package dotty.tools package dotc package ast import dotty.tools.dotc.typer.ProtoTypes.FunProtoTyped import transform.SymUtils._ import core._ import util.Positions._, Types._, Contexts._, Constants._, Names._, Flags._ import SymDenotations._, Symbols._, StdNames._, Annotations._, Trees._, Symbols._ import Denotations._, Decorators._, DenotTransformers._ import config.Printers._ import typer.Mode import collection.mutable import typer.ErrorReporting._ import scala.annotation.tailrec /** Some creators for typed trees */ object tpd extends Trees.Instance[Type] with TypedTreeInfo { private def ta(implicit ctx: Context) = ctx.typeAssigner def Modifiers(sym: Symbol)(implicit ctx: Context): Modifiers = Modifiers( sym.flags & ModifierFlags, if (sym.privateWithin.exists) sym.privateWithin.asType.name else tpnme.EMPTY, sym.annotations map (_.tree)) def Ident(tp: NamedType)(implicit ctx: Context): Ident = ta.assignType(untpd.Ident(tp.name), tp) def Select(qualifier: Tree, name: Name)(implicit ctx: Context): Select = ta.assignType(untpd.Select(qualifier, name), qualifier) def SelectFromTypeTree(qualifier: Tree, name: Name)(implicit ctx: Context): SelectFromTypeTree = ta.assignType(untpd.SelectFromTypeTree(qualifier, name), qualifier) def SelectFromTypeTree(qualifier: Tree, tp: NamedType)(implicit ctx: Context): SelectFromTypeTree = untpd.SelectFromTypeTree(qualifier, tp.name).withType(tp) def This(cls: ClassSymbol)(implicit ctx: Context): This = untpd.This(cls.name).withType(cls.thisType) def Super(qual: Tree, mix: TypeName, inConstrCall: Boolean, mixinClass: Symbol = NoSymbol)(implicit ctx: Context): Super = ta.assignType(untpd.Super(qual, mix), qual, inConstrCall, mixinClass) def Apply(fn: Tree, args: List[Tree])(implicit ctx: Context): Apply = ta.assignType(untpd.Apply(fn, args), fn, args) def TypeApply(fn: Tree, args: List[Tree])(implicit ctx: Context): TypeApply = ta.assignType(untpd.TypeApply(fn, args), fn, args) def Literal(const: Constant)(implicit ctx: Context): Literal = ta.assignType(untpd.Literal(const)) def unitLiteral(implicit ctx: Context): Literal = Literal(Constant(())) def New(tpt: Tree)(implicit ctx: Context): New = ta.assignType(untpd.New(tpt), tpt) def New(tp: Type)(implicit ctx: Context): New = New(TypeTree(tp)) def Pair(left: Tree, right: Tree)(implicit ctx: Context): Pair = ta.assignType(untpd.Pair(left, right), left, right) def Typed(expr: Tree, tpt: Tree)(implicit ctx: Context): Typed = ta.assignType(untpd.Typed(expr, tpt), tpt) def NamedArg(name: Name, arg: Tree)(implicit ctx: Context) = ta.assignType(untpd.NamedArg(name, arg), arg) def Assign(lhs: Tree, rhs: Tree)(implicit ctx: Context): Assign = ta.assignType(untpd.Assign(lhs, rhs)) def Block(stats: List[Tree], expr: Tree)(implicit ctx: Context): Block = ta.assignType(untpd.Block(stats, expr), stats, expr) def maybeBlock(stats: List[Tree], expr: Tree)(implicit ctx: Context): Tree = if (stats.isEmpty) expr else Block(stats, expr) def If(cond: Tree, thenp: Tree, elsep: Tree)(implicit ctx: Context): If = ta.assignType(untpd.If(cond, thenp, elsep), thenp, elsep) def Closure(env: List[Tree], meth: Tree, tpt: Tree)(implicit ctx: Context): Closure = ta.assignType(untpd.Closure(env, meth, tpt), meth, tpt) /** A function def * * vparams => expr * * gets expanded to * * { def $anonfun(vparams) = expr; Closure($anonfun) } * * where the closure's type is the target type of the expression (FunctionN, unless * otherwise specified). */ def Closure(meth: TermSymbol, rhsFn: List[List[Tree]] => Tree, targs: List[Tree] = Nil, targetType: Type = NoType)(implicit ctx: Context): Block = { val targetTpt = if (targetType.exists) TypeTree(targetType) else EmptyTree val call = if (targs.isEmpty) Ident(TermRef(NoPrefix, meth)) else