package dotty.tools package dotc package core import Types._, Contexts._, Symbols._, Flags._ import collection.mutable import util.SimpleMap /** Provides methods to compare types. * @param constraint The initial constraint which is assumed to hold for the comparisons. * The constraint set is updated when undetermined type parameters * in the constraint's domain are compared. */ class TypeComparer(implicit val ctx: Context) extends DotClass { val state = ctx.typerState import state.constraint private var pendingSubTypes: mutable.Set[(Type, Type)] = null private var recCount = 0 /** Add the constraint `` * to `constraint`. * @pre `param` is in the constraint's domain */ def addConstraint(param: PolyParam, bounds: TypeBounds): Boolean = { val pt = param.binder val pnum = param.paramNum val oldEntries = constraint(pt) val oldBounds = oldEntries(pnum).asInstanceOf[TypeBounds] val newBounds = oldBounds & bounds if (oldBounds ne newBounds) { val newEntries = oldEntries.clone newEntries(pnum) = newBounds constraint = constraint.updated(pt, newEntries) } isSubType(newBounds.lo, newBounds.hi) } /** Solve constraint for given type parameter `param`. * If `fromBelow` is true the parameter is approximated by its lower bound, * otherwise it is approximated by its upper bound. However, any occurrences * of the parameter in a refinement somewhere in the bound are removed. * (Such occurrences can arise for F-bounded types). * The type parameter is removed from the constraint's domain and all its * occurrences are replaced by its approximation. * @return the instantiating type * @pre `param` is associated with type bounds in the current constraint. */ def approximate(param: PolyParam, fromBelow: Boolean): Type = { val removeParam = new TypeMap { override def apply(tp: Type) = mapOver { tp match { case tp: RefinedType if param occursIn tp.refinedInfo => tp.parent case _ => tp } } } val bounds = constraint(param).asInstanceOf[TypeBounds] val bound = if (fromBelow) bounds.lo else bounds.hi val inst = removeParam(bound) constraint = constraint.replace(param, inst) inst } def isSubType(tp1: Type, tp2: Type): Boolean = if (tp1 == NoType || tp2 == NoType) false else if (tp1 eq tp2) true else { val cs = constraint try { recCount += 1 val result = if (recCount < LogPendingSubTypesThreshold) firstTry(tp1, tp2) else monitoredIsSubType(tp1, tp2) recCount -= 1 if (!result) constraint = cs result } catch { case ex: Throwable => recCount -= 1 constraint = cs throw ex } } def monitoredIsSubType(tp1: Type, tp2: Type) = { if (pendingSubTypes == null) { pendingSubTypes = new mutable.HashSet[(Type, Type)] ctx.log(s"!!! deep subtype recursion involving $tp1 <:< $tp2") } val p = (tp1, tp2) !pendingSubTypes(p) && { try { pendingSubTypes += p firstTry(tp1, tp2) } finally { pendingSubTypes -= p } } } def firstTry(tp1: Type, tp2: Type): Boolean = ctx.debugTraceIndented(s"$tp1 <:< $tp2") { tp2 match { case tp2: NamedType => tp1 match { case tp1: NamedType => val sym1 = tp1.symbol val sym2 = tp2.symbol val pre1 = tp1.prefix val pre2 = tp2.prefix if (sym1 == sym2) ( ctx.erasedTypes || sym1.isStaticOwner || isSubType(pre1, pre2)) else ( tp1.name == tp2.name && isSubType(pre1, pre2) || sym2.isClass && { val base = tp1.baseType(sym2) (base ne tp1) && isSubType(base, tp2) } || thirdTryNamed(tp1, tp2)) case _ => secondTry(tp1, tp2) } case tp2: PolyParam => constraint(tp2) match { case TypeBounds(lo, _) => isSubType(tp1, lo) || addConstraint(tp2, TypeBounds.lower(tp1)) case _ => secondTry(tp1, tp2) } case tp2: TypeVar => firstTry(tp1, tp2.thisInstance) case tp2: WildcardType => tp2.optBounds match { case TypeBounds(_, hi) => isSubType(tp1, hi) case NoType => true } case ErrorType => true case _ => secondTry(tp1, tp2) } } def secondTry(tp1: Type, tp2: Type): Boolean = tp1 match { case tp1: PolyParam => constraint(tp1) match { case TypeBounds(_, hi) => isSubType(hi, tp2) || addConstraint(tp1, TypeBounds.upper(tp2)) case _ => thirdTry(tp1, tp2) } case tp1: TypeVar => secondTry(tp1.thisInstance, tp2) case tp1: WildcardType => tp1.optBounds match { case TypeBounds(lo, _) => isSubType(lo, tp2) case _ => true } case ErrorType => true case _ => thirdTry(tp1, tp2) } def thirdTryNamed(tp1: Type, tp2: NamedType): Boolean = tp2.info match { case TypeBounds(lo, _) => isSubType(tp1, lo) case _ => val cls2 = tp2.symbol (cls2 == defn.SingletonClass && tp1.isStable || cls2 == defn.NotNullClass && tp1.isNotNull || (defn.hkTraits contains cls2) && isSubTypeHK(tp1, tp2) || fourthTry(tp1, tp2)) } def thirdTry(tp1: Type, tp2: Type): Boolean = tp2 match { case tp2: NamedType => thirdTryNamed(tp1, tp2) case tp2: RefinedType => isSubType(tp1, tp2.parent) && isSubType(tp1.member(tp2.refinedName).info, tp2.refinedInfo) case AndType(tp21, tp22) => isSubType(tp1, tp21) && isSubType(tp1, tp22) case OrType(tp21, tp22) => isSubType(tp1, tp21) || isSubType(tp1, tp22) case tp2 @ MethodType(_, formals1) => tp1 match { case tp1 @ MethodType(_, formals2) => tp1.signature == tp2.signature && matchingParams(formals1, formals2, tp1.isJava, tp2.isJava) && tp1.isImplicit == tp2.isImplicit && // needed? isSubType(tp1.resultType, tp2.resultType.subst(tp2, tp1)) case _ => false } case tp2: PolyType => tp1 match { case tp1: PolyType => tp1.signature == tp2.signature && (tp1.paramBounds corresponds tp2.paramBounds)((b1, b2) => isSameType(b1, b2.subst(tp2, tp1))) && isSubType(tp1.resultType, tp2.resultType.subst(tp2, tp1)) case _ => false } case tp2 @ ExprType(restpe1) => tp1 match { case tp1 @ ExprType(restpe2) => isSubType(restpe1, restpe2) case _ => false } case TypeBounds(lo2, hi2) => tp1 match { case TypeBounds(lo1, hi1) => isSubType(lo2, lo1) && isSubType(hi1, hi2) case tp1: ClassInfo => val tt = tp1.typeConstructor // was typeTemplate isSubType(lo2, tt) && isSubType(tt, hi2) case _ => false } /* needed? case ClassInfo(pre2, denot2) => tp1 match { case ClassInfo(pre1, denot1) => (denot1 eq denot2) && isSubType(pre2, pre1) // !!! or isSameType? } */ case _ => fourthTry(tp1, tp2) } def fourthTry(tp1: Type, tp2: Type): Boolean = tp1 match { case tp1: TypeRef => ((tp1 eq defn.NothingType) || (tp1 eq defn.NullType) && tp2.dealias.typeSymbol.isNonValueClass || !tp1.symbol.isClass && isSubType(tp1.info.bounds.hi, tp2)) case tp1: SingletonType => isSubType(tp1.underlying, tp2) case tp1: RefinedType => isSubType(tp1.parent, tp2) case AndType(tp11, tp12) => isSubType(tp11, tp2) || isSubType(tp12, tp2) case