aboutsummaryrefslogtreecommitdiff
path: root/src/modules/fw_att_control/fw_att_control_main.cpp
blob: 8b41144f6f3a2d32370f41cb0e0f2fd45c3170a1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
/****************************************************************************
 *
 *   Copyright (c) 2013, 2014 PX4 Development Team. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 * 3. Neither the name PX4 nor the names of its contributors may be
 *    used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 ****************************************************************************/

/**
 * @file fw_att_control_main.c
 * Implementation of a generic attitude controller based on classic orthogonal PIDs.
 *
 * @author Lorenz Meier 	<lm@inf.ethz.ch>
 * @author Thomas Gubler 	<thomasgubler@gmail.com>
 * @author Roman Bapst		<bapstr@ethz.ch>
 *
 */

#include <nuttx/config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <time.h>
#include <drivers/drv_hrt.h>
#include <drivers/drv_accel.h>
#include <arch/board/board.h>
#include <uORB/uORB.h>
#include <uORB/topics/airspeed.h>
#include <uORB/topics/vehicle_attitude_setpoint.h>
#include <uORB/topics/manual_control_setpoint.h>
#include <uORB/topics/actuator_controls.h>
#include <uORB/topics/actuator_controls_virtual_fw.h>
#include <uORB/topics/actuator_controls_virtual_mc.h>
#include <uORB/topics/vehicle_rates_setpoint.h>
#include <uORB/topics/fw_virtual_rates_setpoint.h>
#include <uORB/topics/mc_virtual_rates_setpoint.h>
#include <uORB/topics/vehicle_attitude.h>
#include <uORB/topics/vehicle_control_mode.h>
#include <uORB/topics/parameter_update.h>
#include <uORB/topics/vehicle_global_position.h>
#include <uORB/topics/vehicle_status.h>
#include <systemlib/param/param.h>
#include <systemlib/err.h>
#include <systemlib/pid/pid.h>
#include <geo/geo.h>
#include <systemlib/perf_counter.h>
#include <systemlib/systemlib.h>
#include <mathlib/mathlib.h>

#include <ecl/attitude_fw/ecl_pitch_controller.h>
#include <ecl/attitude_fw/ecl_roll_controller.h>
#include <ecl/attitude_fw/ecl_yaw_controller.h>
#include <platforms/px4_defines.h>

/**
 * Fixedwing attitude control app start / stop handling function
 *
 * @ingroup apps
 */
extern "C" __EXPORT int fw_att_control_main(int argc, char *argv[]);

class FixedwingAttitudeControl
{
public:
	/**
	 * Constructor
	 */
	FixedwingAttitudeControl();

	/**
	 * Destructor, also kills the main task.
	 */
	~FixedwingAttitudeControl();

	/**
	 * Start the main task.
	 *
	 * @return	OK on success.
	 */
	int		start();

	/**
	 * Task status
	 *
	 * @return	true if the mainloop is running
	 */
	bool		task_running() { return _task_running; }

private:

	bool		_task_should_exit;		/**< if true, attitude control task should exit */
	bool		_task_running;			/**< if true, task is running in its mainloop */
	int		_control_task;			/**< task handle */

	int		_att_sub;			/**< vehicle attitude subscription */
	int		_accel_sub;			/**< accelerometer subscription */
	int		_att_sp_sub;			/**< vehicle attitude setpoint */
	int		_attitude_sub;			/**< raw rc channels data subscription */
	int		_airspeed_sub;			/**< airspeed subscription */
	int		_vcontrol_mode_sub;		/**< vehicle status subscription */
	int 		_params_sub;			/**< notification of parameter updates */
	int 		_manual_sub;			/**< notification of manual control updates */
	int		_global_pos_sub;		/**< global position subscription */
	int		_vehicle_status_sub;		/**< vehicle status subscription */

	orb_advert_t	_rate_sp_pub;			/**< rate setpoint publication */
	orb_advert_t	_attitude_sp_pub;		/**< attitude setpoint point */
	orb_advert_t	_actuators_0_pub;		/**< actuator control group 0 setpoint */
	orb_advert_t	_actuators_2_pub;		/**< actuator control group 1 setpoint (Airframe) */

	orb_id_t _rates_sp_id;	// pointer to correct rates setpoint uORB metadata structure
	orb_id_t _actuators_id;	// pointer to correct actuator controls0 uORB metadata structure

	struct vehicle_attitude_s			_att;			/**< vehicle attitude */
	struct accel_report				_accel;			/**< body frame accelerations */
	struct vehicle_attitude_setpoint_s		_att_sp;		/**< vehicle attitude setpoint */
	struct vehicle_rates_setpoint_s			_rates_sp;	/* attitude rates setpoint */
	struct manual_control_setpoint_s		_manual;		/**< r/c channel data */
	struct airspeed_s				_airspeed;		/**< airspeed */
	struct vehicle_control_mode_s			_vcontrol_mode;		/**< vehicle control mode */
	struct actuator_controls_s			_actuators;		/**< actuator control inputs */
	struct actuator_controls_s			_actuators_airframe;	/**< actuator control inputs */
	struct vehicle_global_position_s		_global_pos;		/**< global position */
	struct vehicle_status_s				_vehicle_status;	/**< vehicle status */

	perf_counter_t	_loop_perf;			/**< loop performance counter */
	perf_counter_t	_nonfinite_input_perf;		/**< performance counter for non finite input */
	perf_counter_t	_nonfinite_output_perf;		/**< performance counter for non finite output */

