From a415ca1ab713f92788262057d9810d937dc7499a Mon Sep 17 00:00:00 2001 From: Martin Odersky Date: Tue, 20 Oct 2015 09:47:21 +0200 Subject: Allow existential types in hk types --- tests/pos/polyalias.scala | 6 ++++++ 1 file changed, 6 insertions(+) (limited to 'tests/pos') diff --git a/tests/pos/polyalias.scala b/tests/pos/polyalias.scala index 6ce0e3230..c9d4e0426 100644 --- a/tests/pos/polyalias.scala +++ b/tests/pos/polyalias.scala @@ -23,4 +23,10 @@ object Test { val rm: RMap[Int, String] = Map[String, Int]() val rrm: RRMap[Int, String] = Map[Int, String]() + val zz: RMap[_, Int] = Map[Int, String]() + val m = Map[Int, String]() + val ts: RMap[_, Int] = m + val us: RMap[String, _] = m + val vs: RMap[_, _] = m + } -- cgit v1.2.3 From cdcc7e3592386fcfe0f2b9915db78a894ac92536 Mon Sep 17 00:00:00 2001 From: Martin Odersky Date: Sat, 24 Oct 2015 17:48:21 +0200 Subject: Add fixed version of GenTraversableFactory. There is still an issue because math uses inner classes named Ops which shadow each other. Dotty can't handle it, so implicit search in `range` goes wrong. The new test has been modified to work around that issue. --- tests/pos/GenTraversableFactory.scala | 256 ++++++++++++++++++++++++++++++++++ 1 file changed, 256 insertions(+) create mode 100644 tests/pos/GenTraversableFactory.scala (limited to 'tests/pos') diff --git a/tests/pos/GenTraversableFactory.scala b/tests/pos/GenTraversableFactory.scala new file mode 100644 index 000000000..e5cba4501 --- /dev/null +++ b/tests/pos/GenTraversableFactory.scala @@ -0,0 +1,256 @@ +/* __ *\ +** ________ ___ / / ___ Scala API ** +** / __/ __// _ | / / / _ | (c) 2006-2013, LAMP/EPFL ** +** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ ** +** /____/\___/_/ |_/____/_/ | | ** +** |/ ** +\* */ + + +package scala +package collection +package generic + +import scala.language.higherKinds + +/** A template for companion objects of `Traversable` and subclasses thereof. + * This class provides a set of operations to create `$Coll` objects. + * It is typically inherited by companion objects of subclasses of `Traversable`. + * + * @since 2.8 + * + * @define coll collection + * @define Coll `Traversable` + * @define factoryInfo + * This object provides a set of operations to create `$Coll` values. + * @author Martin Odersky + * @version 2.8 + * @define canBuildFromInfo + * The standard `CanBuildFrom` instance for $Coll objects. + * @see CanBuildFrom + * @define genericCanBuildFromInfo + * The standard `CanBuildFrom` instance for $Coll objects. + * The created value is an instance of class `GenericCanBuildFrom`, + * which forwards calls to create a new builder to the + * `genericBuilder` method of the requesting collection. + * @see CanBuildFrom + * @see GenericCanBuildFrom + */ +abstract class GenTraversableFactory[CC[X] <: GenTraversable[X] with GenericTraversableTemplate[X, CC]] +extends GenericCompanion[CC] { + + private[this] val ReusableCBFInstance: GenericCanBuildFrom[Nothing] = new GenericCanBuildFrom[Nothing] { + override def apply() = newBuilder[Nothing] + } + def ReusableCBF: GenericCanBuildFrom[Nothing] = ReusableCBFInstance + + /** A generic implementation of the `CanBuildFrom` trait, which forwards + * all calls to `apply(from)` to the `genericBuilder` method of + * $coll `from`, and which forwards all calls of `apply()` to the + * `newBuilder` method of this factory. + */ + class GenericCanBuildFrom[A] extends CanBuildFrom[CC[_], A, CC[A]] { + /** Creates a new builder on request of a collection. + * @param from the collection requesting the