERROR is not defined for c++ */
#ifdef ERROR
# undef ERROR
#endif
static const int ERROR = -1;

static const char *sensor_name = "accel";

int do_accel_calibration_measurements(int mavlink_fd, float (&accel_offs)[max_accel_sens][3], float (&accel_T)[max_accel_sens][3][3], unsigned *active_sensors);
int read_accelerometer_avg(int (&subs)[max_accel_sens], float (&accel_avg)[max_accel_sens][detect_orientation_side_count][3], unsigned orient, unsigned samples_num);
int mat_invert3(float src[3][3], float dst[3][3]);
int calculate_calibration_values(unsigned sensor, float (&accel_ref)[max_accel_sens][detect_orientation_side_count][3], float (&accel_T)[max_accel_sens][3][3], float (&accel_offs)[max_accel_sens][3], float g);
int accel_calibration_worker(detect_orientation_return orientation, void* worker_data);

/// Data passed to calibration worker routine
typedef struct  {
	int		mavlink_fd;
	unsigned	done_count;
	int		subs[max_accel_sens];
	float		accel_ref[max_accel_sens][detect_orientation_side_count][3];
} accel_worker_data_t;

int do_accel_calibration(int mavlink_fd)
{
	int fd;
	int32_t device_id[max_accel_sens];

	mavlink_and_console_log_info(mavlink_fd, CAL_STARTED_MSG, sensor_name);

	struct accel_scale accel_scale = {
		0.0f,
		1.0f,
		0.0f,
		1.0f,
		0.0f,
		1.0f,
	};

	int res = OK;

	char str[30];

	/* reset all sensors */
	for (unsigned s = 0; s < max_accel_sens; s++) {
		sprintf(str, "%s%u", ACCEL_BASE_DEVICE_PATH, s);
		/* reset all offsets to zero and all scales to one */
		fd = open(str, 0);

		if (fd < 0) {
			continue;
		}

		device_id[s] = ioctl(fd, DEVIOCGDEVICEID, 0);

		res = ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&accel_scale);
		close(fd);

		if (res != OK) {
			mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_RESET_CAL_MSG, s);
		}
	}

	float accel_offs[max_accel_sens][3];
	float accel_T[max_accel_sens][3][3];
	unsigned active_sensors;

	if (res == OK) {
		/* measure and calculate offsets & scales */
		res = do_accel_calibration_measurements(mavlink_fd, accel_offs, accel_T, &active_sensors);
	}

	if (res != OK || active_sensors == 0) {
		mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_SENSOR_MSG);
		return ERROR;
	}

	/* measurements completed successfully, rotate calibration values */
	param_t board_rotation_h = param_find("SENS_BOARD_ROT");
	int32_t board_rotation_int;
	param_get(board_rotation_h, &(board_rotation_int));
	enum Rotation board_rotation_id = (enum Rotation)board_rotation_int;
	math::Matrix<3, 3> board_rotation;
	get_rot_matrix(board_rotation_id, &board_rotation);
	math::Matrix<3, 3> board_rotation_t = board_rotation.transposed();

	for (unsigned i = 0; i < active_sensors; i++) {

		/* handle individual sensors, one by one */
		math::Vector<3> accel_offs_vec(accel_offs[i]);
		math::Vector<3> accel_offs_rotated = board_rotation_t * accel_offs_vec;
		math::Matrix<3, 3> accel_T_mat(accel_T[i]);
		math::Matrix<3, 3> accel_T_rotated = board_rotation_t * accel_T_mat * board_rotation;

		accel_scale.x_offset = accel_offs_rotated(0);
		accel_scale.x_scale = accel_T_rotated(0, 0);
		accel_scale.y_offset = accel_offs_rotated(1);
		accel_scale.y_scale = accel_T_rotated(1, 1);
		accel_scale.z_offset = accel_offs_rotated(2);
		accel_scale.z_scale = accel_T_rotated(2, 2);
		
		bool failed = false;

