
Arduino Communication protocol, Ensured (ACE)

Specification

Jakob Odersky

February 27, 2013

1 Introduction & Purpose

The purpose of the Arduino Communication protocol, Ensured (ACE) is to provide reliable and
reactive communication between a micro controller and a computer (or two micro controllers). The
main features of the protocol are reliability, in a sense that the communicating parties know if a
sent message was received or not, and reactivity, i.e. the main program loop is not blocked whilst
waiting for a message response.

Compared to the OSI model, ACE is a data-link layer protocol.

2 Functional Overview

The operation of ACE may be divided into two parts: data framing and automatic repeat request.
Data framing is the action of “packaging” a sequence of data bytes so that it may be sent as a
whole over a physical channel. A checksum sent in the frame ensures that if an error occurred
during transmission it is very likely to be detected and the whole frame rejected.

However, if such an error occurs, the sender has no way of knowing it and the sent data will be
lost. To remedy this kind of situation, ACE uses a form of automatic repeat request mechanism.

See the following sections on details of these two parts.

3 Framing

As to ensure reliability, data is always sent in frames containing a checksum. A frame is composed
of: a header consisting of one start byte, followed by an arbitrary amount of data bytes1, followed
by a trailer consisting of one checksum byte and one stop byte. The checksum is calculated by
taking the exclusive or of all data bytes. Furthermore, data and checksum bytes are escaped by a
preceding escape byte. An overview of a data frame and the definition of special byte values are
given in table 1.

An invalid frame should be ignored by the receiver and no action taken.

Structure Header Data Trailer

Detailed structure start data checksum stop
Length (bytes) 1 any (within limits of implementation) 1 1
Hexadecimal values 0x02 XOR of all data bytes 0x03
Escape byte value: 0x10.

Table 1: A data frame in ACE.

1limits are implementation specific

1

3.1 Example 1

As a first example, consider the message “hello” encoded in ASCII. Equivalently, this message may
be represented as a sequence of bytes (in decimal representation):

104 101 108 108 111

The checksum of this message is 98, therefore the corresponding data frame is:

002 104 101 108 108 111 098 003

3.2 Example 2

As a second example, consider the byte sequence:

001 108 002 111 016 102

The values 002 and 016 are special bytes and therefore have to be escaped. Considering that the
checksum is 118, the resulting frame is given by:

002 001 108 016 002 111 016 016 102 118 003

4 Automatic Repeat Request (ARQ)

To remedy the loss of invalid frames, ACE uses a kind of stop-and-wait ARQ. After sending a
frame, the sender waits for an acknowledgement of the receiver before transmitting a next frame.
If no acknowledgement is received in a timeout delay, the message is retransmitted. If after
retransmitting the message several times no acknowledgement has been received, the message is
considered to have been lost and an error is generated at the sender side. Only if the correct
acknowledgement is received the message may be considered successfully sent and an action may
be taken.

On the receiver side, if a frame is received, an acknowledgement to that frame is sent back and
application specific action (to the message) is taken. If the same frame is received following the
acknowledgement, it is considered that the sender did not receive the acknowledgement and the
acknowledgement is retransmitted, this time without taking application specific action.

To differentiate frames and to enable the distinction between acknowledgements and data
frames, each message is preceded with a sequence byte and a command byte (in that order) before
being sent as a frame.

The sequence byte is used an identification number and is incremented for every new message
(a new message is a message that has not been retransmitted). In case the message is an acknowl-
edgement, the sequence number determines to what message the acknowledgement responds. In
case of an overflow, the sequence number restarts at zero.

The command byte determines if the message is data or an acknowledgement. Its value is 0x05
in case of data and 0x06 in case of an acknowledgement.

For an example, see the C pseudo-code in appendix A.

5 Reactivity

The previous sections specified the “reliability” part of ACE. The second important part of the
protocol is reactivity. Since the concept of reactivity is very broad and possible implementations
vary greatly, the ACE specification does not give any concrete requirements. Implementations
must however provide a way to notify applications that a message was successfully transferred or
that an error occurred.

6 Conclusion

This document specifies the ACE protocol. The reference implementations in C and Scala are
authoritative in case of any uncertainties or inconsistencies with this document.

2

A Stop-and-wait ARQ, example implementation

#define DATA 0x05
#define ACK 0x06

void send (u int s i z e , u i n t 8 t ∗ message) {
i n c r ement s eq counte r () ;
send frame ({ seq , DATA, message }) ;
awa i t ing ack = true ;
s t a r t t i m e r () ;

}

void r e c e i v e (u int s i z e , u i n t 8 t ∗ data) {
u i n t 8 t seq = data [0] ;
u i n t 8 t cmd = data [1] ;
u i n t 8 t ∗ message = &(data [2]) ;
i n t 1 6 t mes sage s i z e = s i z e − 2 ;

i f (! awa i t ing ack) { // ready to r e c e i v e
i f (cmd == DATA) { // the message i s data

i f (l a s t r e c e i v e d s e q != seq) { // the message was not a l r eady processed
l a s t r e c e i v e d s e q = seq ;
a p p l i c a t i o n s p e c i f i c a c t i o n () ; // proces s message

}
send ack (seq) ; // send acknowledgement to the r e c e i v ed frame

} else {
// ignore case in which an ack i s r e c e i v ed even though none i s awaited

}

} else { // awai t ing ack
awa i t ing ack = f a l s e ; // got something so s top wa i t ing f o r ack
s top t imer () ; // s top t imeout

i f (cmd == ACK && seq == l a s t s e n t s e q) { // the co r r e c t ack was re turned
a p p l i c a t i o n s p e c i f i c a c t i o n s e n d s u c c e s s () ;

}
}

}

void t imeout () {
i f (r e sends > MAX RESENDS) {

error no ackowledgement () ;
} else {

r e sends += 1 ;
r e s t a r t t i m e r () ;
resend message () ;

}
}

3