builder to be created. + * @return the result of invoking the `genericBuilder` method on `from`. + */ + def apply(from: Coll) = from.genericBuilder[A] + + /** Creates a new builder from scratch + * @return the result of invoking the `newBuilder` method of this factory. + */ + def apply() = newBuilder[A] + } + + /** Concatenates all argument collections into a single $coll. + * + * @param xss the collections that are to be concatenated. + * @return the concatenation of all the collections. + */ + def concat[A](xss: Traversable[A]*): CC[A] = { + val b = newBuilder[A] + // At present we're using IndexedSeq as a proxy for "has a cheap size method". + if (xss forall (_.isInstanceOf[IndexedSeq[_]])) + b.sizeHint(xss.map(_.size).sum) + + for (xs <- xss.seq) b ++= xs + b.result() + } + + /** Produces a $coll containing the results of some element computation a number of times. + * @param n the number of elements contained in the $coll. + * @param elem the element computation + * @return A $coll that contains the results of `n` evaluations of `elem`. + */ + def fill[A](n: Int)(elem: => A): CC[A] = { + val b = newBuilder[A] + b.sizeHint(n) + var i = 0 + while (i < n) { + b += elem + i += 1 + } + b.result() + } + + /** Produces a two-dimensional $coll containing the results of some element computation a number of times. + * @param n1 the number of elements in the 1st dimension + * @param n2 the number of elements in the 2nd dimension + * @param elem the element computation + * @return A $coll that contains the results of `n1 x n2` evaluations of `elem`. + */ + def fill[A](n1: Int, n2: Int)(elem: => A): CC[CC[A]] = + tabulate(n1)(_ => fill(n2)(elem)) + + /** Produces a three-dimensional $coll containing the results of some element computation a number of times. + * @param n1 the number of elements in the 1st dimension + * @param n2 the number of elements in the 2nd dimension + * @param n3 the number of elements in the 3nd dimension + * @param elem the element computation + * @return A $coll that contains the results of `n1 x n2 x n3` evaluations of `elem`. + */ + def fill[A](n1: Int, n2: Int, n3: Int)(elem: => A): CC[CC[CC[A]]] = + tabulate(n1)(_ => fill(n2, n3)(elem)) + + /** Produces a four-dimensional $coll containing the results of some element computation a number of times. + * @param n1 the number of elements in the 1st dimension + * @param n2 the number of elements in the 2nd dimension + * @param n3 the number of elements in the 3nd dimension + * @param n4 the number of elements in the 4th dimension + * @param elem the element computation + * @return A $coll that contains the results of `n1 x n2 x n3 x n4` evaluations of `elem`. + */ + def fill[A](n1: Int, n2: Int, n3: Int, n4: Int)(elem: => A): CC[CC[CC[CC[A]]]] = + tabulate(n1)(_ => fill(n2, n3, n4)(elem)) + + /** Produces a five-dimensional $coll containing the results of some element computation a number of times. + * @param n1 the number of elements in the 1st dimension + * @param n2 the number of elements in the 2nd dimension + * @param n3 the number of elements in the 3nd dimension + * @param n4 the number of elements in the 4th dimension + * @param n5 the number of elements in the 5th dimension + * @param elem the element computation + * @return A $coll that contains the results of `n1 x n2 x n3 x n4 x n5` evaluations of `elem`. + */ + def fill[A](n1: Int, n2: Int, n3: Int, n4: Int, n5: Int)(elem: => A): CC[CC[CC[CC[CC[A]]]]] = + tabulate(n1)(_ => fill(n2, n3, n4, n5)(elem)) + + /** Produces a $coll containing values of a given function