	bool		_setpoint_valid;		/**< flag if the position control setpoint is valid */
	bool		_debug;				/**< if set to true, print debug output */

	struct {
		float tconst;
		float p_p;
		float p_d;
		float p_i;
		float p_ff;
		float p_rmax_pos;
		float p_rmax_neg;
		float p_integrator_max;
		float p_roll_feedforward;
		float r_p;
		float r_d;
		float r_i;
		float r_ff;
		float r_integrator_max;
		float r_rmax;
		float y_p;
		float y_i;
		float y_d;
		float y_ff;
		float y_roll_feedforward;
		float y_integrator_max;
		float y_coordinated_min_speed;
		int32_t y_coordinated_method;
		float y_rmax;

		float airspeed_min;
		float airspeed_trim;
		float airspeed_max;

		float trim_roll;
		float trim_pitch;
		float trim_yaw;
		float rollsp_offset_deg;			/**< Roll Setpoint Offset in deg */
		float pitchsp_offset_deg;			/**< Pitch Setpoint Offset in deg */
		float rollsp_offset_rad;			/**< Roll Setpoint Offset in rad */
		float pitchsp_offset_rad;			/**< Pitch Setpoint Offset in rad */
		float man_roll_max;						/**< Max Roll in rad */
		float man_pitch_max;					/**< Max Pitch in rad */

	}		_parameters;			/**< local copies of interesting parameters */

	struct {

		param_t tconst;
		param_t p_p;
		param_t p_d;
		param_t p_i;
		param_t p_ff;
		param_t p_rmax_pos;
		param_t p_rmax_neg;
		param_t p_integrator_max;
		param_t p_roll_feedforward;
		param_t r_p;
		param_t r_d;
		param_t r_i;
		param_t r_ff;
		param_t r_integrator_max;
		param_t r_rmax;
		param_t y_p;
		param_t y_i;
		param_t y_d;
		param_t y_ff;
		param_t y_roll_feedforward;
		param_t y_integrator_max;
		param_t y_coordinated_min_speed;
		param_t y_coordinated_method;
		param_t y_rmax;

		param_t airspeed_min;
		param_t airspeed_trim;
		param_t airspeed_max;

		param_t trim_roll;
		param_t trim_pitch;
		param_t trim_yaw;
		param_t rollsp_offset_deg;
		param_t pitchsp_offset_deg;
		param_t man_roll_max;
		param_t man_pitch_max;

	}		_parameter_handles;		/**< handles for interesting parameters */


	ECL_RollController				_roll_ctrl;
	ECL_PitchController				_pitch_ctrl;
	ECL_YawController				_yaw_ctrl;


	/**
	 * Update our local parameter cache.
	 */
	int		parameters_update();

	/**
	 * Update control outputs
	 *
	 */
	void		control_update();

	/**
	 * Check for changes in vehicle control mode.
	 */
	void		vehicle_control_mode_poll();

	/**
	 * Check for changes in manual inputs.
	 */
	void		vehicle_manual_poll();


	/**
	 * Check for airspeed updates.
	 */
	void		vehicle_airspeed_poll();

	/**
	 * Check for accel updates.
	 */
	void		vehicle_accel_poll();

	/**
	 * Check for set triplet updates.
	 */
	void		vehicle_setpoint_poll();

	/**
	 * Check for global position updates.
	 */
	void		global_pos_poll();

	/**
	 * Check for vehicle status updates.
	 */
	void		vehicle_status_poll();

	/**
	 * Shim for calling task_main from task_create.
	 */
	static void	task_main_trampoline(int argc, char *argv[]);

	/**
	 * Main attitude controller collection task.
	 */
	void		task_main();

};

namespace att_control
{

/* oddly, ERROR is not defined for c++ */
#ifdef ERROR
# undef ERROR
#endif
static const int ERROR = -1;

FixedwingAttitudeControl	*g_control = nullptr;
}

FixedwingAttitudeControl::FixedwingAttitudeControl() :

	_task_should_exit(false),
	_task_running(false),
	_control_task(-1),

/* subscriptions */
	_att_sub(-1),
	_accel_sub(-1),
	_airspeed_sub(-1),
	_vcontrol_mode_sub(-1),
	_params_sub(-1),
	_manual_sub(-1),
	_global_pos_sub(-1),
	_vehicle_status_sub(-1),

/* publications */
	_rate_sp_pub(-1),
	_attitude_sp_pub(-1),
	_actuators_0_pub(-1),
	_actuators_2_pub(-1),

	_rates_sp_id(0),
	_actuators_id(0),

/* performance counters */
	_loop_perf(perf_alloc(PC_ELAPSED, "fw att control")),
	_nonfinite_input_perf(perf_alloc(PC_COUNT, "fw att control nonfinite input")),
	_nonfinite_output_perf(perf_alloc(PC_COUNT, "fw att control nonfinite output")),
/* states */
	_setpoint_valid(false),
	_debug(false)
{
	/* safely initialize structs */
	_att = {};
	_accel = {};
	_att_sp = {};
	_rates_sp = {};
	_manual = {};
	_airspeed = {};
	_vcontrol_mode = {};
	_actuators = {};
	_actuators_airframe = {};
	_global_pos = {};
	_vehicle_status = {};


	_parameter_handles.tconst = param_find("FW_ATT_TC");
	_parameter_handles.p_p = param_find("FW_PR_P");
	_parameter_handles.p_i = param_find("FW_PR_I");
	_parameter_handles.p_ff = param_find("FW_PR_FF");
	_parameter_handles.p_rmax_pos = param_find("FW_P_RMAX_POS");
	_parameter_handles.p_rmax_neg = param_find("FW_P_RMAX_NEG");
	_parameter_handles.p_integrator_max = param_find("FW_PR_IMAX");
	_parameter_handles.p_roll_feedforward = param_find("FW_P_ROLLFF");