TypeApply(Ident(TermRef(NoPrefix, meth)), targs) Block( DefDef(meth, rhsFn) :: Nil, Closure(Nil, call, targetTpt)) } def CaseDef(pat: Tree, guard: Tree, body: Tree)(implicit ctx: Context): CaseDef = ta.assignType(untpd.CaseDef(pat, guard, body), body) def Match(selector: Tree, cases: List[CaseDef])(implicit ctx: Context): Match = ta.assignType(untpd.Match(selector, cases), cases) def Return(expr: Tree, from: Tree)(implicit ctx: Context): Return = ta.assignType(untpd.Return(expr, from)) def Try(block: Tree, cases: List[CaseDef], finalizer: Tree)(implicit ctx: Context): Try = ta.assignType(untpd.Try(block, cases, finalizer), block, cases) def SeqLiteral(elems: List[Tree])(implicit ctx: Context): SeqLiteral = ta.assignType(untpd.SeqLiteral(elems), elems) def SeqLiteral(tpe: Type, elems: List[Tree])(implicit ctx: Context): SeqLiteral = if (tpe derivesFrom defn.SeqClass) SeqLiteral(elems) else JavaSeqLiteral(elems) def JavaSeqLiteral(elems: List[Tree])(implicit ctx: Context): SeqLiteral = ta.assignType(new untpd.JavaSeqLiteral(elems), elems) def TypeTree(original: Tree)(implicit ctx: Context): TypeTree = TypeTree(original.tpe, original) def TypeTree(tp: Type, original: Tree = EmptyTree)(implicit ctx: Context): TypeTree = untpd.TypeTree(original).withType(tp) def SingletonTypeTree(ref: Tree)(implicit ctx: Context): SingletonTypeTree = ta.assignType(untpd.SingletonTypeTree(ref), ref) def AndTypeTree(left: Tree, right: Tree)(implicit ctx: Context): AndTypeTree = ta.assignType(untpd.AndTypeTree(left, right), left, right) def OrTypeTree(left: Tree, right: Tree)(implicit ctx: Context): OrTypeTree = ta.assignType(untpd.OrTypeTree(left, right), left, right) // RefinedTypeTree is missing, handled specially in Typer and Unpickler. def AppliedTypeTree(tycon: Tree, args: List[Tree])(implicit ctx: Context): AppliedTypeTree = ta.assignType(untpd.AppliedTypeTree(tycon, args), tycon, args) def ByNameTypeTree(result: Tree)(implicit ctx: Context): ByNameTypeTree = ta.assignType(untpd.ByNameTypeTree(result), result) def TypeBoundsTree(lo: Tree, hi: Tree)(implicit ctx: Context): TypeBoundsTree = ta.assignType(untpd.TypeBoundsTree(lo, hi), lo, hi) def Bind(sym: TermSymbol, body: Tree)(implicit ctx: Context): Bind = ta.assignType(untpd.Bind(sym.name, body), sym) def Alternative(trees: List[Tree])(implicit ctx: Context): Alternative = ta.assignType(untpd.Alternative(trees), trees) def UnApply(fun: Tree, implicits: List[Tree], patterns: List[Tree], proto: Type)(implicit ctx: Context): UnApply = ta.assignType(untpd.UnApply(fun, implicits, patterns), proto) def ValDef(sym: TermSymbol, rhs: LazyTree = EmptyTree)(implicit ctx: Context): ValDef = ta.assignType(untpd.ValDef(sym.name, TypeTree(sym.info), rhs), sym) def SyntheticValDef(name: TermName, rhs: Tree)(implicit ctx: Context): ValDef = ValDef(ctx.newSymbol(ctx.owner, name, Synthetic, rhs.tpe.widen, coord = rhs.pos), rhs) def DefDef(sym: TermSymbol, rhs: Tree = EmptyTree)(implicit ctx: Context): DefDef = ta.assignType(DefDef(sym, Function.const(rhs) _), sym) def DefDef(sym: TermSymbol, rhsFn: List[List[Tree]] => Tree)(implicit ctx: Context): DefDef = polyDefDef(sym, Function.const(rhsFn)) def polyDefDef(sym: TermSymbol, rhsFn: List[Type] => List[List[Tree]] => Tree)(implicit ctx: Context): DefDef = { val (tparams, mtp) = sym.info match { case tp: PolyType => val tparams = ctx.newTypeParams(sym, tp.paramNames, EmptyFlags, tp.instantiateBounds) (tparams, tp.instantiate(tparams map (_.typeRef))) case tp => (Nil, tp) } def valueParamss(tp: Type): (List[List[TermSymbol]], Type) = tp match { case tp @ MethodType(paramNames, paramTypes) => def valueParam(name: TermName, info: Type): TermSymbol = { val maybeImplicit = if (tp.isInstanceOf[ImplicitMethodType]) Implicit else EmptyFlags