over a range of integer values starting from 0. + * @param n The number of elements in the $coll + * @param f The function computing element values + * @return A $coll consisting of elements `f(0), ..., f(n -1)` + */ + def tabulate[A](n: Int)(f: Int => A): CC[A] = { + val b = newBuilder[A] + b.sizeHint(n) + var i = 0 + while (i < n) { + b += f(i) + i += 1 + } + b.result() + } + + /** Produces a two-dimensional $coll containing values of a given function over ranges of integer values starting from 0. + * @param n1 the number of elements in the 1st dimension + * @param n2 the number of elements in the 2nd dimension + * @param f The function computing element values + * @return A $coll consisting of elements `f(i1, i2)` + * for `0 <= i1 < n1` and `0 <= i2 < n2`. + */ + def tabulate[A](n1: Int, n2: Int)(f: (Int, Int) => A): CC[CC[A]] = + tabulate(n1)(i1 => tabulate(n2)(f(i1, _))) + + /** Produces a three-dimensional $coll containing values of a given function over ranges of integer values starting from 0. + * @param n1 the number of elements in the 1st dimension + * @param n2 the number of elements in the 2nd dimension + * @param n3 the number of elements in the 3nd dimension + * @param f The function computing element values + * @return A $coll consisting of elements `f(i1, i2, i3)` + * for `0 <= i1 < n1`, `0 <= i2 < n2`, and `0 <= i3 < n3`. + */ + def tabulate[A](n1: Int, n2: Int, n3: Int)(f: (Int, Int, Int) => A): CC[CC[CC[A]]] = + tabulate(n1)(i1 => tabulate(n2, n3)(f(i1, _, _))) + + /** Produces a four-dimensional $coll containing values of a given function over ranges of integer values starting from 0. + * @param n1 the number of elements in the 1st dimension + * @param n2 the number of elements in the 2nd dimension + * @param n3 the number of elements in the 3nd dimension + * @param n4 the number of elements in the 4th dimension + * @param f The function computing element values + * @return A $coll consisting of elements `f(i1, i2, i3, i4)` + * for `0 <= i1 < n1`, `0 <= i2 < n2`, `0 <= i3 < n3`, and `0 <= i4 < n4`. + */ + def tabulate[A](n1: Int, n2: Int, n3: Int, n4: Int)(f: (Int, Int, Int, Int) => A): CC[CC[CC[CC[A]]]] = + tabulate(n1)(i1 => tabulate(n2, n3, n4)(f(i1, _, _, _))) + + /** Produces a five-dimensional $coll containing values of a given function over ranges of integer values starting from 0. + * @param n1 the number of elements in the 1st dimension + * @param n2 the number of elements in the 2nd dimension + * @param n3 the number of elements in the 3nd dimension + * @param n4 the number of elements in the 4th dimension + * @param n5 the number of elements in the 5th dimension + * @param f The function computing element values + * @return A $coll consisting of elements `f(i1, i2, i3, i4, i5)` + * for `0 <= i1 < n1`, `0 <= i2 < n2`, `0 <= i3 < n3`, `0 <= i4 < n4`, and `0 <= i5 < n5`. + */ + def tabulate[A](n1: Int, n2: Int, n3: Int, n4: Int, n5: Int)(f: (Int, Int, Int, Int, Int) => A): CC[CC[CC[CC[CC[A]]]]] = + tabulate(n1)(i1 => tabulate(n2, n3, n4, n5)(f(i1, _, _, _, _))) + + /** Produces a $coll containing a sequence of increasing of integers. + * + * @param start the first element of the $coll + * @param end the end value of the $coll (the first value NOT contained) + * @return a $coll with values `start, start + 1, ..., end - 1` + */ + def range[T: Integral](start: T, end: T): CC[T] = range(start, end, implicitly[Integral[T]].one) + + /** Produces a $coll containing equally spaced values in some integer interval. + * @param start the start value of the $coll + * @param end the end value of the $coll (the first value NOT contained) + * @param step the difference between successive elements of the $coll (must be positive or negative) + * @return a $coll with values `start, start + step, ...