	_parameter_handles.r_p = param_find("FW_RR_P");
	_parameter_handles.r_i = param_find("FW_RR_I");
	_parameter_handles.r_ff = param_find("FW_RR_FF");
	_parameter_handles.r_integrator_max = param_find("FW_RR_IMAX");
	_parameter_handles.r_rmax = param_find("FW_R_RMAX");

	_parameter_handles.y_p = param_find("FW_YR_P");
	_parameter_handles.y_i = param_find("FW_YR_I");
	_parameter_handles.y_ff = param_find("FW_YR_FF");
	_parameter_handles.y_integrator_max = param_find("FW_YR_IMAX");
	_parameter_handles.y_rmax = param_find("FW_Y_RMAX");

	_parameter_handles.airspeed_min = param_find("FW_AIRSPD_MIN");
	_parameter_handles.airspeed_trim = param_find("FW_AIRSPD_TRIM");
	_parameter_handles.airspeed_max = param_find("FW_AIRSPD_MAX");

	_parameter_handles.y_coordinated_min_speed = param_find("FW_YCO_VMIN");
	_parameter_handles.y_coordinated_method = param_find("FW_YCO_METHOD");

	_parameter_handles.trim_roll = param_find("TRIM_ROLL");
	_parameter_handles.trim_pitch = param_find("TRIM_PITCH");
	_parameter_handles.trim_yaw = param_find("TRIM_YAW");
	_parameter_handles.rollsp_offset_deg = param_find("FW_RSP_OFF");
	_parameter_handles.pitchsp_offset_deg = param_find("FW_PSP_OFF");

	_parameter_handles.man_roll_max = param_find("FW_MAN_R_MAX");
	_parameter_handles.man_pitch_max = param_find("FW_MAN_P_MAX");

	/* fetch initial parameter values */
	parameters_update();
}

FixedwingAttitudeControl::~FixedwingAttitudeControl()
{
	if (_control_task != -1) {

		/* task wakes up every 100ms or so at the longest */
		_task_should_exit = true;

		/* wait for a second for the task to quit at our request */
		unsigned i = 0;

		do {
			/* wait 20ms */
			usleep(20000);

			/* if we have given up, kill it */
			if (++i > 50) {
				task_delete(_control_task);
				break;
			}
		} while (_control_task != -1);
	}

	perf_free(_loop_perf);
	perf_free(_nonfinite_input_perf);
	perf_free(_nonfinite_output_perf);

	att_control::g_control = nullptr;
}

int
FixedwingAttitudeControl::parameters_update()
{

	param_get(_parameter_handles.tconst, &(_parameters.tconst));
	param_get(_parameter_handles.p_p, &(_parameters.p_p));
	param_get(_parameter_handles.p_i, &(_parameters.p_i));
	param_get(_parameter_handles.p_ff, &(_parameters.p_ff));
	param_get(_parameter_handles.p_rmax_pos, &(_parameters.p_rmax_pos));
	param_get(_parameter_handles.p_rmax_neg, &(_parameters.p_rmax_neg));
	param_get(_parameter_handles.p_integrator_max, &(_parameters.p_integrator_max));
	param_get(_parameter_handles.p_roll_feedforward, &(_parameters.p_roll_feedforward));

	param_get(_parameter_handles.r_p, &(_parameters.r_p));
	param_get(_parameter_handles.r_i, &(_parameters.r_i));
	param_get(_parameter_handles.r_ff, &(_parameters.r_ff));

	param_get(_parameter_handles.r_integrator_max, &(_parameters.r_integrator_max));
	param_get(_parameter_handles.r_rmax, &(_parameters.r_rmax));

	param_get(_parameter_handles.y_p, &(_parameters.y_p));
	param_get(_parameter_handles.y_i, &(_parameters.y_i));
	param_get(_parameter_handles.y_ff, &(_parameters.y_ff));
	param_get(_parameter_handles.y_integrator_max, &(_parameters.y_integrator_max));
	param_get(_parameter_handles.y_coordinated_min_speed, &(_parameters.y_coordinated_min_speed));
	param_get(_parameter_handles.y_coordinated_method, &(_parameters.y_coordinated_method));
	param_get(_parameter_handles.y_rmax, &(_parameters.y_rmax));

	param_get(_parameter_handles.airspeed_min, &(_parameters.airspeed_min));
	param_get(_parameter_handles.airspeed_trim, &(_parameters.airspeed_trim));
	param_get(_parameter_handles.airspeed_max, &(_parameters.airspeed_max));

	param_get(_parameter_handles.trim_roll, &(_parameters.trim_roll));
	param_get(_parameter_handles.trim_pitch, &(_parameters.trim_pitch));
	param_get(_parameter_handles.trim_yaw, &(_parameters.trim_yaw));
	param_get(_parameter_handles.rollsp_offset_deg, &(_parameters.rollsp_offset_deg));
	param_get(_parameter_handles.pitchsp_offset_deg, &(_parameters.pitchsp_offset_deg));
	_parameters.rollsp_offset_rad = math::radians(_parameters.rollsp_offset_deg);
	_parameters.pitchsp_offset_rad = math::radians(_parameters.pitchsp_offset_deg);
	param_get(_parameter_handles.man_roll_max, &(_parameters.man_roll_max));
	param_get(_parameter_handles.man_pitch_max, &(_parameters.man_pitch_max));
	_parameters.man_roll_max = math::radians(_parameters.man_roll_max);
	_parameters.man_pitch_max = math::radians(_parameters.man_pitch_max);