ctx.newSymbol(sym, name, TermParam | maybeImplicit, info) } val params = (paramNames, paramTypes).zipped.map(valueParam) val (paramss, rtp) = valueParamss(tp.instantiate(params map (_.termRef))) (params :: paramss, rtp) case tp => (Nil, tp.widenExpr) } val (vparamss, rtp) = valueParamss(mtp) val targs = tparams map (_.typeRef) val argss = vparamss.nestedMap(vparam => Ident(vparam.termRef)) ta.assignType( untpd.DefDef( sym.name, tparams map TypeDef, vparamss.nestedMap(ValDef(_)), TypeTree(rtp), rhsFn(targs)(argss)), sym) } def TypeDef(sym: TypeSymbol)(implicit ctx: Context): TypeDef = ta.assignType(untpd.TypeDef(sym.name, TypeTree(sym.info)), sym) def ClassDef(cls: ClassSymbol, constr: DefDef, body: List[Tree], superArgs: List[Tree] = Nil)(implicit ctx: Context): TypeDef = { val firstParent :: otherParents = cls.info.parents val superRef = if (cls is Trait) TypeTree(firstParent) else { def isApplicable(ctpe: Type): Boolean = ctpe match { case ctpe: PolyType => isApplicable(ctpe.instantiate(firstParent.argTypes)) case ctpe: MethodType => (superArgs corresponds ctpe.paramTypes)(_.tpe <:< _) case _ => false } val constr = firstParent.decl(nme.CONSTRUCTOR).suchThat(constr => isApplicable(constr.info)) New(firstParent, constr.symbol.asTerm, superArgs) } val parents = superRef :: otherParents.map(TypeTree(_)) val selfType = if (cls.classInfo.selfInfo ne NoType) ValDef(ctx.newSelfSym(cls)) else EmptyValDef def isOwnTypeParam(stat: Tree) = (stat.symbol is TypeParam) && stat.symbol.owner == cls val bodyTypeParams = body filter isOwnTypeParam map (_.symbol) val newTypeParams = for (tparam <- cls.typeParams if !(bodyTypeParams contains tparam)) yield TypeDef(tparam) val findLocalDummy = new FindLocalDummyAccumulator(cls) val localDummy = ((NoSymbol: Symbol) /: body)(findLocalDummy.apply) .orElse(ctx.newLocalDummy(cls)) val impl = untpd.Template(constr, parents, selfType, newTypeParams ++ body) .withType(localDummy.nonMemberTermRef) ta.assignType(untpd.TypeDef(cls.name, impl), cls) } def Import(expr: Tree, selectors: List[untpd.Tree])(implicit ctx: Context): Import = ta.assignType(untpd.Import(expr, selectors), ctx.newImportSymbol(expr)) def PackageDef(pid: RefTree, stats: List[Tree])(implicit ctx: Context): PackageDef = ta.assignType(untpd.PackageDef(pid, stats), pid) def Annotated(annot: Tree, arg: Tree)(implicit ctx: Context): Annotated = ta.assignType(untpd.Annotated(annot, arg), annot, arg) def Throw(expr: Tree)(implicit ctx: Context): Tree = ref(defn.throwMethod).appliedTo(expr) // ------ Making references ------------------------------------------------------ def prefixIsElidable(tp: NamedType)(implicit ctx: Context) = { def test(implicit ctx: Context) = tp.prefix match { case NoPrefix => true case pre: ThisType => pre.cls.isStaticOwner || tp.symbol.is(ParamOrAccessor) && ctx.owner.enclosingClass == pre.cls // was ctx.owner.enclosingClass.derivesFrom(pre.cls) which was not tight enough // and was spuriously triggered in case inner class would inherit from outer one // eg anonymous TypeMap inside TypeMap.andThen case pre: TermRef => pre.symbol.is(Module) && pre.symbol.isStatic case _ => false } try test || tp.symbol.is(JavaStatic) catch { // See remark in SymDenotations#accessWithin case ex: NotDefinedHere => test(ctx.addMode(Mode.FutureDefsOK)) } } def needsSelect(tp: Type)(implicit ctx: Context) = tp match { case tp: TermRef => !prefixIsElidable(tp) case _ => false } /** A tree representing the same reference as the given type */ def ref(tp: NamedType)(implicit ctx: Context): Tree = if (tp.isType) TypeTree(tp) else if (prefixIsElidable(tp)) Ident(tp) else tp.prefix match { case pre: SingletonType => singleton(pre).select(tp) case pre => SelectFromTypeTree(TypeTree(pre), tp) } // no checks necessary