` up to, but excluding `end` + */ + def range[T: Integral](start: T, end: T, step: T): CC[T] = { + val num = implicitly[Integral[T]] + import num._ + + if (step == zero) throw new IllegalArgumentException("zero step") + val b = newBuilder[T] + b sizeHint immutable.NumericRange.count(start, end, step, isInclusive = false) + var i = start + + { + val ord: Ordering[T] = num + implicit val ops: T => ord.Ops = ord.mkOrderingOps + while (if (step < zero) end < i else i < end) { + b += i + i += step + }} + b.result() + } + + /** Produces a $coll containing repeated applications of a function to a start value. + * + * @param start the start value of the $coll + * @param len the number of elements contained inthe $coll + * @param f the function that's repeatedly applied + * @return a $coll with `len` values in the sequence `start, f(start), f(f(start)), ...` + */ + def iterate[A](start: A, len: Int)(f: A => A): CC[A] = { + val b = newBuilder[A] + if (len > 0) { + b.sizeHint(len) + var acc = start + var i = 1 + b += acc + + while (i < len) { + acc = f(acc) + i += 1 + b += acc + } + } + b.result() + } +} -- cgit v1.2.3 From 4b1d08928bd008a23fa40490d2998e58a6f06c4d Mon Sep 17 00:00:00 2001 From: Martin Odersky Date: Sun, 25 Oct 2015 12:54:11 +0100 Subject: Represent references to Scala2 inner classes as WithFixedSym types Reason: An inner Scala2 class might be shadowed by a same-named class in a subtype. In Dotty this is disallowed butin Scala 2 it is possible. For instance, math.Numeric and math.Ordering both have an inner class "Ops". Normal TypeRef types could not select the shadowed class in Ordering is the prefix is of type Numeric. --- src/dotty/tools/dotc/core/tasty/TreePickler.scala | 35 +-- .../dotc/core/unpickleScala2/Scala2Unpickler.scala | 5 +- test/dotc/tests.scala | 2 +- tests/neg/selfreq.scala | 8 +- tests/pending/pos/GenTraversableFactory.scala | 252 --------------------- tests/pos/GenTraversableFactory.scala | 8 +- 6 files changed, 31 insertions(+), 279 deletions(-) delete mode 100644 tests/pending/pos/GenTraversableFactory.scala (limited to 'tests/pos') diff --git a/src/dotty/tools/dotc/core/tasty/TreePickler.scala b/src/dotty/tools/dotc/core/tasty/TreePickler.scala index 58697c196..86bbc893f 100644 --- a/src/dotty/tools/dotc/core/tasty/TreePickler.scala +++ b/src/dotty/tools/dotc/core/tasty/TreePickler.scala @@ -148,27 +148,32 @@ class TreePickler(pickler: TastyPickler) { pickleType(tpe.info.bounds.hi) case tpe: WithFixedSym => val sym = tpe.symbol + def pickleRef() = + if (tpe.prefix == NoPrefix) { + writeByte(if (tpe.isType) TYPEREFdirect else TERMREFdirect) + pickleSymRef(sym) + } + else { + assert(tpe.symbol.isClass) + assert(tpe.symbol.is(Flags.Scala2x), tpe.symbol.showLocated) + writeByte(TYPEREF) // should be changed to a new entry that keeps track of prefix, symbol & owner + pickleName(tpe.name) + pickleType(tpe.prefix) + } if (sym.is(Flags.Package)) { writeByte(if (tpe.isType) TYPEREFpkg else TERMREFpkg) pickleName(qualifiedName(sym)) } - else { - assert(tpe.prefix == NoPrefix) - def pickleRef() = { - writeByte(if (tpe.isType) TYPEREFdirect else TERMREFdirect) - pickleSymRef(sym) - } - if (sym is Flags.BindDefinedType) { - registerDef(sym) - writeByte(BIND) - withLength { - pickleName(sym.name) - pickleType(sym.info) - pickleRef() - } + else if (sym is