package dotty.tools package dotc package typer import core._ import ast._ import Contexts._, Types._, Flags._, Denotations._, Names._, StdNames._, NameOps._, Symbols._ import Trees._ import annotation.unchecked import util.Positions._ import util.{Stats, SimpleMap} import Decorators._ import ErrorReporting.{errorType, InfoString} import collection.mutable.ListBuffer object Inferencing { import tpd._ /** A trait defining an `isCompatible` method. */ trait Compatibility { /** Is there an implicit conversion from `tp` to `pt`? */ def viewExists(tp: Type, pt: Type)(implicit ctx: Context): Boolean /** A type `tp` is compatible with a type `pt` if one of the following holds: * 1. `tp` is a subtype of `pt` * 2. `pt` is by name parameter type, and `tp` is compatible with its underlying type * 3. there is an implicit conversion from `tp` to `pt`. */ def isCompatible(tp: Type, pt: Type)(implicit ctx: Context): Boolean = { def skipByName(tp: Type): Type = if (tp isRef defn.ByNameParamClass) tp.typeArgs.head else tp skipByName(tp) <:< skipByName(pt) || viewExists(tp, pt) } } /** A prototype for expressions [] that are part of a selection operation: * * [ ].name: proto */ class SelectionProto(name: Name, proto: Type) extends RefinedType(WildcardType, name)(_ => proto) with ProtoType with Compatibility { override def viewExists(tp: Type, pt: Type)(implicit ctx: Context): Boolean = false override def isMatchedBy(tp1: Type)(implicit ctx: Context) = { def testCompatible(mbrType: Type)(implicit ctx: Context) = isCompatible(normalize(mbrType), proto) name == nme.WILDCARD || { val mbr = tp1.member(name) mbr.exists && mbr.hasAltWith(m => testCompatible(m.info)(ctx.fresh.withExploreTyperState)) } } override def toString = "Proto" + super.toString } /** Create a selection proto-type, but only one level deep; * treat constructors specially */ def selectionProto(name: Name, tp: Type) = if (name.isConstructorName) WildcardType else { val rtp = tp match { case tp: ProtoType => WildcardType case _ => tp } new SelectionProto(name, rtp) } /** A prototype for expressions [] that are in some unspecified selection operation * * [].?: ? * * Used to indicate that expression is in a context where the only valid * operation is further selection. In this case, the expression need not be a value. * @see checkValue */ object AnySelectionProto extends SelectionProto(nme.WILDCARD, WildcardType) /** A prototype for expressions that appear in function position * * [](args): resultType */ case class FunProto(args: List[untpd.Tree], override val resultType: Type, typer: Typer)(implicit ctx: Context) extends UncachedGroundType with ProtoType { private var myTypedArgs: List[Tree] = Nil /** A map in which typed arguments can be stored to be later integrated in `typedArgs`. */ private var myTypedArg: SimpleMap[untpd.Tree, Tree] = SimpleMap.Empty def isMatchedBy(tp: Type)(implicit ctx: Context) = typer.isApplicable(tp, typedArgs, resultType) def argsAreTyped: Boolean = myTypedArgs.nonEmpty || args.isEmpty /** The typed arguments. This takes any arguments already typed using * `typedArg` into account. */ def typedArgs: List[Tree] = { if (!argsAreTyped) myTypedArgs = args mapconserve { arg => val targ = myTypedArg(arg) if (targ != null) targ else typer.typed(arg) } myTypedArgs } /** Type single argument and remember the unadapted result in `myTypedArg`. * used to avoid repreated typings of trees when backtracking. */ def typedArg(arg: untpd.Tree, formal: Type)(implicit ctx: Context): Tree = { var targ = myTypedArg(arg) if (targ == null) { targ = typer.typedUnadapted(arg, formal) myTypedArg = myTypedArg.updated(arg, targ) } typer.adapt(targ, formal) } override def toString = s"FunProto(${args mkString ","} => $resultType)" } /** A prototype for implicitly inferred views: * * []: argType => resultType */ case class ViewProto(argType: Type, override val resultType: Type)(implicit ctx: Context) extends CachedGroundType with ProtoType { def isMatchedBy(tp: Type)(implicit ctx: Context) = ctx.typer.isApplicable(tp, argType :: Nil, resultType) override def namedPartsWith(p: NamedType => Boolean)(implicit ctx: Context): collection.Set[NamedType] = AndType(argType, resultType).namedPartsWith(p) // this is more efficient than oring two namedParts sets override def computeHash = doHash(argType, resultType) } /** A prototype for expressions [] that are type-parameterized: * * [] [?_, ..., ?