	/* pitch control parameters */
	_pitch_ctrl.set_time_constant(_parameters.tconst);
	_pitch_ctrl.set_k_p(_parameters.p_p);
	_pitch_ctrl.set_k_i(_parameters.p_i);
	_pitch_ctrl.set_k_ff(_parameters.p_ff);
	_pitch_ctrl.set_integrator_max(_parameters.p_integrator_max);
	_pitch_ctrl.set_max_rate_pos(math::radians(_parameters.p_rmax_pos));
	_pitch_ctrl.set_max_rate_neg(math::radians(_parameters.p_rmax_neg));
	_pitch_ctrl.set_roll_ff(_parameters.p_roll_feedforward);

	/* roll control parameters */
	_roll_ctrl.set_time_constant(_parameters.tconst);
	_roll_ctrl.set_k_p(_parameters.r_p);
	_roll_ctrl.set_k_i(_parameters.r_i);
	_roll_ctrl.set_k_ff(_parameters.r_ff);
	_roll_ctrl.set_integrator_max(_parameters.r_integrator_max);
	_roll_ctrl.set_max_rate(math::radians(_parameters.r_rmax));

	/* yaw control parameters */
	_yaw_ctrl.set_k_p(_parameters.y_p);
	_yaw_ctrl.set_k_i(_parameters.y_i);
	_yaw_ctrl.set_k_ff(_parameters.y_ff);
	_yaw_ctrl.set_integrator_max(_parameters.y_integrator_max);
	_yaw_ctrl.set_coordinated_min_speed(_parameters.y_coordinated_min_speed);
	_yaw_ctrl.set_coordinated_method(_parameters.y_coordinated_method);
	_yaw_ctrl.set_max_rate(math::radians(_parameters.y_rmax));

	return OK;
}

void
FixedwingAttitudeControl::vehicle_control_mode_poll()
{
	bool vcontrol_mode_updated;

	/* Check if vehicle control mode has changed */
	orb_check(_vcontrol_mode_sub, &vcontrol_mode_updated);

	if (vcontrol_mode_updated) {
		
		orb_copy(ORB_ID(vehicle_control_mode), _vcontrol_mode_sub, &_vcontrol_mode);
	}
}

void
FixedwingAttitudeControl::vehicle_manual_poll()
{
	bool manual_updated;

	/* get pilots inputs */
	orb_check(_manual_sub, &manual_updated);

	if (manual_updated) {

		orb_copy(ORB_ID(manual_control_setpoint), _manual_sub, &_manual);
	}
}

void
FixedwingAttitudeControl::vehicle_airspeed_poll()
{
	/* check if there is a new position */
	bool airspeed_updated;
	orb_check(_airspeed_sub, &airspeed_updated);

	if (airspeed_updated) {
		orb_copy(ORB_ID(airspeed), _airspeed_sub, &_airspeed);
	}
}

void
FixedwingAttitudeControl::vehicle_accel_poll()
{
	/* check if there is a new position */
	bool accel_updated;
	orb_check(_accel_sub, &accel_updated);

	if (accel_updated) {
		orb_copy(ORB_ID(sensor_accel), _accel_sub, &_accel);
	}
}

void
FixedwingAttitudeControl::vehicle_setpoint_poll()
{
	/* check if there is a new setpoint */
	bool att_sp_updated;
	orb_check(_att_sp_sub, &att_sp_updated);

	if (att_sp_updated) {
		orb_copy(ORB_ID(vehicle_attitude_setpoint), _att_sp_sub, &_att_sp);
		_setpoint_valid = true;
	}
}

void
FixedwingAttitudeControl::global_pos_poll()
{
	/* check if there is a new global position */
	bool global_pos_updated;
	orb_check(_global_pos_sub, &global_pos_updated);

	if (global_pos_updated) {
		orb_copy(ORB_ID(vehicle_global_position), _global_pos_sub, &_global_pos);
	}
}

void
FixedwingAttitudeControl::vehicle_status_poll()
{
	/* check if there is new status information */
	bool vehicle_status_updated;
	orb_check(_vehicle_status_sub, &vehicle_status_updated);

	if (vehicle_status_updated) {
		orb_copy(ORB_ID(vehicle_status), _vehicle_status_sub, &_vehicle_status);
		/* set correct uORB ID, depending on if vehicle is VTOL or not */
		if (!_rates_sp_id) {
			if (_vehicle_status.is_vtol) {
				_rates_sp_id = ORB_ID(fw_virtual_rates_setpoint);
				_actuators_id = ORB_ID(actuator_controls_virtual_fw);
			} else {
				_rates_sp_id = ORB_ID(vehicle_rates_setpoint);
				_actuators_id = ORB_ID(actuator_controls_0);
			}
		}
	}
}

void
FixedwingAttitudeControl::task_main_trampoline(int argc, char *argv[])
{
	att_control::g_control->task_main();
}

void
FixedwingAttitudeControl::task_main()
{

	/* inform about start */
	warnx("Initializing..");
	fflush(stdout);