Flags.BindDefinedType) { + registerDef(sym) + writeByte(BIND) + withLength { + pickleName(sym.name) + pickleType(sym.info) + pickleRef() } - else pickleRef() } + else pickleRef() case tpe: TermRefWithSignature => if (tpe.symbol.is(Flags.Package)) picklePackageRef(tpe.symbol) else { diff --git a/src/dotty/tools/dotc/core/unpickleScala2/Scala2Unpickler.scala b/src/dotty/tools/dotc/core/unpickleScala2/Scala2Unpickler.scala index a746d81db..c7df3c400 100644 --- a/src/dotty/tools/dotc/core/unpickleScala2/Scala2Unpickler.scala +++ b/src/dotty/tools/dotc/core/unpickleScala2/Scala2Unpickler.scala @@ -686,7 +686,10 @@ class Scala2Unpickler(bytes: Array[Byte], classRoot: ClassDenotation, moduleClas case _ => } val tycon = - if (isLocal(sym) || pre == NoPrefix) { + if (sym.isClass && sym.is(Scala2x) && !sym.owner.is(Package)) + // used fixed sym for Scala 2 inner classes, because they might be shadowed + TypeRef.withFixedSym(pre, sym.name.asTypeName, sym.asType) + else if (isLocal(sym) || pre == NoPrefix) { val pre1 = if ((pre eq NoPrefix) && (sym is TypeParam)) sym.owner.thisType else pre pre1 select sym } diff --git a/test/dotc/tests.scala b/test/dotc/tests.scala index aaf3e6c4e..700dcd494 100644 --- a/test/dotc/tests.scala +++ b/test/dotc/tests.scala @@ -149,7 +149,7 @@ class tests extends CompilerTest { @Test def neg_escapingRefs = compileFile(negDir, "escapingRefs", xerrors = 2) @Test def neg_instantiateAbstract = compileFile(negDir, "instantiateAbstract", xerrors = 8) @Test def neg_selfInheritance = compileFile(negDir, "selfInheritance", xerrors = 6) - @Test def neg_selfreq = compileFile(negDir, "selfreq", xerrors = 4) + @Test def neg_selfreq = compileFile(negDir, "selfreq", xerrors = 3) @Test def neg_singletons = compileFile(negDir, "singletons", xerrors = 8) @Test def neg_shadowedImplicits = compileFile(negDir, "arrayclone-new", xerrors = 2) @Test def neg_traitParamsTyper = compileFile(negDir, "traitParamsTyper", xerrors = 5) diff --git a/tests/neg/selfreq.scala b/tests/neg/selfreq.scala index e75e03c16..ff5725bf2 100644 --- a/tests/neg/selfreq.scala +++ b/tests/neg/selfreq.scala @@ -1,8 +1,8 @@ -trait X { self: Y => +trait X { self: Y => // error: cannot resolve reference to type (Y & X)(X.this).V type T <: self.U - def foo(x: T): T + def foo(x: T): T // error: cannot resolve reference to type (Y & X)(X.this).V def foo(x: String): String } @@ -21,14 +21,14 @@ trait Z { object O { val x: X = ??? - x.foo("a") + x.foo("a") // error: cannot resolve reference to type (Y & X)(X.this).V } import scala.tools.nsc.interpreter.IMain object Test extends dotty.runtime.LegacyApp { val engine = new IMain.Factory getScriptEngine() - engine.asInstanceOf[IMain].settings.usejavacp.value = true + engine.asInstanceOf[IMain].settings.usejavacp.value = true // no longer an error since we unpickle Scala2 inner classes with fixed syms val res2 = engine.asInstanceOf[javax.script.Compilable] res2 compile "8" eval() val res5 = res2 compile """println("hello") ; 8""" diff --git a/tests/pending/pos/GenTraversableFactory.scala b/tests/pending/pos/GenTraversableFactory.scala deleted file mode 100644 index 2092c0c5f..000000000 --- a/tests/pending/pos/GenTraversableFactory.scala +++ /dev/null @@ -1,252 +0,0 @@ -/* __ *\ -** ________ ___ / / ___ Scala API ** -** / __/ __// _ | / / / _ | (c) 2006-2013, LAMP/EPFL ** -** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ ** -** /____/\___/_/ |_/____/_/ | | ** -** |/ ** -\* */ - - -package scala -package collection -package generic - -import scala.language.higherKinds - -/** A template for