package dotty.tools package dotc package typer import core._ import ast._ import Trees._ import Constants._ import StdNames._ import Scopes._ import Denotations._ import Inferencing._ import Contexts._ import Symbols._ import Types._ import SymDenotations._ import Annotations._ import Names._ import NameOps._ import Flags._ import Decorators._ import ErrorReporting._ import Inferencing.{FunProto, PolyProto, Compatibility, normalize} import EtaExpansion.etaExpand import util.Positions._ import util.common._ import util.SourcePosition import collection.mutable import annotation.tailrec import Implicits._ import util.Stats.{track, record} import config.Printers._ import language.implicitConversions trait TyperContextOps { ctx: Context => } object Typer { /** The precedence of bindings which determines which of several bindings will be * accessed by an Ident. */ object BindingPrec { val definition = 4 val namedImport = 3 val wildImport = 2 val packageClause = 1 val nothingBound = 0 def isImportPrec(prec: Int) = prec == namedImport || prec == wildImport } } class Typer extends Namer with Applications with Implicits { import Typer._ import tpd.{cpy => _, _} import untpd.cpy /** A temporary data item valid for a single typed ident: * The set of all root import symbols that have been * encountered as a qualifier of an import so far. * Note: It would be more proper to move importedFromRoot into typedIdent. * We should check that this has no performance degradation, however. */ private var importedFromRoot: Set[Symbol] = Set() /** A denotation exists really if it exists and does not point to a stale symbol. */ final def reallyExists(denot: Denotation)(implicit ctx: Context): Boolean = try denot match { case denot: SymDenotation => denot.exists && { denot.ensureCompleted !denot.isAbsent } case denot: SingleDenotation => val sym = denot.symbol (sym eq NoSymbol) || reallyExists(sym.denot) case _ => true } catch { case ex: StaleSymbol => false } /** The type of a selection with `name` of a tree with type `site`. */ def selectionType(site: Type, name: Name, pos: Position)(implicit ctx: Context): Type = { val mbr = site.member(name) if (reallyExists(mbr)) site.select(name, mbr) else { if (!site.isErroneous) { ctx.error( if (name == nme.CONSTRUCTOR) i"$site does not have a constructor" else i"$name is not a member of $site", pos) } ErrorType } } /** The selection type, which is additionally checked for accessibility. */ def checkedSelectionType(qual1: Tree, tree: untpd.RefTree)(implicit ctx: Context): Type = { val ownType = selectionType(qual1.tpe.widenIfUnstable, tree.name, tree.pos) checkAccessible(ownType, qual1.isInstanceOf[Super], tree.pos) } /** Check that Java statics and packages can only be used in selections. */ def checkValue(tpe: Type, proto: Type, pos: Position)(implicit ctx: Context): Unit = if (!proto.isInstanceOf[SelectionProto]) { val sym = tpe.termSymbol if ((sym is Package) || (sym is JavaModule)) ctx.error(i"$sym is not a value", pos) } /** If `tpe` is a named type, check that its denotation is accessible in the * current context. Return the type with those alternatives as denotations * which are accessible. */ def checkAccessible(tpe: Type, superAccess: Boolean, pos: Position)(implicit ctx: Context): Type = { def test(tpe: Type, firstTry: Boolean): Type = tpe match { case tpe: NamedType => val pre = tpe.prefix val name = tpe.name val d = tpe.denot.accessibleFrom(pre, superAccess) if (!d.exists) { // it could be that we found an inaccessbile private member, but there is // an inherited non-private member with the same name and signature. val d2 = pre.nonPrivateMember(name) if (reallyExists(d2) && firstTry) test(pre.select(name, d2), false) else { val alts = tpe.denot.alternatives.map(_.symbol).filter(_.exists) val what = alts match { case Nil => name.toString case sym :: Nil => if (sym.owner == pre.typeSymbol) sym.show else sym.showLocated case _ => i"none of the overloaded alternatives named $name" } val where = if (ctx.owner.exists) s" from ${ctx.owner.enclosingClass}" else "" val whyNot = new StringBuffer alts foreach (_.isAccessibleFrom(pre, superAccess, whyNot)) if (!tpe.isError) ctx.error(i"$what cannot be accessed as a member of $pre$where.$whyNot", pos) ErrorType } } else if (d.symbol is TypeParamAccessor) // always dereference type param accessors checkAccessible(d.info.bounds.hi, superAccess, pos) else tpe withDenot d case _ => tpe } test(tpe, true) } /** The enclosing class, except if we are in a super call, in which case * it is the next outer one. */ def effectiveEnclosingClass(implicit ctx: Context) = { val enclClass = ctx.owner.enclosingClass if ((ctx.mode is Mode.InSuperCall) && enclClass.exists) enclClass.owner.enclosingClass else enclClass } /** The qualifying class of a this or super with prefix `qual` (which might be empty). * @param packageOk The qualifier may refer to a package. */ def qualifyingClass(tree: untpd.Tree, qual: Name, packageOK: Boolean)(implicit ctx: Context): Symbol = { effectiveEnclosingClass.ownersIterator.find(o => qual.isEmpty || o.isClass && o.name == qual) match { case Some(c) if packageOK || !