_nargs] resultType */ case class PolyProto(nargs: Int, override val resultType: Type) extends UncachedGroundType /** A prototype for expressions [] that are known to be functions: * * [] _ */ object AnyFunctionProto extends UncachedGroundType with ProtoType { def isMatchedBy(tp: Type)(implicit ctx: Context) = true } /** The normalized form of a type * - unwraps polymorphic types, tracking their parameters in the current constraint * - skips implicit parameters * - converts non-dependent method types to the corresponding function types * - dereferences parameterless method types */ def normalize(tp: Type)(implicit ctx: Context): Type = Stats.track("normalize") { tp.widenSingleton match { case pt: PolyType => normalize(constrained(pt).resultType) case mt: MethodType if !mt.isDependent => if (mt.isImplicit) mt.resultType else defn.FunctionType(mt.paramTypes, mt.resultType) case et: ExprType => et.resultType case _ => tp } } /** An enumeration controlling the degree of forcing in "is-dully-defined" checks. */ object ForceDegree extends Enumeration { val none, // don't force type variables noBottom, // force type variables, fail if forced to Nothing or Null all = Value // force type variables, don't fail } /** Is type fully defined, meaning the type does not contain wildcard types * or uninstantiated type variables. As a side effect, this will minimize * any uninstantiated type variables, according to the given force degree, * but only if the overall result of `isFullyDefined` is `true`. * Variables that are successfully minimized do not count as uninstantiated. */ def isFullyDefined(tp: Type, force: ForceDegree.Value)(implicit ctx: Context): Boolean = { val nestedCtx = ctx.fresh.withNewTyperState val result = new IsFullyDefinedAccumulator(force)(nestedCtx).traverse(tp) if (result) nestedCtx.typerState.commit() result } /** The fully defined type, where all type variables are forced. * Throws an error if type contains wildcards. */ def fullyDefinedType(tp: Type, what: String, pos: Position)(implicit ctx: Context) = if (isFullyDefined(tp, ForceDegree.all)) tp else throw new Error(i"internal error: type of $what $tp is not fully defined, pos = $pos") // !!! DEBUG private class IsFullyDefinedAccumulator(force: ForceDegree.Value)(implicit ctx: Context) extends TypeAccumulator[Boolean] { def traverse(tp: Type): Boolean = apply(true, tp) def apply(x: Boolean, tp: Type) = !x || isOK(tp) && foldOver(x, tp) def isOK(tp: Type): Boolean = tp match { case _: WildcardType => false case tvar: TypeVar if force != ForceDegree.none && !tvar.isInstantiated => val inst = tvar.instantiate(fromBelow = true) println(i"forced instantiation of ${tvar.origin} = $inst") (force == ForceDegree.all || inst != defn.NothingType && inst != defn.NullType) && traverse(inst) case _ => true } } /** Recursively and also follow type declarations and type aliases. */ def widenForMatchSelector(tp: Type)(implicit ctx: Context): Type = tp.widen match { case tp: TypeRef if !tp.symbol.isClass => widenForMatchSelector(tp.bounds.hi) case tp => tp } /** Check that type arguments `args` conform to corresponding bounds in `poly` */ def checkBounds(args: List[tpd.Tree], poly: PolyType, pos: Position)(implicit ctx: Context): Unit = for ((arg, bounds) <- args zip poly.paramBounds) { def notConforms(which: String, bound: Type) = ctx.error(i"Type argument ${arg.tpe} does not conform to $which bound $bound", arg.pos) if (!(arg.tpe <:< bounds.hi)) notConforms("upper", bounds.hi) if (!(bounds.lo <:< arg.tpe)) notConforms("lower", bounds.lo) } /** Check that type `tp` is stable. * @return The type itself */ def checkStable(tp: Type, pos: Position)(implicit ctx: Context): Type = { if (!tp.isStable) ctx.error(i"Prefix $tp is not stable", pos) tp } /** Check that `tp` is a class type with a stable prefix. * @return Underlying class symbol if type checks out OK, ObjectClass if not. */ def checkClassTypeWithStablePrefix(tp: Type, pos: Position)(implicit ctx: Context): ClassSymbol = tp.dealias match { case tp: TypeRef if tp.symbol.isClass => checkStable(tp.prefix, pos) tp.symbol.asClass case _: TypeVar | _: AnnotatedType => checkClassTypeWithStablePrefix(tp.asInstanceOf[TypeProxy].underlying, pos) case _ => ctx.error(i"$tp is not a class type", pos) defn.ObjectClass } def checkInstantiatable(cls: ClassSymbol, pos: Position): Unit = { ??? // to be done in later phase: check that class `cls` is legal in a