companion objects of `Traversable` and subclasses thereof. - * This class provides a set of operations to create `$Coll` objects. - * It is typically inherited by companion objects of subclasses of `Traversable`. - * - * @since 2.8 - * - * @define coll collection - * @define Coll `Traversable` - * @define factoryInfo - * This object provides a set of operations to create `$Coll` values. - * @author Martin Odersky - * @version 2.8 - * @define canBuildFromInfo - * The standard `CanBuildFrom` instance for $Coll objects. - * @see CanBuildFrom - * @define genericCanBuildFromInfo - * The standard `CanBuildFrom` instance for $Coll objects. - * The created value is an instance of class `GenericCanBuildFrom`, - * which forwards calls to create a new builder to the - * `genericBuilder` method of the requesting collection. - * @see CanBuildFrom - * @see GenericCanBuildFrom - */ -abstract class GenTraversableFactory[CC[X] <: GenTraversable[X] with GenericTraversableTemplate[X, CC]] -extends GenericCompanion[CC] { - - private[this] val ReusableCBFInstance: GenericCanBuildFrom[Nothing] = new GenericCanBuildFrom[Nothing] { - override def apply() = newBuilder[Nothing] - } - def ReusableCBF: GenericCanBuildFrom[Nothing] = ReusableCBFInstance - - /** A generic implementation of the `CanBuildFrom` trait, which forwards - * all calls to `apply(from)` to the `genericBuilder` method of - * $coll `from`, and which forwards all calls of `apply()` to the - * `newBuilder` method of this factory. - */ - class GenericCanBuildFrom[A] extends CanBuildFrom[CC[_], A, CC[A]] { - /** Creates a new builder on request of a collection. - * @param from the collection requesting the builder to be created. - * @return the result of invoking the `genericBuilder` method on `from`. - */ - def apply(from: Coll) = from.genericBuilder[A] - - /** Creates a new builder from scratch - * @return the result of invoking the `newBuilder` method of this factory. - */ - def apply() = newBuilder[A] - } - - /** Concatenates all argument collections into a single $coll. - * - * @param xss the collections that are to be concatenated. - * @return the concatenation of all the collections. - */ - def concat[A](xss: Traversable[A]*): CC[A] = { - val b = newBuilder[A] - // At present we're using IndexedSeq as a proxy for "has a cheap size method". - if (xss forall (_.isInstanceOf[IndexedSeq[_]])) - b.sizeHint(xss.map(_.size).sum) - - for (xs <- xss.seq) b ++= xs - b.result() - } - - /** Produces a $coll containing the results of some element computation a number of times. - * @param n the number of elements contained in the $coll. - * @param elem the element computation - * @return A $coll that contains the results of `n` evaluations of `elem`. - */ - def fill[A](n: Int)(elem: => A): CC[A] = { - val b = newBuilder[A] - b.sizeHint(n) - var i = 0 - while (i < n) { - b += elem - i += 1 - } - b.result() - } - - /** Produces a two-dimensional $coll containing the results of some element computation a number of times. - * @param n1 the number of elements in the 1st dimension - * @param n2 the number of elements in the 2nd dimension - * @param elem the element computation - * @return A $coll that contains the results of `n1 x n2` evaluations of `elem`. - */ - def fill[A](n1: Int, n2: Int)(elem: => A): CC[CC[A]] = - tabulate(n1)(_ => fill(n2)(elem)) - - /** Produces a three-dimensional $coll containing the results of some element computation a number of times. - * @param n1 the number of elements in the 1st dimension - * @param n2 the number of elements in the 2nd