def ref(sym: Symbol)(implicit ctx: Context): Tree = ref(NamedType(sym.owner.thisType, sym.name, sym.denot)) def singleton(tp: Type)(implicit ctx: Context): Tree = tp match { case tp: TermRef => ref(tp) case tp: ThisType => This(tp.cls) case SuperType(qual, _) => singleton(qual) case ConstantType(value) => Literal(value) } /** A tree representing a `newXYZArray` operation of the right * kind for the given element type in `typeArg`. No type arguments or * `length` arguments are given. */ def newArray(typeArg: Tree, pos: Position)(implicit ctx: Context): Tree = { val elemType = typeArg.tpe val elemClass = elemType.classSymbol def newArr(kind: String) = ref(defn.DottyArraysModule).select(s"new${kind}Array".toTermName).withPos(pos) if (TypeErasure.isUnboundedGeneric(elemType)) newArr("Generic").appliedToTypeTrees(typeArg :: Nil) else if (elemClass.isPrimitiveValueClass) newArr(elemClass.name.toString) else newArr("Ref").appliedToTypeTrees( TypeTree(defn.ArrayType(elemType)).withPos(typeArg.pos) :: Nil) } // ------ Creating typed equivalents of trees that exist only in untyped form ------- /** new C(args), calling the primary constructor of C */ def New(tp: Type, args: List[Tree])(implicit ctx: Context): Apply = New(tp, tp.typeSymbol.primaryConstructor.asTerm, args) /** new C(args), calling given constructor `constr` of C */ def New(tp: Type, constr: TermSymbol, args: List[Tree])(implicit ctx: Context): Apply = { val targs = tp.argTypes New(tp withoutArgs targs) .select(TermRef.withSig(tp.normalizedPrefix, constr)) .appliedToTypes(targs) .appliedToArgs(args) } /** An object def * * object obs extends parents { decls } * * gets expanded to * * val obj = new obj$ * class obj$ extends parents { this: obj.type => decls } * * (The following no longer applies: * What's interesting here is that the block is well typed * (because class obj$ is hoistable), but the type of the `obj` val is * not expressible. What needs to happen in general when * inferring the type of a val from its RHS, is: if the type contains * a class that has the val itself as owner, then that class * is remapped to have the val's owner as owner. Remapping could be * done by cloning the class with the new owner and substituting * everywhere in the tree. We know that remapping is safe * because the only way a local class can appear in the RHS of a val is * by being hoisted outside of a block, and the necessary checks are * done at this point already. * * On the other hand, for method result type inference, if the type of * the RHS of a method contains a class owned by the method, this would be * an error.) */ def ModuleDef(sym: TermSymbol, body: List[Tree])(implicit ctx: Context): tpd.Thicket = { val modcls = sym.moduleClass.asClass val constrSym = modcls.primaryConstructor orElse ctx.newDefaultConstructor(modcls).entered val constr = DefDef(constrSym.asTerm, EmptyTree) val clsdef = ClassDef(modcls, constr, body) val valdef = ValDef(sym, New(modcls.typeRef).select(constrSym).appliedToNone) Thicket(valdef, clsdef) } def initValue(tpe: Types.Type)(implicit ctx: Context) = { val tpw = tpe.widen if (tpw isRef defn.IntClass) Literal(Constant(0)) else if (tpw isRef defn.LongClass) Literal(Constant(0L)) else if (tpw isRef defn.BooleanClass) Literal(Constant(false)) else if (tpw isRef defn.CharClass) Literal(Constant('\u0000')) else if (tpw isRef defn.FloatClass) Literal(Constant(0f)) else if (tpw isRef defn.DoubleClass) Literal(Constant(0d)) else if (tpw isRef defn.ByteClass) Literal(Constant(0.toByte)) else if (tpw isRef defn.ShortClass) Literal(Constant(0.toShort)) else Literal(Constant(null)).select(defn.Any_asInstanceOf).appliedToType(tpe) } private class FindLocalDummyAccumulator(cls: ClassSymbol)(implicit ctx: Context) extends