OrType(tp11, tp12) => isSubType(tp11, tp2) && isSubType(tp12, tp2) case _ => false } /* not needed def isSubArgs(tps1: List[Type], tps2: List[Type], tparams: List[TypeSymbol]): Boolean = tparams match { case tparam :: tparams1 => val variance = tparam.variance val t1 = tps1.head val t2 = tps2.head (variance > 0 || isSubType(t2, t1)) && (variance < 0 || isSubType(t1, t2)) && isSubArgs(tps1.tail, tps2.tail, tparams1) case _ => assert(tps1.isEmpty && tps2.isEmpty) true } */ /** Is `tp1` a subtype of a type `tp2` of the form * `scala.HigerKindedXYZ { ... }? * This is the case if `tp1` and `tp2` have the same number * of type parameters, the bounds of tp1's paremeters * are contained in the corresponding bounds of tp2's parameters * and the variances of correesponding parameters agree. */ def isSubTypeHK(tp1: Type, tp2: Type): Boolean = { val tparams = tp1.typeParams val hkArgs = tp2.typeArgs (hkArgs.length == tparams.length) && { val base = ctx.newSkolemSingleton(tp1) (tparams, hkArgs).zipped.forall { (tparam, hkArg) => base.memberInfo(tparam) <:< hkArg.bounds // TODO: base.memberInfo needed? } && (tparams, tp2.typeSymbol.typeParams).zipped.forall { (tparam, tparam2) => tparam.variance == tparam2.variance } } } /** A function implementing `tp1` matches `tp2`. */ final def matchesType(tp1: Type, tp2: Type, alwaysMatchSimple: Boolean): Boolean = tp1 match { case tp1: MethodType => tp2 match { case tp2: MethodType => tp1.isImplicit == tp2.isImplicit && matchingParams(tp1.paramTypes, tp2.paramTypes, tp1.isJava, tp2.isJava) && matchesType(tp1.resultType, tp2.resultType.subst(tp2, tp1), alwaysMatchSimple) case tp2: ExprType => tp1.paramNames.isEmpty && matchesType(tp1.resultType, tp2.resultType, alwaysMatchSimple) case _ => false } case tp1: ExprType => tp2 match { case tp2: MethodType => tp2.paramNames.isEmpty && matchesType(tp1.resultType, tp2.resultType, alwaysMatchSimple) case tp2: ExprType => matchesType(tp1.resultType, tp2.resultType, alwaysMatchSimple) case _ => false // was: matchesType(tp1.resultType, tp2, alwaysMatchSimple) } case tp1: PolyType => tp2 match { case tp2: PolyType => sameLength(tp1.paramNames, tp2.paramNames) && matchesType(tp1.resultType, tp2.resultType.subst(tp2, tp1), alwaysMatchSimple) case _ => false } case _ => tp2 match { case _: MethodType | _: PolyType => false case tp2: ExprType => false // was: matchesType(tp1, tp2.resultType, alwaysMatchSimple) case _ => alwaysMatchSimple || isSameType(tp1, tp2) } } /** Are `syms1` and `syms2` parameter lists with pairwise equivalent types? */ private def matchingParams(formals1: List[Type], formals2: List[Type], isJava1: Boolean, isJava2: Boolean): Boolean = formals1 match { case formal1 :: rest1 => formals2 match { case formal2 :: rest2 => (isSameType(formal1, formal2) || isJava1 && formal2 == defn.ObjectType && formal1 == defn.AnyType || isJava2 && formal1 == defn.ObjectType && formal2 == defn.AnyType) && matchingParams(rest1, rest2, isJava1, isJava2) case nil => false } case nil => formals2.isEmpty } def isSameType(tp1: Type, tp2: Type): Boolean = if (tp1 == NoType || tp2 == NoType) false else if (tp1 eq tp2) true else isSubType(tp1, tp2) && isSubType(tp2, tp1) }