	/*
	 * do subscriptions
	 */
	_att_sp_sub = orb_subscribe(ORB_ID(vehicle_attitude_setpoint));
	_att_sub = orb_subscribe(ORB_ID(vehicle_attitude));
	_accel_sub = orb_subscribe_multi(ORB_ID(sensor_accel), 0);
	_airspeed_sub = orb_subscribe(ORB_ID(airspeed));
	_vcontrol_mode_sub = orb_subscribe(ORB_ID(vehicle_control_mode));
	_params_sub = orb_subscribe(ORB_ID(parameter_update));
	_manual_sub = orb_subscribe(ORB_ID(manual_control_setpoint));
	_global_pos_sub = orb_subscribe(ORB_ID(vehicle_global_position));
	_vehicle_status_sub = orb_subscribe(ORB_ID(vehicle_status));

	/* rate limit vehicle status updates to 5Hz */
	orb_set_interval(_vcontrol_mode_sub, 200);
	/* rate limit attitude control to 50 Hz (with some margin, so 17 ms) */
	orb_set_interval(_att_sub, 17);

	parameters_update();

	/* get an initial update for all sensor and status data */
	vehicle_airspeed_poll();
	vehicle_setpoint_poll();
	vehicle_accel_poll();
	vehicle_control_mode_poll();
	vehicle_manual_poll();
	vehicle_status_poll();

	/* wakeup source(s) */
	struct pollfd fds[2];

	/* Setup of loop */
	fds[0].fd = _params_sub;
	fds[0].events = POLLIN;
	fds[1].fd = _att_sub;
	fds[1].events = POLLIN;

	_task_running = true;

	while (!_task_should_exit) {

		static int loop_counter = 0;

		/* wait for up to 500ms for data */
		int pret = poll(&fds[0], (sizeof(fds) / sizeof(fds[0])), 100);

		/* timed out - periodic check for _task_should_exit, etc. */
		if (pret == 0)
			continue;

		/* this is undesirable but not much we can do - might want to flag unhappy status */
		if (pret < 0) {
			warn("poll error %d, %d", pret, errno);
			continue;
		}

		perf_begin(_loop_perf);

		/* only update parameters if they changed */
		if (fds[0].revents & POLLIN) {
			/* read from param to clear updated flag */
			struct parameter_update_s update;
			orb_copy(ORB_ID(parameter_update), _params_sub, &update);

			/* update parameters from storage */
			parameters_update();
		}

		/* only run controller if attitude changed */
		if (fds[1].revents & POLLIN) {


			static uint64_t last_run = 0;
			float deltaT = (hrt_absolute_time() - last_run) / 1000000.0f;
			last_run = hrt_absolute_time();

			/* guard against too large deltaT's */
			if (deltaT > 1.0f)
				deltaT = 0.01f;

			/* load local copies */
			orb_copy(ORB_ID(vehicle_attitude), _att_sub, &_att);

			if (_vehicle_status.is_vtol) {
				/* vehicle type is VTOL, need to modify attitude!
				 * The following modification to the attitude is vehicle specific and in this case applies
				 *  to tail-sitter models !!!
				 *
				 * Since the VTOL airframe is initialized as a multicopter we need to
				 * modify the estimated attitude for the fixed wing operation.
				 * Since the neutral position of the vehicle in fixed wing mode is -90 degrees rotated around
				 * the pitch axis compared to the neutral position of the vehicle in multicopter mode
				 * we need to swap the roll and the yaw axis (1st and 3rd column) in the rotation matrix.
				 * Additionally, in order to get the correct sign of the pitch, we need to multiply
				 * the new x axis of the rotation matrix with -1
				 *
				 * original:			modified:
				 *
				 * Rxx  Ryx  Rzx		-Rzx  Ryx  Rxx
				 * Rxy	Ryy  Rzy		-Rzy  Ryy  Rxy
				 * Rxz	Ryz  Rzz		-Rzz  Ryz  Rxz
				 * */
				math::Matrix<3, 3> R;				//original rotation matrix
				math::Matrix<3, 3> R_adapted;		//modified rotation matrix
				R.set(_att.R);
				R_adapted.set(_att.R);

				/* move z to x */
				R_adapted(0, 0) = R(0, 2);
				R_adapted(1, 0) = R(1, 2);
				R_adapted(2, 0) = R(2, 2);

				/* move x to z */
				R_adapted(0, 2) = R(0, 0);
				R_adapted(1, 2) = R(1, 0);
				R_adapted(2, 2) = R(2, 0);

				/* change direction of pitch (convert to right handed system) */
				R_adapted(0, 0) = -R_adapted(0, 0);
				R_adapted(1, 0) = -R_adapted(1, 0);
				R_adapted(2, 0) = -R_adapted(2, 0);
				math::Vector<3> euler_angles;		//adapted euler angles for fixed wing operation
				euler_angles = R_adapted.to_euler();

				/* fill in new attitude data */
				_att.roll    = euler_angles(0);
				_att.pitch   = euler_angles(1);
				_att.yaw     = euler_angles(2);
				PX4_R(_att.R, 0, 0) = R_adapted(0, 0);
				PX4_R(_att.R, 0, 1) = R_adapted(0, 1);
				PX4_R(_att.R, 0, 2) = R_adapted(0, 2);
				PX4_R(_att.R, 1, 0) = R_adapted(1, 0);
				PX4_R(_att.R, 1, 1) = R_adapted(1, 1);
				PX4_R(_att.R, 1, 2) = R_adapted(1, 2);
				PX4_R(_att.R, 2, 0) = R_adapted(2, 0);
				PX4_R(_att.R, 2, 1) = R_adapted(2, 1);
				PX4_R(_att.R, 2, 2) = R_adapted(2, 2);