TreeAccumulator[Symbol] { def apply(sym: Symbol, tree: Tree)(implicit ctx: Context) = if (sym.exists) sym else if (tree.isDef) { val owner = tree.symbol.owner if (owner.isLocalDummy && owner.owner == cls) owner else if (owner == cls) foldOver(sym, tree) else sym } else foldOver(sym, tree) } implicit class modsDeco(mdef: MemberDef)(implicit ctx: Context) extends ModsDeco { def mods = if (mdef.hasType) Modifiers(mdef.symbol) else mdef.rawMods } override val cpy = new TypedTreeCopier class TypedTreeCopier extends TreeCopier { def postProcess(tree: Tree, copied: untpd.Tree): copied.ThisTree[Type] = copied.withTypeUnchecked(tree.tpe) def postProcess(tree: Tree, copied: untpd.MemberDef): copied.ThisTree[Type] = copied.withTypeUnchecked(tree.tpe) override def Select(tree: Tree)(qualifier: Tree, name: Name)(implicit ctx: Context): Select = { val tree1 = untpd.cpy.Select(tree)(qualifier, name) tree match { case tree: Select if (qualifier.tpe eq tree.qualifier.tpe) => tree1.withTypeUnchecked(tree.tpe) case _ => tree.tpe match { case tpe: NamedType => tree1.withType(tpe.derivedSelect(qualifier.tpe)) case _ => tree1.withTypeUnchecked(tree.tpe) } } } override def Apply(tree: Tree)(fun: Tree, args: List[Tree])(implicit ctx: Context): Apply = ta.assignType(untpd.cpy.Apply(tree)(fun, args), fun, args) // Note: Reassigning the original type if `fun` and `args` have the same types as before // does not work here: The computed type depends on the widened function type, not // the function type itself. A treetransform may keep the function type the // same but its widened type might change. override def TypeApply(tree: Tree)(fun: Tree, args: List[Tree])(implicit ctx: Context): TypeApply = ta.assignType(untpd.cpy.TypeApply(tree)(fun, args), fun, args) // Same remark as for Apply override def Literal(tree: Tree)(const: Constant)(implicit ctx: Context): Literal = ta.assignType(untpd.cpy.Literal(tree)(const)) override def New(tree: Tree)(tpt: Tree)(implicit ctx: Context): New = ta.assignType(untpd.cpy.New(tree)(tpt), tpt) override def Pair(tree: Tree)(left: Tree, right: Tree)(implicit ctx: Context): Pair = { val tree1 = untpd.cpy.Pair(tree)(left, right) tree match { case tree: Pair if (left.tpe eq tree.left.tpe) && (right.tpe eq tree.right.tpe) => tree1.withTypeUnchecked(tree.tpe) case _ => ta.assignType(tree1, left, right) } } override def Typed(tree: Tree)(expr: Tree, tpt: Tree)(implicit ctx: Context): Typed = ta.assignType(untpd.cpy.Typed(tree)(expr, tpt), tpt) override def NamedArg(tree: Tree)(name: Name, arg: Tree)(implicit ctx: Context): NamedArg = ta.assignType(untpd.cpy.NamedArg(tree)(name, arg), arg) override def Assign(tree: Tree)(lhs: Tree, rhs: Tree)(implicit ctx: Context): Assign = ta.assignType(untpd.cpy.Assign(tree)(lhs, rhs)) override def Block(tree: Tree)(stats: List[Tree], expr: Tree)(implicit ctx: Context): Block = { val tree1 = untpd.cpy.Block(tree)(stats, expr) tree match { case tree: Block if (expr.tpe eq tree.expr.tpe) => tree1.withTypeUnchecked(tree.tpe) case _ => ta.assignType(tree1, stats, expr) } } override def If(tree: Tree)(cond: Tree, thenp: Tree, elsep: Tree)(implicit ctx: Context): If = { val tree1 = untpd.cpy.If(tree)(cond, thenp, elsep) tree match { case tree: If if (thenp.tpe eq tree.thenp.tpe) && (elsep.tpe eq tree.elsep.tpe) => tree1.withTypeUnchecked(tree.tpe) case _ => ta.assignType(tree1, thenp, elsep) } } override def Closure(tree: Tree)(env: List[Tree], meth: Tree, tpt: Tree)(implicit ctx: Context): Closure = ta.assignType(untpd.cpy.Closure(tree)(env, meth, tpt), meth, tpt) // Same remark as for Apply override def Match(tree: Tree)(selector: Tree, cases: List[CaseDef])(implicit ctx: Context): Match = { val tree1 = untpd.cpy.Match(tree)(selector, cases) tree match { case