(c is Package) => c case _ => ctx.error( if (qual.isEmpty) tree.show + " can be used only in a class, object, or template" else qual.show + " is not an enclosing class", tree.pos) NoSymbol } } /** Attribute an identifier consisting of a simple name or wildcard * * @param tree The tree representing the identifier. * Transformations: (1) Prefix class members with this. * (2) Change imported symbols to selections. * (3) Change pattern Idents id (but not wildcards) to id @ _ */ def typedIdent(tree: untpd.Ident, pt: Type)(implicit ctx: Context): Tree = track("typedIdent") { val name = tree.name /** Method is necessary because error messages need to bind to * to typedIdent's context which is lost in nested calls to findRef */ def error(msg: => String, pos: Position) = ctx.error(msg, pos) /** Is this import a root import that has been shadowed by an explicit * import in the same program? */ def isDisabled(imp: ImportInfo, site: Type): Boolean = { if (imp.isRootImport && (importedFromRoot contains site.termSymbol)) return true if (imp.hiddenRoot.exists) importedFromRoot += imp.hiddenRoot false } /** Does this identifier appear as a constructor of a pattern? */ def isPatternConstr = if (ctx.mode.isExpr && (ctx.outer.mode is Mode.Pattern)) ctx.outer.tree match { case Apply(`tree`, _) => true case _ => false } else false /** A symbol qualifies if it really exists. In addition, * if we are in a constructor of a pattern, we ignore all definitions * which are methods and not accessors (note: if we don't do that * case x :: xs in class List would return the :: method). */ def qualifies(denot: Denotation): Boolean = reallyExists(denot) && !( pt.isInstanceOf[UnapplySelectionProto] && (denot.symbol is (Method, butNot = Accessor))) /** Find the denotation of enclosing `name` in given context `ctx`. * @param previous A denotation that was found in a more deeply nested scope, * or else `NoDenotation` if nothing was found yet. * @param prevPrec The binding precedence of the previous denotation, * or else `nothingBound` if nothing was found yet. * @param prevCtx The context of the previous denotation, * or else `NoContext` if nothing was found yet. */ def findRef(previous: Type, prevPrec: Int, prevCtx: Context)(implicit ctx: Context): Type = { import BindingPrec._ /** A string which explains how something was bound; Depending on `prec` this is either * imported by * or defined in */ def bindingString(prec: Int, whereFound: Context, qualifier: String = "") = if (prec == wildImport || prec == namedImport) i"imported$qualifier by ${whereFound.importInfo}" else i"defined$qualifier in ${whereFound.owner}" /** Check that any previously found result from an inner context * does properly shadow the new one from an outer context. */ def checkNewOrShadowed(found: Type, newPrec: Int): Type = if (!previous.exists || ctx.typeComparer.isSameRef(previous, found)) found else if ((prevCtx.scope eq ctx.scope) && (newPrec == definition || newPrec == namedImport && prevPrec == wildImport)) { // special cases: definitions beat imports, and named imports beat // wildcard imports, provided both are in contexts with same scope found } else { if (!previous.isError && !found.isError) { error( i"""reference to $name is ambiguous; |it is both ${bindingString(newPrec, ctx, "")} |and ${bindingString(prevPrec, prevCtx, " subsequently")}""".stripMargin, tree.pos) } previous } /** The type representing a named import with enclosing name when imported * from given `site` and `selectors`. */ def namedImportRef(site: Type, selectors: List[untpd.Tree]): Type = { def checkUnambiguous(found: Type) = { val other = namedImportRef(site, selectors.tail) if (other.exists && found.exists && (found != other)) error(i"reference to $name is ambiguous; it is imported twice in ${ctx.tree}", tree.pos) found } val Name = name.toTermName selectors match { case Pair(Ident(from), Ident(Name)) :: rest => val selName = if (name.isTypeName) from.toTypeName else from checkUnambiguous(selectionType(site, selName, tree.pos)) case Ident(Name) :: rest => checkUnambiguous(selectionType(site, name, tree.pos)) case _ :: rest => namedImportRef(site, rest) case nil => NoType } } /** The type representing a wildcard import with enclosing name when imported * from given import info */ def wildImportRef(imp: ImportInfo): Type = { if (imp.isWildcardImport) { val pre = imp.site if (!isDisabled(imp, pre) && !(imp.excluded contains name.toTermName)) { val denot = pre.member(name) if (reallyExists(denot)) return pre.select(name, denot) } } NoType } /** Is (some alternative of) the given predenotation `denot` * defined in current compilation unit? */ def isDefinedInCurrentUnit(denot: Denotation): Boolean = denot match { case MultiDenotation(d1, d2) => isDefinedInCurrentUnit(d1) || isDefinedInCurrentUnit(d2) case denot: SingleDenotation => denot.symbol.sourceFile == ctx.source } /** Is `denot` the denotation of a self symbol? */ def isSelfDenot(denot: Denotation) = denot match { case denot: SymDenotation => denot is SelfName case _ => false } // begin findRef if (ctx.scope == null) previous else { val outer = ctx.outer if ((ctx.scope ne outer.scope) || (ctx.owner ne outer.owner)) { val defDenot = ctx.denotNamed(name) if (qualifies(defDenot)) { val curOwner = ctx.owner val found = if (isSelfDenot(defDenot)) curOwner.thisType else curOwner.thisType.select(name, defDenot) if (!