				/* lastly, roll- and yawspeed have to be swaped */
				float helper = _att.rollspeed;
				_att.rollspeed = -_att.yawspeed;
				_att.yawspeed = helper;
			}

			vehicle_airspeed_poll();

			vehicle_setpoint_poll();

			vehicle_accel_poll();

			vehicle_control_mode_poll();

			vehicle_manual_poll();

			global_pos_poll();

			vehicle_status_poll();

			/* lock integrator until control is started */
			bool lock_integrator;

			if (_vcontrol_mode.flag_control_attitude_enabled && !_vehicle_status.is_rotary_wing) {
				lock_integrator = false;

			} else {
				lock_integrator = true;
			}

			/* Simple handling of failsafe: deploy parachute if failsafe is on */
			if (_vcontrol_mode.flag_control_termination_enabled) {
				_actuators_airframe.control[7] = 1.0f;
				//warnx("_actuators_airframe.control[1] = 1.0f;");
			} else {
				_actuators_airframe.control[7] = 0.0f;
				//warnx("_actuators_airframe.control[1] = -1.0f;");
			}

			/* decide if in stabilized or full manual control */

			if (_vcontrol_mode.flag_control_attitude_enabled) {

				/* scale around tuning airspeed */

				float airspeed;

				/* if airspeed is not updating, we assume the normal average speed */
				if (bool nonfinite = !isfinite(_airspeed.true_airspeed_m_s) ||
				    hrt_elapsed_time(&_airspeed.timestamp) > 1e6) {
					airspeed = _parameters.airspeed_trim;
					if (nonfinite) {
						perf_count(_nonfinite_input_perf);
					}
				} else {
					/* prevent numerical drama by requiring 0.5 m/s minimal speed */
					airspeed = math::max(0.5f, _airspeed.true_airspeed_m_s);
				}

				/*
				 * For scaling our actuators using anything less than the min (close to stall)
				 * speed doesn't make any sense - its the strongest reasonable deflection we
				 * want to do in flight and its the baseline a human pilot would choose.
				 *
				 * Forcing the scaling to this value allows reasonable handheld tests.
				 */

				float airspeed_scaling = _parameters.airspeed_trim / ((airspeed < _parameters.airspeed_min) ? _parameters.airspeed_min : airspeed);

				float roll_sp = _parameters.rollsp_offset_rad;
				float pitch_sp = _parameters.pitchsp_offset_rad;
				float yaw_manual = 0.0f;
				float throttle_sp = 0.0f;

				/* Read attitude setpoint from uorb if
				 * - velocity control or position control is enabled (pos controller is running)
				 * - manual control is disabled (another app may send the setpoint, but it should
				 *   for sure not be set from the remote control values)
				 */
				if (_vcontrol_mode.flag_control_auto_enabled ||
						!_vcontrol_mode.flag_control_manual_enabled) {
					/* read in attitude setpoint from attitude setpoint uorb topic */
					roll_sp = _att_sp.roll_body + _parameters.rollsp_offset_rad;
					pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad;
					throttle_sp = _att_sp.thrust;

					/* reset integrals where needed */
					if (_att_sp.roll_reset_integral) {
						_roll_ctrl.reset_integrator();
					}
					if (_att_sp.pitch_reset_integral) {
						_pitch_ctrl.reset_integrator();
					}
					if (_att_sp.yaw_reset_integral) {
						_yaw_ctrl.reset_integrator();
					}
				} else if (_vcontrol_mode.flag_control_velocity_enabled) {
 					/*
					 * Velocity should be controlled and manual is enabled.
					*/
					roll_sp = (_manual.y * _parameters.man_roll_max - _parameters.trim_roll)
											+ _parameters.rollsp_offset_rad;
					pitch_sp = _att_sp.pitch_body + _parameters.pitchsp_offset_rad;
					throttle_sp = _att_sp.thrust;

					/* reset integrals where needed */
					if (_att_sp.roll_reset_integral) {
						_roll_ctrl.reset_integrator();
					}
					if (_att_sp.pitch_reset_integral) {
						_pitch_ctrl.reset_integrator();
					}
					if (_att_sp.yaw_reset_integral) {
						_yaw_ctrl.reset_integrator();
					}
				} else {
					/*
					 * Scale down roll and pitch as the setpoints are radians
					 * and a typical remote can only do around 45 degrees, the mapping is
					 * -1..+1 to -man_roll_max rad..+man_roll_max rad (equivalent for pitch)
					 *
					 * With this mapping the stick angle is a 1:1 representation of
					 * the commanded attitude.
					 *
					 * The trim gets subtracted here from the manual setpoint to get
					 * the intended attitude setpoint. Later, after the rate control step the
					 * trim is added again to the control signal.
					 */
					roll_sp = (_manual.y * _parameters.man_roll_max - _parameters.trim_roll)
						+ _parameters.rollsp_offset_rad;
					pitch_sp = -(_manual.x * _parameters.man_pitch_max - _parameters.trim_pitch)
						+ _parameters.pitchsp_offset_rad;
					/* allow manual control of rudder deflection */
					yaw_manual = _manual.r;
					throttle_sp = _manual.z;
					_actuators.control[4] = _manual.flaps;

					/*
					 * in manual mode no external source should / does emit attitude setpoints.
					 * emit the manual setpoint here to allow attitude controller tuning
					 * in attitude control mode.
					 */
					struct vehicle_attitude_setpoint_s att_sp;
					att_sp.timestamp = hrt_absolute_time();
					att_sp.roll_body = roll_sp;
					att_sp.pitch_body = pitch_sp;
					att_sp.yaw_body = 0.0f - _parameters.trim_yaw;
					att_sp.thrust = throttle_sp;