		/* set parameters */
		(void)sprintf(str, "CAL_ACC%u_XOFF", i);
		failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.x_offset)));
		(void)sprintf(str, "CAL_ACC%u_YOFF", i);
		failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.y_offset)));
		(void)sprintf(str, "CAL_ACC%u_ZOFF", i);
		failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.z_offset)));
		(void)sprintf(str, "CAL_ACC%u_XSCALE", i);
		failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.x_scale)));
		(void)sprintf(str, "CAL_ACC%u_YSCALE", i);
		failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.y_scale)));
		(void)sprintf(str, "CAL_ACC%u_ZSCALE", i);
		failed |= (OK != param_set_no_notification(param_find(str), &(accel_scale.z_scale)));
		(void)sprintf(str, "CAL_ACC%u_ID", i);
		failed |= (OK != param_set_no_notification(param_find(str), &(device_id[i])));
		
		if (failed) {
			mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_SET_PARAMS_MSG, i);
			return ERROR;
		}

		sprintf(str, "%s%u", ACCEL_BASE_DEVICE_PATH, i);
		fd = open(str, 0);

		if (fd < 0) {
			mavlink_and_console_log_critical(mavlink_fd, "sensor does not exist");
			res = ERROR;
		} else {
			res = ioctl(fd, ACCELIOCSSCALE, (long unsigned int)&accel_scale);
			close(fd);
		}

		if (res != OK) {
			mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_APPLY_CAL_MSG, i);
		}
	}

	if (res == OK) {
		/* auto-save to EEPROM */
		res = param_save_default();

		if (res != OK) {
			mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_SAVE_PARAMS_MSG);
		}

		mavlink_and_console_log_info(mavlink_fd, CAL_DONE_MSG, sensor_name);

	} else {
		mavlink_and_console_log_critical(mavlink_fd, CAL_FAILED_MSG, sensor_name);
	}

	return res;
}

int accel_calibration_worker(detect_orientation_return orientation, void* data)
{
	const unsigned samples_num = 3000;
	accel_worker_data_t* worker_data = (accel_worker_data_t*)(data);
	
	mavlink_and_console_log_info(worker_data->mavlink_fd, "Hold still, starting to measure %s side", detect_orientation_str(orientation));
	
	read_accelerometer_avg(worker_data->subs, worker_data->accel_ref, orientation, samples_num);
	
	mavlink_and_console_log_info(worker_data->mavlink_fd, "%s side result: [ %8.4f %8.4f %8.4f ]", detect_orientation_str(orientation),
				     (double)worker_data->accel_ref[0][orientation][0],
				     (double)worker_data->accel_ref[0][orientation][1],
				     (double)worker_data->accel_ref[0][orientation][2]);
	
	worker_data->done_count++;
	mavlink_and_console_log_info(worker_data->mavlink_fd, CAL_PROGRESS_MSG, sensor_name, 17 * worker_data->done_count);
	
	return OK;
}

int do_accel_calibration_measurements(int mavlink_fd, float (&accel_offs)[max_accel_sens][3], float (&accel_T)[max_accel_sens][3][3], unsigned *active_sensors)
{
	int result = OK;
	
	*active_sensors = 0;
	
	accel_worker_data_t worker_data;
	
	worker_data.mavlink_fd = mavlink_fd;
	worker_data.done_count = 0;

	bool data_collected[detect_orientation_side_count] = { false, false, false, false, false, false };

	// Initialize subs to error condition so we know which ones are open and which are not
	for (size_t i=0; i<max_accel_sens; i++) {
		worker_data.subs[i] = -1;
	}

	uint64_t timestamps[max_accel_sens];

	for (unsigned i = 0; i < max_accel_sens; i++) {
		worker_data.subs[i] = orb_subscribe_multi(ORB_ID(sensor_accel), i);
		if (worker_data.subs[i] < 0) {
			result = ERROR;
			break;
		}
		
		/* store initial timestamp - used to infer which sensors are active */
		struct accel_report arp = {};
		(void)orb_copy(ORB_ID(sensor_accel), worker_data.subs[i], &arp);
		timestamps[i] = arp.timestamp;
	}

	if (result == OK) {
		result = calibrate_from_orientation(mavlink_fd, data_collected, accel_calibration_worker, &worker_data);
	}

	/* close all subscriptions */
	for (unsigned i = 0; i < max_accel_sens; i++) {
		if (worker_data.subs[i] >= 0) {
			/* figure out which sensors were active */
			struct accel_report arp = {};
			(void)orb_copy(ORB_ID(sensor_accel), worker_data.subs[i], &arp);
			if (arp.timestamp != 0 && timestamps[i] != arp.timestamp) {
				(*active_sensors)++;
			}
			close(worker_data.subs[i]);
		}
	}

	if (result == OK) {
		/* calculate offsets and transform matrix */
		for (unsigned i = 0; i < (*active_sensors); i++) {
			result = calculate_calibration_values(i, worker_data.accel_ref, accel_T, accel_offs, CONSTANTS_ONE_G);

			if (result != OK) {
				mavlink_and_console_log_critical(mavlink_fd, "ERROR: calibration values calculation error");
				break;
			}
		}
	}