(curOwner is Package) || (defDenot.symbol is Package) || isDefinedInCurrentUnit(defDenot)) return checkNewOrShadowed(found, definition) // no need to go further out, we found highest prec entry else if (prevPrec < packageClause) return findRef(found, packageClause, ctx)(outer) } } val curImport = ctx.importInfo if (curImport != null && curImport.isRootImport && previous.exists) return previous // would import of kind `prec` be not shadowed by a nested higher-precedence definition? def isPossibleImport(prec: Int) = prevPrec < prec || prevPrec == prec && (prevCtx.scope eq ctx.scope) if (isPossibleImport(namedImport) && (curImport ne outer.importInfo) && !curImport.sym.isCompleting) { val namedImp = namedImportRef(curImport.site, curImport.selectors) if (namedImp.exists) return findRef(checkNewOrShadowed(namedImp, namedImport), namedImport, ctx)(outer) if (isPossibleImport(wildImport)) { val wildImp = wildImportRef(curImport) if (wildImp.exists) return findRef(checkNewOrShadowed(wildImp, wildImport), wildImport, ctx)(outer) } } findRef(previous, prevPrec, prevCtx)(outer) } } // begin typedIdent def kind = if (name.isTermName) "" else "type " typr.println(s"typed ident $kind$name in ${ctx.owner}") if (ctx.mode is Mode.Pattern) { if (name == nme.WILDCARD) return tree.withType(pt) if (isVarPattern(tree)) return typed(untpd.Bind(name, untpd.Ident(nme.WILDCARD)).withPos(tree.pos), pt) } val saved = importedFromRoot importedFromRoot = Set.empty val rawType = try findRef(NoType, BindingPrec.nothingBound, NoContext) finally importedFromRoot = saved checkValue(rawType, pt, tree.pos) val ownType = if (rawType.exists) checkAccessible(rawType, superAccess = false, tree.pos) else { error(i"not found: $kind$name", tree.pos) ErrorType } tree.withType(ownType.underlyingIfRepeated) } def typedSelect(tree: untpd.Select, pt: Type)(implicit ctx: Context): Tree = track("typedSelect") { val qual1 = typedExpr(tree.qualifier, selectionProto(tree.name, pt, this)) val ownType = checkedSelectionType(qual1, tree) checkValue(ownType, pt, tree.pos) cpy.Select(tree, qual1, tree.name).withType(ownType) } def typedThis(tree: untpd.This)(implicit ctx: Context): Tree = track("typedThis") { val cls = qualifyingClass(tree, tree.qual, packageOK = false) tree.withType(cls.thisType) } def typedSuper(tree: untpd.Super, pt: Type)(implicit ctx: Context): Tree = track("typedSuper") { val mix = tree.mix val qual1 = typed(tree.qual) val cls = qual1.tpe.widen.typeSymbol def findMixinSuper(site: Type): Type = site.parents filter (_.name == mix) match { case p :: Nil => p case Nil => errorType(i"$mix does not name a parent class of $cls", tree.pos) case p :: q :: _ => errorType(s"ambiguous parent class qualifier", tree.pos) } val owntype = if (!mix.isEmpty) findMixinSuper(cls.info) else pt match { case pt: SelectionProto if pt.name == nme.CONSTRUCTOR => cls.info.firstParent case _ => cls.info.parents.reduceLeft((x: Type, y: Type) => AndType(x, y)) } cpy.Super(tree, qual1, mix).withType(SuperType(cls.thisType, owntype)) } def typedLiteral(tree: untpd.Literal)(implicit ctx: Context) = track("typedLiteral") { tree.withType { tree.const.tag match { case UnitTag => defn.UnitType case NullTag => defn.NullType case _ => ConstantType(tree.const) } } } def typedNew(tree: untpd.New, pt: Type)(implicit ctx: Context) = track("typedNew") { tree.tpt match { case templ: untpd.Template => import untpd._ val x = tpnme.ANON_CLASS val clsDef = TypeDef(Modifiers(Final), x, templ) typed(cpy.Block(tree, clsDef :: Nil, New(Ident(x), Nil)), pt) case _ => val tpt1 = typedType(tree.tpt) val clsref = checkClassTypeWithStablePrefix(tpt1.tpe, tpt1.pos, traitReq = false) // todo in a later phase: checkInstantiatable(cls, tpt1.pos) cpy.New(tree, tpt1).withType(tpt1.tpe) } } def typedPair(tree: untpd.Pair, pt: Type)(implicit ctx: Context) = track("typedPair") { val (leftProto, rightProto) = pt.argTypesLo match { case l :: r :: Nil if pt isRef defn.PairClass => (l, r) case _ => (WildcardType, WildcardType) } val left1 = typed(tree.left, leftProto) val right1 = typed(tree.right, rightProto) cpy.Pair(tree, left1, right1).withType(defn.PairType.appliedTo(left1.tpe :: right1.tpe :: Nil)) } def typedTyped(tree: untpd.Typed, pt: Type)(implicit ctx: Context): Tree = track("typedTyped") { def regularTyped(isWildcard: Boolean) = { val tpt1 = typedType(tree.tpt) val expr1 = if (isWildcard) tree.expr withType tpt1.tpe else typedExpr(tree.expr, tpt1.tpe) cpy.Typed(tree, expr1, tpt1).withType(tpt1.tpe) } tree.expr match { case id: untpd.Ident if (ctx.mode is Mode.Pattern) && isVarPattern(id) => if (id.name == nme.WILDCARD) regularTyped(isWildcard = true) else { import untpd._ typed(Bind(id.name, Typed(Ident(nme.WILDCARD), tree.tpt)).withPos(id.pos)) } case _ => if (untpd.isWildcardStarArg(tree)) seqToRepeated(typedExpr(tree.expr, defn.SeqType)) else regularTyped(isWildcard = false) } } def typedNamedArg(tree: untpd.NamedArg, pt: Type)(implicit ctx: Context) = track("typedNamedArg") { val arg1 = typed(tree.arg, pt) cpy.NamedArg(tree, tree.name, arg1).withType(arg1.tpe) } def typedAssign(tree: untpd.Assign, pt: Type)(implicit ctx: Context) = track("typedAssign") { tree.lhs match { case lhs @ Apply(fn, args) => typed(cpy.Apply(lhs, untpd.Select(fn, nme.update), args :+ tree.rhs), pt) case untpd.TypedSplice(Apply(Select(fn, app), args)) if app == nme.apply => typed(cpy.Apply(fn, untpd.Select(untpd.TypedSplice(fn), nme.update), (args map untpd.TypedSplice) :+ tree.rhs), pt) case lhs => val lhsCore = typedUnadapted(lhs) def lhs1 = typed(untpd.TypedSplice(lhsCore)) lhsCore.tpe match { case ref: TermRef if ref.symbol is (Mutable, butNot = Accessor) => cpy.Assign(tree, lhs1, typed(tree.rhs, ref.info)).withType(defn.UnitType) case _ => def reassignmentToVal = errorTree(cpy.Assign(tree, lhsCore, typed(tree.rhs, lhs1.tpe.widen)), "reassignment to val") lhsCore.tpe match { case ref: TermRef => // todo: further conditions to impose on getter? val pre = ref.prefix val setterName = ref.name.setterName val setter = pre.member(setterName) lhsCore match { case lhsCore: RefTree if setter.exists => val setterTypeRaw = pre select (setterName, setter) val setterType = checkAccessible(setterTypeRaw, isSuperSelection(lhsCore), tree.pos) val lhs2 = lhsCore.withName(setterName).withType(setterType) typed(cpy.Apply(tree, untpd.TypedSplice(lhs2), tree.rhs :: Nil)) case _ => reassignmentToVal } case tpe => reassignmentToVal } } } } def typedBlock(tree: untpd.Block, pt: Type)(implicit ctx: Context) = track("typedBlock") { val exprCtx = index(tree.stats) val stats1 = typedStats(tree.stats, ctx.owner) val expr1 = typedExpr(tree.expr, pt)(exprCtx) val result = cpy.Block(tree, stats1, expr1).withType(avoid(expr1.tpe, localSyms(stats1))) checkNoLocalRefs(result, pt) } /** Check that block's type can be expressed without references to locally defined * symbols. The following two remedies are tried before giving up: * 1. If the expected type of the block is fully defined, pick it as the * type of the result expressed by adding a type ascription. * 2. If (1) fails, force all type variables so that the block's type is * fully defined and try again. */ def checkNoLocalRefs(block: Block, pt: Type, forcedDefined: Boolean = false)(implicit ctx: Context): Tree = { val Block(stats, expr) = block val leaks = CheckTrees.escapingRefs(block) if (leaks.isEmpty) block else if (isFullyDefined(pt, ForceDegree.all)) { val expr1 = typed(untpd.Typed(untpd.TypedSplice(expr), untpd.TypeTree(pt))) untpd.Block(stats, expr1) withType expr1.tpe } else if (!forcedDefined) { fullyDefinedType(block.tpe, "block", block.pos) val block1 = block.withType(avoid(block.tpe, localSyms(stats))) checkNoLocalRefs(block1, pt, forcedDefined = true) } else errorTree(block, i"local definition of ${leaks.head.name} escapes as part of block's type ${block.tpe}"/*; full type: ${result.tpe.toString}"*/) } def typedIf(tree: untpd.If, pt: Type)(implicit ctx: Context) = track("typedIf") { val cond1 = typed(tree.cond, defn.BooleanType) val thenp1 = typed(tree.thenp, pt) val elsep1 = typed(tree.elsep orElse untpd.unitLiteral withPos tree.pos, pt) cpy.If(tree, cond1, thenp1, elsep1).withType(thenp1.tpe | elsep1.tpe) } def typedFunction(tree: untpd.Function, pt: Type)(implicit ctx: Context) = track("typedFunction") { val untpd.Function(args, body) = tree if (ctx.mode is Mode.Type) typed(cpy.AppliedTypeTree(tree, untpd.TypeTree(defn.FunctionClass(args.length).typeRef), args :+ body), pt) else { val params = args.asInstanceOf[List[untpd.ValDef]] val (protoFormals, protoResult): (List[Type], Type) = pt match { case _ if defn.isFunctionType(pt) => (pt.dealias.argInfos.init, pt.dealias.argInfos.last) case SAMType(meth) => val mt @ MethodType(_, paramTypes) = meth.info (paramTypes, mt.resultType) case _ => (params map alwaysWildcardType, WildcardType) } def refersTo(arg: untpd.Tree, param: untpd.ValDef): Boolean = arg match { case Ident(name) => name == param.name case _ => false } /** The funcion body to be returned in the closure. Can become a TypedSplice * of a typed expression if this is necessary to infer a parameter type. */ var fnBody = tree.body /** If function is of the form * (x1, ..., xN) => f(x1, ..., XN) * the type of `f`, otherwise NoType. (updates `fnBody` as a side effect). */ def calleeType: Type = fnBody match { case Apply(expr, args) if (args corresponds params)(refersTo) => expr match { case untpd.TypedSplice(expr1) => expr1.tpe case _ => val protoArgs = args map (_ withType WildcardType) val callProto = FunProto(protoArgs, WildcardType, this) val expr1 = typedExpr(expr, callProto) fnBody = cpy.Apply(fnBody, untpd.TypedSplice(expr1), args) expr1.tpe } case _ => NoType } /** Two attempts: First, if expected type is fully defined pick this one. * Second, if function is of the form * (x1, ..., xN) => f(x1, ..., XN) * and f has a method type MT, pick the corresponding parameter type in MT, * if this one is fully defined. * If both attempts fail, issue a "missing parameter type" error. */ def inferredParamType(param: untpd.ValDef, formal: Type): Type = { if (isFullyDefined(formal, ForceDegree.noBottom)) return formal calleeType.widen match { case mtpe: MethodType => val pos = params indexWhere (_.name == param.name) if (pos < mtpe.paramTypes.length) { val ptype = mtpe.paramTypes(pos) if (isFullyDefined(ptype, ForceDegree.none)) return ptype } case _ => } val ofFun = if (nme.syntheticParamNames(args.length + 1) contains param.name) s" of expanded function ${tree.show}" else "" errorType(s"missing parameter type for parameter ${param.name}$ofFun, expected = ${pt.show}", param.pos) } if (protoFormals.length != params.length) ctx.error(s"wrong number of parameters, expected: ${protoFormals.length}", tree.pos) val inferredParams: List[untpd.ValDef] = for ((param, formal) <- params zip protoFormals) yield if (!param.tpt.isEmpty) param