dimension - * @param n3 the number of elements in the 3nd dimension - * @param elem the element computation - * @return A $coll that contains the results of `n1 x n2 x n3` evaluations of `elem`. - */ - def fill[A](n1: Int, n2: Int, n3: Int)(elem: => A): CC[CC[CC[A]]] = - tabulate(n1)(_ => fill(n2, n3)(elem)) - - /** Produces a four-dimensional $coll containing the results of some element computation a number of times. - * @param n1 the number of elements in the 1st dimension - * @param n2 the number of elements in the 2nd dimension - * @param n3 the number of elements in the 3nd dimension - * @param n4 the number of elements in the 4th dimension - * @param elem the element computation - * @return A $coll that contains the results of `n1 x n2 x n3 x n4` evaluations of `elem`. - */ - def fill[A](n1: Int, n2: Int, n3: Int, n4: Int)(elem: => A): CC[CC[CC[CC[A]]]] = - tabulate(n1)(_ => fill(n2, n3, n4)(elem)) - - /** Produces a five-dimensional $coll containing the results of some element computation a number of times. - * @param n1 the number of elements in the 1st dimension - * @param n2 the number of elements in the 2nd dimension - * @param n3 the number of elements in the 3nd dimension - * @param n4 the number of elements in the 4th dimension - * @param n5 the number of elements in the 5th dimension - * @param elem the element computation - * @return A $coll that contains the results of `n1 x n2 x n3 x n4 x n5` evaluations of `elem`. - */ - def fill[A](n1: Int, n2: Int, n3: Int, n4: Int, n5: Int)(elem: => A): CC[CC[CC[CC[CC[A]]]]] = - tabulate(n1)(_ => fill(n2, n3, n4, n5)(elem)) - - /** Produces a $coll containing values of a given function over a range of integer values starting from 0. - * @param n The number of elements in the $coll - * @param f The function computing element values - * @return A $coll consisting of elements `f(0), ..., f(n -1)` - */ - def tabulate[A](n: Int)(f: Int => A): CC[A] = { - val b = newBuilder[A] - b.sizeHint(n) - var i = 0 - while (i < n) { - b += f(i) - i += 1 - } - b.result() - } - - /** Produces a two-dimensional $coll containing values of a given function over ranges of integer values starting from 0. - * @param n1 the number of elements in the 1st dimension - * @param n2 the number of elements in the 2nd dimension - * @param f The function computing element values - * @return A $coll consisting of elements `f(i1, i2)` - * for `0 <= i1 < n1` and `0 <= i2 < n2`. - */ - def tabulate[A](n1: Int, n2: Int)(f: (Int, Int) => A): CC[CC[A]] = - tabulate(n1)(i1 => tabulate(n2)(f(i1, _))) - - /** Produces a three-dimensional $coll containing values of a given function over ranges of integer values starting from 0. - * @param n1 the number of elements in the 1st dimension - * @param n2 the number of elements in the 2nd dimension - * @param n3 the number of elements in the 3nd dimension - * @param f The function computing element values - * @return A $coll consisting of elements `f(i1, i2, i3)` - * for `0 <= i1 < n1`, `0 <= i2 < n2`, and `0 <= i3 < n3`. - */ - def tabulate[A](n1: Int, n2: Int, n3: Int)(f: (Int, Int, Int) => A): CC[CC[CC[A]]] = - tabulate(n1)(i1 => tabulate(n2, n3)(f(i1, _, _))) - - /** Produces a four-dimensional $coll containing values of a given function over ranges of integer values starting from 0. - * @param n1 the number of elements in the 1st dimension - * @param n2 the number of elements in the 2nd dimension - * @param n3 the number of elements in the 3nd dimension - * @param n4 the number of elements in the 4th dimension - * @param f The function