	return result;
}

/*
 * Read specified number of accelerometer samples, calculate average and dispersion.
 */
int read_accelerometer_avg(int (&subs)[max_accel_sens], float (&accel_avg)[max_accel_sens][detect_orientation_side_count][3], unsigned orient, unsigned samples_num)
{
	struct pollfd fds[max_accel_sens];

	for (unsigned i = 0; i < max_accel_sens; i++) {
		fds[i].fd = subs[i];
		fds[i].events = POLLIN;
	}

	unsigned counts[max_accel_sens] = { 0 };
	float accel_sum[max_accel_sens][3];
	memset(accel_sum, 0, sizeof(accel_sum));

	unsigned errcount = 0;

	/* use the first sensor to pace the readout, but do per-sensor counts */
	while (counts[0] < samples_num) {
		int poll_ret = poll(&fds[0], max_accel_sens, 1000);

		if (poll_ret > 0) {

			for (unsigned s = 0; s < max_accel_sens; s++) {
				bool changed;
				orb_check(subs[s], &changed);

				if (changed) {

					struct accel_report arp;
					orb_copy(ORB_ID(sensor_accel), subs[s], &arp);

					accel_sum[s][0] += arp.x;
					accel_sum[s][1] += arp.y;
					accel_sum[s][2] += arp.z;

					counts[s]++;
				}
			}

		} else {
			errcount++;
			continue;
		}

		if (errcount > samples_num / 10) {
			return ERROR;
		}
	}

	for (unsigned s = 0; s < max_accel_sens; s++) {
		for (unsigned i = 0; i < 3; i++) {
			accel_avg[s][orient][i] = accel_sum[s][i] / counts[s];
		}
	}

	return OK;
}

int mat_invert3(float src[3][3], float dst[3][3])
{
	float det = src[0][0] * (src[1][1] * src[2][2] - src[1][2] * src[2][1]) -
		    src[0][1] * (src[1][0] * src[2][2] - src[1][2] * src[2][0]) +
		    src[0][2] * (src[1][0] * src[2][1] - src[1][1] * src[2][0]);

	if (fabsf(det) < FLT_EPSILON) {
		return ERROR;        // Singular matrix
	}

	dst[0][0] = (src[1][1] * src[2][2] - src[1][2] * src[2][1]) / det;
	dst[1][0] = (src[1][2] * src[2][0] - src[1][0] * src[2][2]) / det;
	dst[2][0] = (src[1][0] * src[2][1] - src[1][1] * src[2][0]) / det;
	dst[0][1] = (src[0][2] * src[2][1] - src[0][1] * src[2][2]) / det;
	dst[1][1] = (src[0][0] * src[2][2] - src[0][2] * src[2][0]) / det;
	dst[2][1] = (src[0][1] * src[2][0] - src[0][0] * src[2][1]) / det;
	dst[0][2] = (src[0][1] * src[1][2] - src[0][2] * src[1][1]) / det;
	dst[1][2] = (src[0][2] * src[1][0] - src[0][0] * src[1][2]) / det;
	dst[2][2] = (src[0][0] * src[1][1] - src[0][1] * src[1][0]) / det;

	return OK;
}

int calculate_calibration_values(unsigned sensor, float (&accel_ref)[max_accel_sens][detect_orientation_side_count][3], float (&accel_T)[max_accel_sens][3][3], float (&accel_offs)[max_accel_sens][3], float g)
{
	/* calculate offsets */
	for (unsigned i = 0; i < 3; i++) {
		accel_offs[sensor][i] = (accel_ref[sensor][i * 2][i] + accel_ref[sensor][i * 2 + 1][i]) / 2;
	}

	/* fill matrix A for linear equations system*/
	float mat_A[3][3];
	memset(mat_A, 0, sizeof(mat_A));

	for (unsigned i = 0; i < 3; i++) {
		for (unsigned j = 0; j < 3; j++) {
			float a = accel_ref[sensor][i * 2][j] - accel_offs[sensor][j];
			mat_A[i][j] = a;
		}
	}

	/* calculate inverse matrix for A */
	float mat_A_inv[3][3];

	if (mat_invert3(mat_A, mat_A_inv) != OK) {
		return ERROR;
	}

	/* copy results to accel_T */
	for (unsigned i = 0; i < 3; i++) {
		for (unsigned j = 0; j < 3; j++) {
			/* simplify matrices mult because b has only one non-zero element == g at index i */
			accel_T[sensor][j][i] = mat_A_inv[j][i] * g;
		}
	}

	return OK;
}