tree: Match if sameTypes(cases, tree.cases) => tree1.withTypeUnchecked(tree.tpe) case _ => ta.assignType(tree1, cases) } } override def CaseDef(tree: Tree)(pat: Tree, guard: Tree, body: Tree)(implicit ctx: Context): CaseDef = { val tree1 = untpd.cpy.CaseDef(tree)(pat, guard, body) tree match { case tree: CaseDef if (body.tpe eq tree.body.tpe) => tree1.withTypeUnchecked(tree.tpe) case _ => ta.assignType(tree1, body) } } override def Return(tree: Tree)(expr: Tree, from: Tree)(implicit ctx: Context): Return = ta.assignType(untpd.cpy.Return(tree)(expr, from)) override def Try(tree: Tree)(expr: Tree, cases: List[CaseDef], finalizer: Tree)(implicit ctx: Context): Try = { val tree1 = untpd.cpy.Try(tree)(expr, cases, finalizer) tree match { case tree: Try if (expr.tpe eq tree.expr.tpe) && (sameTypes(cases, tree.cases)) => tree1.withTypeUnchecked(tree.tpe) case _ => ta.assignType(tree1, expr, cases) } } override def SeqLiteral(tree: Tree)(elems: List[Tree])(implicit ctx: Context): SeqLiteral = { val tree1 = untpd.cpy.SeqLiteral(tree)(elems) tree match { case tree: SeqLiteral if sameTypes(elems, tree.elems) => tree1.withTypeUnchecked(tree.tpe) case _ => ta.assignType(tree1, elems) } } override def Annotated(tree: Tree)(annot: Tree, arg: Tree)(implicit ctx: Context): Annotated = { val tree1 = untpd.cpy.Annotated(tree)(annot, arg) tree match { case tree: Annotated if (arg.tpe eq tree.arg.tpe) && (annot eq tree.annot) => tree1.withTypeUnchecked(tree.tpe) case _ => ta.assignType(tree1, annot, arg) } } override def If(tree: If)(cond: Tree = tree.cond, thenp: Tree = tree.thenp, elsep: Tree = tree.elsep)(implicit ctx: Context): If = If(tree: Tree)(cond, thenp, elsep) override def Closure(tree: Closure)(env: List[Tree] = tree.env, meth: Tree = tree.meth, tpt: Tree = tree.tpt)(implicit ctx: Context): Closure = Closure(tree: Tree)(env, meth, tpt) override def CaseDef(tree: CaseDef)(pat: Tree = tree.pat, guard: Tree = tree.guard, body: Tree = tree.body)(implicit ctx: Context): CaseDef = CaseDef(tree: Tree)(pat, guard, body) override def Try(tree: Try)(expr: Tree = tree.expr, cases: List[CaseDef] = tree.cases, finalizer: Tree = tree.finalizer)(implicit ctx: Context): Try = Try(tree: Tree)(expr, cases, finalizer) } implicit class TreeOps[ThisTree <: tpd.Tree](val tree: ThisTree) extends AnyVal { def isValue(implicit ctx: Context): Boolean = tree.isTerm && tree.tpe.widen.isValueType def isValueOrPattern(implicit ctx: Context) = tree.isValue || tree.isPattern def isValueType: Boolean = tree.isType && tree.tpe.isValueType def isInstantiation: Boolean = tree match { case Apply(Select(New(_), nme.CONSTRUCTOR), _) => true case _ => false } def shallowFold[T](z: T)(op: (T, tpd.Tree) => T)(implicit ctx: Context) = new ShallowFolder(op).apply(z, tree) def deepFold[T](z: T)(op: (T, tpd.Tree) => T)(implicit ctx: Context) = new DeepFolder(op).apply(z, tree) def find[T](pred: (tpd.Tree) => Boolean)(implicit ctx: Context): Option[tpd.Tree] = shallowFold[Option[tpd.Tree]](None)((accum, tree) => if (pred(tree)) Some(tree) else accum) def subst(from: List[Symbol], to: List[Symbol])(implicit ctx: Context): ThisTree = new TreeTypeMap(substFrom = from, substTo = to).apply(tree) /** Change owner from `from` to `to`. If `from` is a weak owner, also change its * owner to `to`, and continue until a non-weak owner is reached. */ def changeOwner(from: Symbol, to: Symbol)(implicit ctx: Context): ThisTree = { def loop(from: Symbol, froms: List[Symbol], tos: List[Symbol]): ThisTree = { if (from.isWeakOwner && !from.owner.isClass) loop(from.owner, from :: froms, to :: tos) else { //println(i"change owner ${from :: froms}%, % ==> $tos of $tree") new TreeTypeMap(oldOwners = from :: froms, newOwners = tos).apply(tree) } } loop(from, Nil, to :: Nil) } /** After phase `trans`, set the owner of every definition in this tree that was formerly * owner by `from` to `to`. */ def changeOwnerAfter(from: Symbol, to: Symbol, trans: DenotTransformer)(implicit ctx: Context): ThisTree = { assert(ctx.phase == trans.next) val traverser = new TreeTraverser { def traverse(tree: Tree)(implicit ctx: Context) = tree match { case tree: DefTree => val sym = tree.symbol if (sym.denot(ctx.withPhase(trans)).owner == from) sym.copySymDenotation(owner = to).installAfter(trans) if (sym.isWeakOwner) traverseChildren(tree) case _ => traverseChildren(tree) } } traverser.traverse(tree) tree } def select(name: Name)(implicit ctx: Context): Select = Select(tree, name) def select(tp: NamedType)(implicit ctx: Context): Select = untpd.Select(tree, tp.name).withType(tp) def select(sym: Symbol)(implicit ctx: Context): Select = untpd.Select(tree, sym.name).withType( TermRef.withSigAndDenot(tree.tpe, sym.name.asTermName, sym.signature, sym.denot.asSeenFrom(tree.tpe))) def selectWithSig(name: Name, sig: Signature)(implicit ctx: Context) = untpd.SelectWithSig(tree, name, sig) .withType(TermRef.withSig(tree.tpe, name.asTermName, sig)) def appliedTo(arg: Tree)(implicit ctx: Context): Tree = appliedToArgs(arg :: Nil) def appliedTo(arg: Tree, args: Tree*)(implicit ctx: Context): Tree = appliedToArgs(arg :: args.toList) def appliedToArgs(args: List[Tree])(implicit ctx: Context): Apply = Apply(tree, args) def appliedToArgss(argss: List[List[Tree]])(implicit ctx: Context): Tree = ((tree: Tree) /: argss)(Apply(_, _)) def appliedToNone(implicit ctx: Context): Apply = appliedToArgs(Nil) def appliedToType(targ: Type)(implicit ctx: Context): Tree = appliedToTypes(targ :: Nil) def appliedToTypes(targs: List[Type])(implicit ctx: Context): Tree = appliedToTypeTrees(targs map (TypeTree(_))) def appliedToTypeTrees(targs: List[Tree])(implicit ctx: Context): Tree = if (targs.isEmpty) tree else TypeApply(tree, targs) def ensureApplied(implicit ctx: Context): Tree = if (tree.tpe.widen.isParameterless) tree else tree.appliedToNone def isInstance(tp: Type)(implicit ctx: Context): Tree = tree.select(defn.Any_isInstanceOf).appliedToType(tp) def asInstance(tp: Type)(implicit ctx: Context): Tree = { assert(tp.isValueType, i"bad cast: $tree.asInstanceOf[$tp]") tree.select(defn.Any_asInstanceOf).appliedToType(tp) } def ensureConforms(tp: Type)(implicit ctx: Context): Tree = if (tree.tpe <:< tp) tree else asInstance(tp) def and(that: Tree)(implicit ctx: Context): Tree = tree.select(defn.Boolean_&&).appliedTo(that) def or(that: Tree)(implicit ctx: Context): Tree = tree.select(defn.Boolean_||).appliedTo(that) def becomes(rhs: Tree)(implicit ctx: Context): Tree = if (tree.symbol is Method) { val setr = tree match { case Ident(_) => val setter = tree.symbol.setter assert(setter.exists, tree.symbol.showLocated) ref(tree.symbol.setter) case Select(qual, _) => qual.select(tree.symbol.setter) } setr.appliedTo(rhs) } else Assign(tree, rhs) // --- Higher order traversal methods ------------------------------- def foreachSubTree(f: Tree => Unit)(implicit ctx: Context): Unit = { //TODO should go in tpd. val traverser = new TreeTraverser { def traverse(tree: Tree)(implicit ctx: Context) = foldOver(f(tree), tree) } traverser.traverse(tree) } def existsSubTree(p: Tree => Boolean)(implicit ctx: Context): Boolean = { val acc = new TreeAccumulator[Boolean] { def apply(x: Boolean, t: Tree)(implicit ctx: Context) = x || p(t) || foldOver(x, t) } acc(false, tree) } def filterSubTrees(f: Tree => Boolean)(implicit ctx: Context): List[Tree] = { val buf = new mutable.ListBuffer[Tree] foreachSubTree { tree => if (f(tree)) buf += tree } buf.toList } } implicit class ListOfTreeDecorator(val xs: List[tpd.Tree]) extends AnyVal { def tpes: List[Type] = xs map (_.tpe) } // convert a numeric with a toXXX method def primitiveConversion(tree: Tree, numericCls: Symbol)(implicit ctx: Context): Tree = { val mname = ("to" + numericCls.name).toTermName val conversion = tree.tpe member mname if (conversion.symbol.exists) tree.select(conversion.symbol.termRef).ensureApplied else if (tree.tpe.widen isRef numericCls) tree else { ctx.warning(i"conversion from ${tree.tpe.widen} to ${numericCls.typeRef} will always fail at runtime.") Throw(New(defn.ClassCastExceptionClass.typeRef, Nil)) withPos tree.pos } } def applyOverloaded(receiver: Tree, method: TermName, args: List[Tree], targs: List[Type], expectedType: Type, isAnnotConstructor: Boolean = false)(implicit ctx: Context): Tree = { val typer = ctx.typer val proto = new FunProtoTyped(args, expectedType, typer) val alts = receiver.tpe.member(method).alternatives.map(_.termRef) val alternatives = ctx.typer.resolveOverloaded(alts, proto, Nil) assert(alternatives.size == 1) // this is parsed from bytecode tree. there's nothing user can do about it val prefixTpe = if (method eq nme.CONSTRUCTOR) receiver.tpe.normalizedPrefix // methods are part of the enclosing scope else receiver.tpe val selected = alternatives.head val fun = receiver .select(TermRef.withSig(prefixTpe, selected.termSymbol.asTerm)) .appliedToTypes(targs) def adaptLastArg(lastParam: Tree, expectedType: Type) = { if (isAnnotConstructor && !(lastParam.tpe <:< expectedType)) { val defn = ctx.definitions val prefix = args.take(selected.widen.paramTypess.head.size - 1) expectedType match { case defn.ArrayType(el) => lastParam.tpe match { case defn.ArrayType(el2) if (el2 <:< el) => // we have a JavaSeqLiteral with a more precise type // we cannot construct a tree as JavaSeqLiteral infered to precise type // if we add typed than it would be both type-correct and // will pass Ycheck prefix ::: List(tpd.Typed(lastParam, TypeTree(defn.ArrayType(el)))) case _ => ??? } case _ => args } } else args } val callArgs: List[Tree] = if(args.isEmpty) Nil else { val expectedType = selected.widen.paramTypess.head.last val lastParam = args.last adaptLastArg(lastParam, expectedType) } val apply = untpd.Apply(fun, callArgs) new typer.ApplyToTyped(apply, fun, selected, callArgs, expectedType).result.asInstanceOf[Tree] // needed to handle varargs } @tailrec def sameTypes(trees: List[tpd.Tree], trees1: List[tpd.Tree]): Boolean = { if (trees.isEmpty) trees.isEmpty else if (trees1.isEmpty) trees.isEmpty else (trees.head.tpe eq trees1.head.tpe) && sameTypes(trees.tail, trees1.tail) } def evalOnce(tree: Tree)(within: Tree => Tree)(implicit ctx: Context) = { if (isIdempotentExpr(tree)) within(tree) else { val vdef = SyntheticValDef(ctx.freshName("ev$").toTermName, tree) Block(vdef :: Nil, within(Ident(vdef.namedType))) } } def runtimeCall(name: TermName, args: List[Tree])(implicit ctx: Context): Tree = { Ident(defn.ScalaRuntimeModule.requiredMethod(name).termRef).appliedToArgs(args) } /** An extractor that pulls out type arguments */ object MaybePoly { def unapply(tree: Tree): Option[(Tree, List[Tree])] = tree match { case TypeApply(tree, targs) => Some(tree, targs) case _ => Some(tree, Nil) } } /** A traverser that passes the enlcosing class or method as an argumenr * to the traverse method. */ abstract class EnclosingMethodTraverser extends TreeAccumulator[Symbol] { def traverse(enclMeth: Symbol, tree: Tree)(implicit ctx: Context): Unit def apply(enclMeth: Symbol, tree: Tree)(implicit ctx: Context) = { tree match { case _: DefTree if tree.symbol.exists => traverse(tree.symbol.enclosingMethod, tree) case _ => traverse(enclMeth, tree) } enclMeth } } // ensure that constructors are fully applied? // ensure that normal methods are fully applied? }