computing element values - * @return A $coll consisting of elements `f(i1, i2, i3, i4)` - * for `0 <= i1 < n1`, `0 <= i2 < n2`, `0 <= i3 < n3`, and `0 <= i4 < n4`. - */ - def tabulate[A](n1: Int, n2: Int, n3: Int, n4: Int)(f: (Int, Int, Int, Int) => A): CC[CC[CC[CC[A]]]] = - tabulate(n1)(i1 => tabulate(n2, n3, n4)(f(i1, _, _, _))) - - /** Produces a five-dimensional $coll containing values of a given function over ranges of integer values starting from 0. - * @param n1 the number of elements in the 1st dimension - * @param n2 the number of elements in the 2nd dimension - * @param n3 the number of elements in the 3nd dimension - * @param n4 the number of elements in the 4th dimension - * @param n5 the number of elements in the 5th dimension - * @param f The function computing element values - * @return A $coll consisting of elements `f(i1, i2, i3, i4, i5)` - * for `0 <= i1 < n1`, `0 <= i2 < n2`, `0 <= i3 < n3`, `0 <= i4 < n4`, and `0 <= i5 < n5`. - */ - def tabulate[A](n1: Int, n2: Int, n3: Int, n4: Int, n5: Int)(f: (Int, Int, Int, Int, Int) => A): CC[CC[CC[CC[CC[A]]]]] = - tabulate(n1)(i1 => tabulate(n2, n3, n4, n5)(f(i1, _, _, _, _))) - - /** Produces a $coll containing a sequence of increasing of integers. - * - * @param start the first element of the $coll - * @param end the end value of the $coll (the first value NOT contained) - * @return a $coll with values `start, start + 1, ..., end - 1` - */ - def range[T: Integral](start: T, end: T): CC[T] = range(start, end, implicitly[Integral[T]].one) - - /** Produces a $coll containing equally spaced values in some integer interval. - * @param start the start value of the $coll - * @param end the end value of the $coll (the first value NOT contained) - * @param step the difference between successive elements of the $coll (must be positive or negative) - * @return a $coll with values `start, start + step, ...` up to, but excluding `end` - */ - def range[T: Integral](start: T, end: T, step: T): CC[T] = { - val num = implicitly[Integral[T]] - import num._ - - if (step == zero) throw new IllegalArgumentException("zero step") - val b = newBuilder[T] - b sizeHint immutable.NumericRange.count(start, end, step, isInclusive = false) - var i = start - while (if (step < zero) end < i else i < end) { - b += i - i += step - } - b.result() - } - - /** Produces a $coll containing repeated applications of a function to a start value. - * - * @param start the start value of the $coll - * @param len the number of elements contained inthe $coll - * @param f the function that's repeatedly applied - * @return a $coll with `len` values in the sequence `start, f(start), f(f(start)), ...` - */ - def iterate[A](start: A, len: Int)(f: A => A): CC[A] = { - val b = newBuilder[A] - if (len > 0) { - b.sizeHint(len) - var acc = start - var i = 1 - b += acc - - while (i < len) { - acc = f(acc) - i += 1 - b += acc - } - } - b.result() - } -} diff --git a/tests/pos/GenTraversableFactory.scala b/tests/pos/GenTraversableFactory.scala index e5cba4501..2f93ab27b 100644 --- a/tests/pos/GenTraversableFactory.scala +++ b/tests/pos/GenTraversableFactory.scala @@ -219,14 +219,10 @@ extends GenericCompanion[CC] { val b = newBuilder[T] b sizeHint immutable.NumericRange.count(start, end, step, isInclusive = false) var i = start - - { - val ord: Ordering[T] = num - implicit val ops: T => ord.Ops = ord.mkOrderingOps - while (if (step < zero) end < i else i < end) { + while (if (/*num.mkOrderingOps*/(step) < zero) end < i else i < end) { b += i i += step - }} + } b.result() } -- cgit v1.2.3