else { val paramTpt = untpd.TypeTree(inferredParamType(param, formal)) cpy.ValDef(param, param.mods, param.name, paramTpt, param.rhs) } // Define result type of closure as the expected type, thereby pushing // down any implicit searches. We do this even if the expected type is not fully // defined, which is a bit of a hack. But it's needed to make the following work // (see typers.scala and printers/PlainPrinter.scala for examples). // // def double(x: Char): String = s"$x$x" // "abc" flatMap double // val resultTpt = protoResult match { case WildcardType(_) => untpd.TypeTree() case _ => untpd.TypeTree(protoResult) } typed(desugar.makeClosure(inferredParams, fnBody, resultTpt), pt) } } def typedClosure(tree: untpd.Closure, pt: Type)(implicit ctx: Context) = track("typedClosure") { val env1 = tree.env mapconserve (typed(_)) val meth1 = typedUnadapted(tree.meth) val (ownType, target) = meth1.tpe.widen match { case mt: MethodType => pt match { case SAMType(meth) if !defn.isFunctionType(pt) && mt <:< meth.info => if (!isFullyDefined(pt, ForceDegree.all)) ctx.error(i"result type of closure is an underspecified SAM type $pt", tree.pos) (pt, TypeTree(pt)) case _ => if (!mt.isDependent) (mt.toFunctionType, EmptyTree) else throw new Error(i"internal error: cannot turn dependent method type $mt into closure, position = ${tree.pos}, raw type = ${mt.toString}") // !!! DEBUG. Eventually, convert to an error? } case tp => throw new Error(i"internal error: closing over non-method $tp, pos = ${tree.pos}") } cpy.Closure(tree, env1, meth1, target).withType(ownType) } def typedMatch(tree: untpd.Match, pt: Type)(implicit ctx: Context) = track("typedMatch") { tree.selector match { case EmptyTree => typed(desugar.makeCaseLambda(tree.cases) withPos tree.pos, pt) case _ => val sel1 = typedExpr(tree.selector) val selType = widenForMatchSelector( fullyDefinedType(sel1.tpe, "pattern selector", tree.pos)) /** gadtSyms = "all type parameters of enclosing methods that appear * non-variantly in the selector type" todo: should typevars * which appear with variances +1 and -1 (in different * places) be considered as well? */ val gadtSyms: Set[Symbol] = ctx.traceIndented(i"GADT syms of $selType", gadts) { val accu = new TypeAccumulator[Set[Symbol]] { def apply(tsyms: Set[Symbol], t: Type): Set[Symbol] = { val tsyms1 = t match { case tr: TypeRef if (tr.symbol is TypeParam) && tr.symbol.owner.isTerm && variance == 0 => tsyms + tr.symbol case _ => tsyms } foldOver(tsyms1, t) } } accu(Set.empty, selType) } def typedCase(tree: untpd.CaseDef): CaseDef = track("typedCase") { def caseRest(pat: Tree)(implicit ctx: Context) = { gadtSyms foreach (_.resetGADTFlexType) foreachSubTreeOf(pat) { case b: Bind => if (ctx.scope.lookup(b.name) == NoSymbol) ctx.enter(b.symbol) else ctx.error(i"duplicate pattern variable: ${b.name}", b.pos) case _ => } val guard1 = typedExpr(tree.guard, defn.BooleanType) val body1 = typedExpr(tree.body, pt) cpy.CaseDef(tree, pat, guard1, body1) withType body1.tpe } val doCase: () => CaseDef = () => caseRest(typedPattern(tree.pat, selType))(ctx.fresh.withNewScope) (doCase /: gadtSyms)((op, tsym) => tsym.withGADTFlexType(op))() } val cases1 = tree.cases mapconserve typedCase cpy.Match(tree, sel1, cases1).withType(ctx.typeComparer.lub(cases1.tpes)) } } def typedReturn(tree: untpd.Return)(implicit ctx: Context): Return = track("typedReturn") { def enclMethInfo(cx: Context): (Tree, Type) = { val owner = cx.owner if (cx == NoContext || owner.isType) { ctx.error("return outside method definition", tree.pos) (EmptyTree, WildcardType) } else if (owner.isSourceMethod) if (owner.isCompleted) { val from = Ident(TermRef(NoPrefix, owner.asTerm)) val proto = if (owner.isConstructor) defn.UnitType else owner.info.finalResultType (from, proto) } else (EmptyTree, errorType(i"$owner has return statement; needs result type", tree.pos)) else enclMethInfo(cx.outer) } val (from, proto) = enclMethInfo(ctx) val expr1 = typedExpr(tree.expr orElse untpd.unitLiteral.withPos(tree.pos), proto) cpy.Return(tree, expr1, from) withType defn.NothingType } def typedTry(tree: untpd.Try, pt: Type)(implicit ctx: Context): Try = track("typedTry") { val expr1 = typed(tree.expr, pt) val handler1 = typed(tree.handler, defn.FunctionType(defn.ThrowableType :: Nil, pt)) val finalizer1 = typed(tree.finalizer, defn.UnitType) val handlerTypeArgs = handler1.tpe.baseArgTypesHi(defn.FunctionClass(1)) val ownType = if (handlerTypeArgs.nonEmpty) expr1.tpe | handlerTypeArgs(1) else expr1.tpe cpy.Try(tree, expr1, handler1, finalizer1) withType ownType } def typedThrow(tree: untpd.Throw)(implicit ctx: Context): Throw = track("typedThrow") { val expr1 = typed(tree.expr, defn.ThrowableType) cpy.Throw(tree, expr1) withType defn.NothingType } def typedSeqLiteral(tree: untpd.SeqLiteral, pt: Type)(implicit ctx: Context): SeqLiteral = track("typedSeqLiteral") { val proto1 = pt.elemType orElse WildcardType val elems1 = tree.elems mapconserve (typed(_, proto1)) cpy.SeqLiteral(tree, elems1) withType defn.SeqType.appliedTo(ctx.typeComparer.lub(elems1.tpes)) } def typedTypeTree(tree: untpd.TypeTree, pt: Type)(implicit ctx: Context): TypeTree = track("typedTypeTree") { val original1 = typed(tree.original) val ownType = if (original1.isEmpty) { assert(isFullyDefined(pt, ForceDegree.none)); pt } else original1.tpe