					/* lazily publish the setpoint only once available */
					if (_attitude_sp_pub > 0 && !_vehicle_status.is_rotary_wing) {
						/* publish the attitude setpoint */
						orb_publish(ORB_ID(vehicle_attitude_setpoint), _attitude_sp_pub, &att_sp);

					} else if (_attitude_sp_pub < 0 && !_vehicle_status.is_rotary_wing) {
						/* advertise and publish */
						_attitude_sp_pub = orb_advertise(ORB_ID(vehicle_attitude_setpoint), &att_sp);
					}
				}

				/* If the aircraft is on ground reset the integrators */
				if (_vehicle_status.condition_landed || _vehicle_status.is_rotary_wing) {
					_roll_ctrl.reset_integrator();
					_pitch_ctrl.reset_integrator();
					_yaw_ctrl.reset_integrator();
				}

				/* Prepare speed_body_u and speed_body_w */
				float speed_body_u = 0.0f;
				float speed_body_v = 0.0f;
				float speed_body_w = 0.0f;
				if(_att.R_valid) 	{
					speed_body_u = PX4_R(_att.R, 0, 0) * _global_pos.vel_n + PX4_R(_att.R, 1, 0) * _global_pos.vel_e + PX4_R(_att.R, 2, 0) * _global_pos.vel_d;
					speed_body_v = PX4_R(_att.R, 0, 1) * _global_pos.vel_n + PX4_R(_att.R, 1, 1) * _global_pos.vel_e + PX4_R(_att.R, 2, 1) * _global_pos.vel_d;
					speed_body_w = PX4_R(_att.R, 0, 2) * _global_pos.vel_n + PX4_R(_att.R, 1, 2) * _global_pos.vel_e + PX4_R(_att.R, 2, 2) * _global_pos.vel_d;
				} else	{
					if (_debug && loop_counter % 10 == 0) {
						warnx("Did not get a valid R\n");
					}
				}

				/* Prepare data for attitude controllers */
				struct ECL_ControlData control_input = {};
				control_input.roll = _att.roll;
				control_input.pitch = _att.pitch;
				control_input.yaw = _att.yaw;
				control_input.roll_rate = _att.rollspeed;
				control_input.pitch_rate = _att.pitchspeed;
				control_input.yaw_rate = _att.yawspeed;
				control_input.speed_body_u = speed_body_u;
				control_input.speed_body_v = speed_body_v;
				control_input.speed_body_w = speed_body_w;
				control_input.acc_body_x = _accel.x;
				control_input.acc_body_y = _accel.y;
				control_input.acc_body_z = _accel.z;
				control_input.roll_setpoint = roll_sp;
				control_input.pitch_setpoint = pitch_sp;
				control_input.airspeed_min = _parameters.airspeed_min;
				control_input.airspeed_max = _parameters.airspeed_max;
				control_input.airspeed = airspeed;
				control_input.scaler = airspeed_scaling;
				control_input.lock_integrator = lock_integrator;

				/* Run attitude controllers */
				if (isfinite(roll_sp) && isfinite(pitch_sp)) {
					_roll_ctrl.control_attitude(control_input);
					_pitch_ctrl.control_attitude(control_input);
					_yaw_ctrl.control_attitude(control_input); //runs last, because is depending on output of roll and pitch attitude

					/* Update input data for rate controllers */
					control_input.roll_rate_setpoint = _roll_ctrl.get_desired_rate();
					control_input.pitch_rate_setpoint = _pitch_ctrl.get_desired_rate();
					control_input.yaw_rate_setpoint = _yaw_ctrl.get_desired_rate();

					/* Run attitude RATE controllers which need the desired attitudes from above, add trim */
					float roll_u = _roll_ctrl.control_bodyrate(control_input);
					_actuators.control[0] = (isfinite(roll_u)) ? roll_u + _parameters.trim_roll : _parameters.trim_roll;
					if (!isfinite(roll_u)) {
						_roll_ctrl.reset_integrator();
						perf_count(_nonfinite_output_perf);

						if (_debug && loop_counter % 10 == 0) {
							warnx("roll_u %.4f", (double)roll_u);
						}
					}

					float pitch_u = _pitch_ctrl.control_bodyrate(control_input);
					_actuators.control[1] = (isfinite(pitch_u)) ? pitch_u + _parameters.trim_pitch : _parameters.trim_pitch;
					if (!isfinite(pitch_u)) {
						_pitch_ctrl.reset_integrator();
						perf_count(_nonfinite_output_perf);
						if (_debug && loop_counter % 10 == 0) {
							warnx("pitch_u %.4f, _yaw_ctrl.get_desired_rate() %.4f,"
								" airspeed %.4f, airspeed_scaling %.4f,"
								" roll_sp %.4f, pitch_sp %.4f,"
								" _roll_ctrl.get_desired_rate() %.4f,"
								" _pitch_ctrl.get_desired_rate() %.4f"
								" att_sp.roll_body %.4f",
								(double)pitch_u, (double)_yaw_ctrl.get_desired_rate(),
								(double)airspeed, (double)airspeed_scaling,
								(double)roll_sp, (double)pitch_sp,
								(double)_roll_ctrl.get_desired_rate(),
								(double)_pitch_ctrl.get_desired_rate(),
								(double)_att_sp.roll_body);
						}
					}

					float yaw_u = _yaw_ctrl.control_bodyrate(control_input);
					_actuators.control[2] = (isfinite(yaw_u)) ? yaw_u + _parameters.trim_yaw : _parameters.trim_yaw;