new. } /** Add all parameters in given polytype `pt` to the constraint's domain. * If the constraint contains already some of these parameters in its domain, * make a copy of the polytype and add the copy's type parameters instead. * Return either the original polytype, or the copy, if one was made. * Also, if `owningTree` is non-empty, add a type variable for each parameter. * @return The added polytype, and the list of created type variables. */ def constrained(pt: PolyType, owningTree: untpd.Tree)(implicit ctx: Context): (PolyType, List[TypeVar]) = { val state = ctx.typerState def howmany = if (owningTree.isEmpty) "no" else "some" def committable = if (ctx.typerState.isCommittable) "committable" else "uncommittable" assert(owningTree.isEmpty != ctx.typerState.isCommittable, s"inconsistent: $howmany typevars were added to $committable constraint ${state.constraint}") def newTypeVars(pt: PolyType): List[TypeVar] = for (n <- (0 until pt.paramNames.length).toList) yield new TypeVar(PolyParam(pt, n), state, owningTree) val added = if (state.constraint contains pt) pt.copy(pt.paramNames, pt.paramBounds, pt.resultType) else pt val tvars = if (owningTree.isEmpty) Nil else newTypeVars(added) state.constraint = state.constraint.add(added, tvars) (added, tvars) } /** Same as `constrained(pt, EmptyTree)`, but returns just the created polytype */ def constrained(pt: PolyType)(implicit ctx: Context): PolyType = constrained(pt, EmptyTree)._1 /** Interpolate those undetermined type variables in the widened type of this tree * which are introduced by type application contained in the tree. * If such a variable appears covariantly in type `tp` or does not appear at all, * approximate it by its lower bound. Otherwise, if it appears contravariantly * in type `tp` approximate it by its upper bound. */ def interpolateUndetVars(tree: Tree)(implicit ctx: Context): Unit = Stats.track("interpolateUndetVars") { val tp = tree.tpe.widen val constraint = ctx.typerState.constraint println(s"interpolate undet vars in ${tp.show}, pos = ${tree.pos}, mode = ${ctx.mode}, undets = ${constraint.uninstVars map (tvar => s"${tvar.show}@${tvar.owningTree.pos}")}") println(s"qualifying undet vars: ${constraint.uninstVars filter qualifies map (_.show)}") println(s"fulltype: $tp") // !!! DEBUG println(s"constraint: ${constraint.show}") def qualifies(tvar: TypeVar) = tree contains tvar.owningTree val vs = tp.variances(tvar => (constraint contains tvar) && qualifies(tvar)) println(s"variances = $vs") var changed = false vs foreachBinding { (tvar, v) => if (v != 0) { println(s"interpolate ${if (v == 1) "co" else "contra"}variant ${tvar.show} in ${tp.show}") tvar.instantiate(fromBelow = v == 1) changed = true } } if (changed) // instantiations might have uncovered new typevars to interpolate interpolateUndetVars(tree) else constraint.foreachUninstVar { tvar => if (!(vs contains tvar) && qualifies(tvar)) { println(s"instantiating non-occurring $tvar in $tp") tvar.instantiate(fromBelow = true) } } } /** Instantiate undetermined type variables to that type `tp` is * maximized and return None. If this is not possible, because a non-variant * typevar is not uniquely determined, return that typevar in a Some. */ def maximizeType(tp: Type)(implicit ctx: Context): Option[TypeVar] = Stats.track("maximizeType") { val constraint = ctx.typerState.constraint val vs = tp.variances(constraint contains _) var result: Option[TypeVar] = None vs foreachBinding { (tvar, v) => if (v == 1) tvar.instantiate(fromBelow = false) else if (v == -1) tvar.instantiate(fromBelow = true) else { val bounds = ctx.typerState.constraint.bounds(tvar.origin) if (!(bounds.hi <:< bounds.lo)) result = Some(tvar) tvar.instantiate(fromBelow = false) } } result } } /* not needed right now def isSubTypes(actuals: List[Type], formals: List[Type])(implicit ctx: Context): Boolean = formals match { case formal :: formals1 => actuals match { case actual :: actuals1 => actual <:< formal && isSubTypes(actuals1, formals1) case _ => false } case nil => actuals.isEmpty } def formalParameters[T](mtp: MethodType, actuals: List[T])(isRepeated: T => Boolean)(implicit ctx: Context) = if (mtp.isVarArgs && !(actuals.nonEmpty && isRepeated(actuals.last))) { val leading = mtp.paramTypes.init val repeated = mtp.paramTypes.last.typeArgs.head val trailing = List.fill(actuals.length - leading.length)(repeated) leading ++ trailing } else mtp.paramTypes */