					/* add in manual rudder control */
					_actuators.control[2] += yaw_manual;
					if (!isfinite(yaw_u)) {
						_yaw_ctrl.reset_integrator();
						perf_count(_nonfinite_output_perf);
						if (_debug && loop_counter % 10 == 0) {
							warnx("yaw_u %.4f", (double)yaw_u);
						}
					}

					/* throttle passed through if it is finite and if no engine failure was
					 * detected */
					_actuators.control[3] = (isfinite(throttle_sp) &&
							!(_vehicle_status.engine_failure ||
								_vehicle_status.engine_failure_cmd)) ?
						throttle_sp : 0.0f;
					if (!isfinite(throttle_sp)) {
						if (_debug && loop_counter % 10 == 0) {
							warnx("throttle_sp %.4f", (double)throttle_sp);
						}
					}
				} else {
					perf_count(_nonfinite_input_perf);
					if (_debug && loop_counter % 10 == 0) {
						warnx("Non-finite setpoint roll_sp: %.4f, pitch_sp %.4f", (double)roll_sp, (double)pitch_sp);
					}
				}

				/*
				 * Lazily publish the rate setpoint (for analysis, the actuators are published below)
				 * only once available
				 */
				_rates_sp.roll = _roll_ctrl.get_desired_rate();
				_rates_sp.pitch = _pitch_ctrl.get_desired_rate();
				_rates_sp.yaw = _yaw_ctrl.get_desired_rate();

				_rates_sp.timestamp = hrt_absolute_time();

				if (_rate_sp_pub > 0) {
					/* publish the attitude rates setpoint */
					orb_publish(_rates_sp_id, _rate_sp_pub, &_rates_sp);
				} else if (_rates_sp_id) {
					/* advertise the attitude rates setpoint */
					_rate_sp_pub = orb_advertise(_rates_sp_id, &_rates_sp);
				}

			} else {
				/* manual/direct control */
				_actuators.control[0] = _manual.y;
				_actuators.control[1] = -_manual.x;
				_actuators.control[2] = _manual.r;
				_actuators.control[3] = _manual.z;
				_actuators.control[4] = _manual.flaps;
			}

			_actuators.control[5] = _manual.aux1;
			_actuators.control[6] = _manual.aux2;
			_actuators.control[7] = _manual.aux3;

			/* lazily publish the setpoint only once available */
			_actuators.timestamp = hrt_absolute_time();
			_actuators.timestamp_sample = _att.timestamp;
			_actuators_airframe.timestamp = hrt_absolute_time();
			_actuators_airframe.timestamp_sample = _att.timestamp;

			/* Only publish if any of the proper modes are enabled */
			if(_vcontrol_mode.flag_control_rates_enabled ||
               _vcontrol_mode.flag_control_attitude_enabled ||
               _vcontrol_mode.flag_control_manual_enabled)
			{
				/* publish the actuator controls */
				if (_actuators_0_pub > 0) {
					orb_publish(_actuators_id, _actuators_0_pub, &_actuators);
				} else if (_actuators_id) {
					_actuators_0_pub= orb_advertise(_actuators_id, &_actuators);
				}

				if (_actuators_2_pub > 0) {
					/* publish the actuator controls*/
					orb_publish(ORB_ID(actuator_controls_2), _actuators_2_pub, &_actuators_airframe);

				} else {
					/* advertise and publish */
					_actuators_2_pub = orb_advertise(ORB_ID(actuator_controls_2), &_actuators_airframe);
				}
			}
		}

		loop_counter++;
		perf_end(_loop_perf);
	}

	warnx("exiting.\n");

	_control_task = -1;
	_task_running = false;
	_exit(0);
}

int
FixedwingAttitudeControl::start()
{
	ASSERT(_control_task == -1);

	/* start the task */
	_control_task = task_spawn_cmd("fw_att_control",
				       SCHED_DEFAULT,
				       SCHED_PRIORITY_MAX - 5,
				       1600,
				       (main_t)&FixedwingAttitudeControl::task_main_trampoline,
				       nullptr);

	if (_control_task < 0) {
		warn("task start failed");
		return -errno;
	}

	return OK;
}

int fw_att_control_main(int argc, char *argv[])
{
	if (argc < 1)
		errx(1, "usage: fw_att_control {start|stop|status}");

	if (!strcmp(argv[1], "start")) {

		if (att_control::g_control != nullptr)
			errx(1, "already running");

		att_control::g_control = new FixedwingAttitudeControl;

		if (att_control::g_control == nullptr)
			errx(1, "alloc failed");

		if (OK != att_control::g_control->start()) {
			delete att_control::g_control;
			att_control::g_control = nullptr;
			err(1, "start failed");
		}

		/* avoid memory fragmentation by not exiting start handler until the task has fully started */
		while (att_control::g_control == nullptr || !att_control::g_control->task_running()) {
			usleep(50000);
			printf(".");
			fflush(stdout);
		}
		printf("\n");

		exit(0);
	}

	if (!strcmp(argv[1], "stop")) {
		if (att_control::g_control == nullptr)
			errx(1, "not running");

		delete att_control::g_control;
		att_control::g_control = nullptr;
		exit(0);
	}

	if (!strcmp(argv[1], "status")) {
		if (att_control::g_control) {
			errx(0, "running");

		} else {
			errx(1, "not running");
		}
	}

	warnx("unrecognized command");
	return 1;
}