cpy.TypeTree(tree, original1) withType ownType } def typedSingletonTypeTree(tree: untpd.SingletonTypeTree)(implicit ctx: Context): SingletonTypeTree = track("typedSingletonTypeTree") { val ref1 = typedExpr(tree.ref) checkStable(ref1.tpe, tree.pos) cpy.SingletonTypeTree(tree, ref1) withType ref1.tpe } def typedSelectFromTypeTree(tree: untpd.SelectFromTypeTree, pt: Type)(implicit ctx: Context): SelectFromTypeTree = track("typedSelectFromTypeTree") { val qual1 = typedType(tree.qualifier, selectionProto(tree.name, pt, this)) cpy.SelectFromTypeTree(tree, qual1, tree.name).withType(checkedSelectionType(qual1, tree)) } def typedAndTypeTree(tree: untpd.AndTypeTree)(implicit ctx: Context): AndTypeTree = track("typedAndTypeTree") { val left1 = typed(tree.left) val right1 = typed(tree.right) cpy.AndTypeTree(tree, left1, right1) withType left1.tpe & right1.tpe } def typedOrTypeTree(tree: untpd.OrTypeTree)(implicit ctx: Context): OrTypeTree = track("typedOrTypeTree") { val left1 = typed(tree.left) val right1 = typed(tree.right) cpy.OrTypeTree(tree, left1, right1) withType left1.tpe | right1.tpe } def typedRefinedTypeTree(tree: untpd.RefinedTypeTree)(implicit ctx: Context): RefinedTypeTree = track("typedRefinedTypeTree") { val tpt1 = if (tree.tpt.isEmpty) TypeTree(defn.ObjectType) else typedAheadType(tree.tpt) val refineClsDef = desugar.refinedTypeToClass(tree) val refineCls = createSymbol(refineClsDef).asClass val TypeDef(_, _, Template(_, _, _, refinements1)) = typed(refineClsDef) assert(tree.refinements.length == refinements1.length, s"${tree.refinements} != $refinements1") def addRefinement(parent: Type, refinement: Tree): Type = { typr.println(s"adding refinement $refinement") foreachSubTreeOf(refinement) { case tree: RefTree => if (tree.symbol.owner == refineCls && tree.pos.start <= tree.symbol.pos.end) ctx.error("illegal forward reference in refinement", tree.pos) case _ => } val rsym = refinement.symbol val rinfo = if (rsym is Accessor) rsym.info.resultType else rsym.info RefinedType(parent, rsym.name, rt => rinfo.substThis(refineCls, RefinedThis(rt))) // todo later: check that refinement is within bounds } val res = cpy.RefinedTypeTree(tree, tpt1, refinements1) withType (tpt1.tpe /: refinements1)(addRefinement) typr.println(s"typed refinement: ${res.tpe.show}") res } def typedAppliedTypeTree(tree: untpd.AppliedTypeTree)(implicit ctx: Context): AppliedTypeTree = track("typedAppliedTypeTree") { val tpt1 = typed(tree.tpt) val args1 = tree.args mapconserve (typed(_)) val tparams = tpt1.tpe.typeParams if (args1.length != tparams.length) ctx.error(i"wrong number of type arguments for ${tpt1.tpe}, should be ${tparams.length}") // todo in later phase: check arguments conform to parameter bounds cpy.AppliedTypeTree(tree, tpt1, args1) withType tpt1.tpe.appliedTo(args1.tpes) } def typedByNameTypeTree(tree: untpd.ByNameTypeTree)(implicit ctx: Context): ByNameTypeTree = track("typedByNameTypeTree") { val result1 = typed(tree.result) cpy.ByNameTypeTree(tree, result1) withType ExprType(result1.tpe) } def typedTypeBoundsTree(tree: untpd.TypeBoundsTree)(implicit ctx: Context): TypeBoundsTree = track("typedTypeBoundsTree") { val TypeBoundsTree(lo, hi) = desugar.typeBoundsTree(tree) val lo1 = typed(lo) val hi1 = typed(hi) if (!(lo1.tpe <:< hi1.tpe)) ctx.error(i"lower bound ${lo1.tpe} does not conform to upper bound ${hi1.tpe}", tree.pos) cpy.TypeBoundsTree(tree, lo1, hi1) withType TypeBounds(lo1.tpe, hi1.tpe) } def typedBind(tree: untpd.Bind, pt: Type)(implicit ctx: Context): Bind = track("typedBind") { val body1 = typed(tree.body, pt) typr.println(s"typed bind ${tree.show} pt = ${pt.show} bodytpe = ${body1.tpe.show}") val sym = ctx.newSymbol(ctx.owner, tree.name.asTermName, EmptyFlags, body1.tpe, coord = tree.pos) cpy.Bind(tree, tree.name, body1) withType TermRef(NoPrefix, sym) } def typedAlternative(tree: untpd.Alternative, pt: Type)(implicit ctx: Context): Alternative = track("typedAlternative") { val trees1 = tree.trees mapconserve (typed(_, pt)) cpy.Alternative(tree, trees1) withType ctx.typeComparer.lub(trees1.tpes) } def typedModifiers(mods: untpd.Modifiers)(implicit ctx: Context): Modifiers = track("typedModifiers") { val annotations1 = mods.annotations mapconserve typedAnnotation if (annotations1 eq mods.annotations) mods.asInstanceOf[Modifiers] else Modifiers(mods.flags, mods.privateWithin, annotations1) } def typedAnnotation(annot: untpd.Tree)(implicit ctx: Context): Tree = track("typedAnnotation") { typed(annot, defn.AnnotationClass.typeRef) } def typedValDef(vdef: untpd.ValDef, sym: Symbol)(implicit ctx: Context) = track("typedValDef") { val ValDef(mods, name, tpt, rhs) = vdef val mods1 = typedModifiers(mods) val tpt1 = typedType(tpt) if ((sym is Implicit) && sym.owner.isType) checkImplicitTptNonEmpty(vdef) val rhs1 = rhs match { case Ident(nme.WILDCARD) => rhs withType tpt1.tpe case _ => typedExpr(rhs, tpt1.tpe) } val refType = if (sym.exists) sym.valRef else NoType cpy.ValDef(vdef, mods1, name, tpt1, rhs1).withType(refType) } def typedDefDef(ddef: untpd.DefDef, sym: Symbol)(implicit ctx: Context) = track("typedDefDef") { val DefDef(mods, name, tparams, vparamss, tpt, rhs) = ddef val mods1 = typedModifiers(mods) val tparams1 = tparams mapconserve (typed(_).asInstanceOf[TypeDef]) val vparamss1 = vparamss nestedMapconserve (typed(_).asInstanceOf[ValDef]) if (sym is Implicit) { if (sym.owner.isType) checkImplicitTptNonEmpty(ddef) checkImplicitParamsNotSingletons(vparamss1) } val tpt1 = typedType(tpt) val rhs1 = typedExpr(rhs, tpt1.tpe) cpy.DefDef(ddef, mods1, name, tparams1, vparamss1, tpt1, rhs1).withType(sym.termRefWithSig) //todo: make sure dependent method types do not depend on implicits or by-name params } def typedTypeDef(tdef: untpd.TypeDef, sym: Symbol)(implicit ctx: Context): TypeDef = track("typedTypeDef") { val TypeDef(mods, name, rhs) = tdef val mods1 = typedModifiers(mods) val _ = typedType(rhs) // unused, typecheck only to remove from typedTree cpy.TypeDef(tdef, mods1, name, TypeTree(sym.info)).withType(sym.typeRef) } def typedClassDef(cdef: untpd.TypeDef, cls: ClassSymbol)(implicit ctx: Context) = track("typedClassDef") { val superCtx = ctx.fresh addMode Mode.InSuperCall def typedParent(tree: untpd.Tree): Tree = if (tree.isType) typedType(tree)(superCtx) else { val result = typedExpr(tree)(superCtx) if ((cls is Trait) && result.tpe.classSymbol.isRealClass) ctx.error(s"trait may not call constructor of ${result.tpe.classSymbol}", tree.pos) result } /** If this is a real class, make sure its first parent is a * constructor call. Cannot simply use a type. */ def ensureConstrCall(parents: List[Tree]): List[Tree] = { val firstParent :: otherParents = parents if (firstParent.isType && !(cls is Trait)) typed(untpd.New(untpd.TypedSplice(firstParent), Nil))(superCtx) :: otherParents else parents } val TypeDef(mods, name, impl @ Template(constr, parents, self, body)) = cdef val mods1 = typedModifiers(mods) val constr1 = typed(constr).asInstanceOf[DefDef] val parents1 = ensureConstrCall(ensureFirstIsClass( parents mapconserve typedParent, cdef.pos.toSynthetic)) val self1 = typed(self).asInstanceOf[ValDef] val localDummy = ctx.newLocalDummy(cls, impl.pos) val body1 = typedStats(body, localDummy)(inClassContext(self1.symbol)) checkNoDoubleDefs(cls) val impl1 = cpy.Template(impl, constr1, parents1, self1, body1) .withType(localDummy.termRef) cpy.TypeDef(cdef, mods1, name, impl1).withType(cls.typeRef) // todo later: check that // 1. If class is non-abstract, it is instantiatable: // - self type is s supertype of own type // - all type members have consistent bounds // 2. all private type members have consistent bounds // 3. Types do not override classes. // 4. Polymorphic type defs override nothing. } def typedImport(imp: untpd.Import, sym: Symbol)(implicit ctx: Context): Import = track("typedImport") { val expr1 = typedExpr(imp.expr, AnySelectionProto) checkStable(expr1.tpe, imp.expr.pos) cpy.Import(imp, expr1, imp.selectors).withType(sym.termRef) } def typedAnnotated(tree: untpd.Annotated, pt: Type)(implicit ctx: Context): Tree = track("typedAnnotated") { val annot1 = typed(tree.annot, defn.AnnotationClass.typeRef) val arg1 = typed(tree.arg, pt) val underlyingType = if (arg1.isTerm) arg1.tpe.widen else arg1.tpe val ownType = AnnotatedType(Annotation(annot1), underlyingType) if (ctx.mode is Mode.Type) cpy.Annotated(tree, annot1, arg1) withType ownType else cpy.Typed(tree, arg1, TypeTree(ownType)) withType ownType } def typedAsFunction(tree: untpd.Tree, pt: Type)(implicit ctx: Context): Tree = typed(tree, if (defn.isFunctionType(pt)) pt else AnyFunctionProto) def typedPackageDef(tree: untpd.PackageDef)(implicit ctx: Context): Tree = track("typedPackageDef") { val pid1 = typedExpr(tree.pid, AnySelectionProto) val pkg = pid1.symbol val packageContext = if (pkg is Package) ctx.fresh.withOwner(pkg.moduleClass).withTree(tree) else { ctx.error(i"$pkg is not a packge", tree.pos) ctx } val stats1 = typedStats(tree.stats, pkg.moduleClass)(packageContext) cpy.PackageDef(tree, pid1.asInstanceOf[RefTree], stats1) withType pkg.valRef } def typedUnadapted(initTree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree = { record("typedUnadapted") val xtree = expanded(initTree) xtree.removeAttachment(TypedAhead) match { case Some(ttree) => ttree case none => val sym = xtree.removeAttachment(SymOfTree) match { case Some(sym) => sym.ensureCompleted() sym case none => NoSymbol } def localContext = { val freshCtx = ctx.fresh.withTree(xtree) if (sym.exists) freshCtx.withOwner(sym) else freshCtx // can happen for self defs } def typedNamed(tree: untpd.NameTree): Tree = tree match { case tree: untpd.Ident => typedIdent(tree, pt) case tree: untpd.Select => typedSelect(tree, pt) case tree: untpd.SelectFromTypeTree => typedSelectFromTypeTree(tree, pt) case tree: untpd.Bind => typedBind(tree, pt) case tree: untpd.ValDef => if (tree.isEmpty) tpd.EmptyValDef else typedValDef(tree, sym)(localContext.withNewScope) case tree: untpd.DefDef => val typer1 = nestedTyper.remove(sym).get typer1.typedDefDef(tree, sym)(localContext.withTyper(typer1)) case tree: untpd.TypeDef => if (tree.isClassDef) typedClassDef(tree, sym.asClass)(localContext) else typedTypeDef(tree, sym)(localContext.withNewScope) case _ => typedUnadapted(desugar(tree), pt) } def typedUnnamed(tree: untpd.Tree): Tree = tree match { case tree: untpd.Apply => if (ctx.mode is Mode.Pattern) typedUnApply(tree, pt) else typedApply(tree, pt) case tree: untpd.This => typedThis(tree) case tree: untpd.Literal => typedLiteral(tree) case tree: untpd.New => typedNew(tree, pt) case tree: untpd.Pair => typedPair(tree, pt) case tree: untpd.Typed => typedTyped(tree, pt) case tree: untpd.NamedArg => typedNamedArg(tree, pt) case tree: untpd.Assign => typedAssign(tree, pt) case tree: untpd.Block => typedBlock(desugar.block(tree), pt)(ctx.fresh.withNewScope) case tree: untpd.If => typedIf(tree, pt) case tree: untpd.Function => typedFunction(tree, pt) case tree: untpd.Closure => typedClosure(tree, pt) case tree: untpd.Match => typedMatch(tree, pt) case tree: untpd.Return => typedReturn(tree) case tree: untpd.Try => typedTry(tree, pt) case tree: untpd.Throw => typedThrow(tree) case tree: untpd.TypeApply => typedTypeApply(tree, pt) case tree: untpd.Super => typedSuper(tree, pt) case tree: untpd.SeqLiteral => typedSeqLiteral(tree, pt) case tree: untpd.TypeTree => typedTypeTree(tree, pt) case tree: untpd.SingletonTypeTree => typedSingletonTypeTree(tree) case tree: untpd.AndTypeTree => typedAndTypeTree(tree) case tree: untpd.OrTypeTree => typedOrTypeTree(tree) case tree: untpd.RefinedTypeTree => typedRefinedTypeTree(tree) case tree: untpd.AppliedTypeTree => typedAppliedTypeTree(tree) case tree: untpd.ByNameTypeTree => typedByNameTypeTree(tree) case tree: untpd.TypeBoundsTree => typedTypeBoundsTree(tree) case tree: untpd.Alternative => typedAlternative(tree, pt) case tree: untpd.Import => typedImport(tree, sym) case tree: untpd.PackageDef => typedPackageDef(tree) case tree: untpd.Annotated => typedAnnotated(tree, pt) case tree: untpd.TypedSplice => tree.tree case untpd.PostfixOp(tree, nme.WILDCARD) => typedAsFunction(tree, pt) case untpd.EmptyTree => tpd.EmptyTree case _ => typedUnadapted(desugar(tree), pt) } xtree match { case xtree: untpd.NameTree => typedNamed(xtree withName xtree.name.encode) case xtree => typedUnnamed(xtree) } } } def typed(tree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree = /*>|>*/ ctx.traceIndented (s"typing ${tree.show}", typr, show = true) /*<|<*/ { if (!tree.isEmpty && ctx.typerState.isGlobalCommittable) assert(tree.pos.exists, tree) try adapt(typedUnadapted(tree, pt), pt) catch { case ex: CyclicReference => errorTree(tree, cyclicErrorMsg(ex)) case ex: FatalTypeError => errorTree(tree, ex.getMessage) } } def typedTrees(trees: List[untpd.Tree])(implicit ctx: Context): List[Tree] = trees mapconserve (typed(_)) def typedStats(stats: List[untpd.Tree], exprOwner: Symbol)(implicit ctx: Context): List[tpd.Tree] = { val buf = new mutable.ListBuffer[Tree] @tailrec def traverse(stats: List[untpd.Tree])(implicit ctx: Context): List[Tree] = stats match { case (imp: untpd.Import) :: rest => val imp1 = typed(imp) buf += imp1 traverse(rest)(importContext(imp1.symbol, imp.selectors)) case (mdef: untpd.DefTree) :: rest => mdef.removeAttachment(ExpandedTree) match { case Some(xtree) => traverse(xtree :: rest) case none => buf += typed(mdef) traverse(rest) } case Thicket(stats) :: rest => traverse(stats ++ rest) case stat :: rest => val nestedCtx = if (exprOwner == ctx.owner) ctx else ctx.fresh.withOwner(exprOwner) buf += typed(stat)(nestedCtx) traverse(rest) case nil => buf.toList } traverse(stats) } def typedExpr(tree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree = typed(tree, pt)(ctx retractMode Mode.PatternOrType) def typedType(tree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree = // todo: retract mode between Type and Pattern? typed(tree, pt)(ctx addMode Mode.Type) def typedPattern(tree: untpd.Tree, pt: Type = WildcardType)(implicit ctx: Context): Tree = typed(tree, pt)(ctx addMode Mode.Pattern) def tryEither[T](op: Context => T)(fallBack: (T, TyperState) => T)(implicit ctx: Context) = { val nestedCtx = ctx.fresh.withNewTyperState val result = op(nestedCtx) if (nestedCtx.reporter.hasErrors) fallBack(result, nestedCtx.typerState) else { nestedCtx.typerState.commit() result } } def tryInsertApply(tree: Tree, pt: Type)(fallBack: (Tree, TyperState) => Tree)(implicit ctx: Context): Tree = tryEither { implicit ctx => val sel = typedSelect(untpd.Select(untpd.TypedSplice(tree), nme.apply), pt) if (sel.tpe.isError) sel else adapt(sel, pt) } { fallBack } def adapt(tree: Tree, pt: Type)(implicit ctx: Context) = /*>|>*/ track("adapt") /*<|<*/ { /*>|>*/ ctx.traceIndented(i"adapting $tree of type ${tree.tpe} to $pt", typr, show = true) /*<|<*/ { interpolateUndetVars(tree) tree overwriteType tree.tpe.simplified adaptInterpolated(tree, pt) } } /** (-1) For expressions with annotated types, let AnnotationCheckers decide what to do * (0) Convert expressions with constant types to literals (unless in interactive/scaladoc mode) */ /** Perform the following adaptations of expression, pattern or type `tree` wrt to * given prototype `pt`: * (1) Resolve overloading * (2) Apply parameterless functions * (3) Apply polymorphic types to fresh instances of their type parameters and * store these instances in context.undetparams, * unless followed by explicit type application. * (4) Do the following to unapplied methods used as values: * (4.1) If the method has only implicit parameters pass implicit arguments * (4.2) otherwise, if `pt` is a function type and method is not a constructor, * convert to function by eta-expansion, * (4.3) otherwise, if the method is nullary with a result type compatible to `pt` * and it is not a constructor, apply it to () * otherwise issue an error * (5) Convert constructors in a pattern as follows: * (5.1) If constructor refers to a case class factory, set tree's type to the unique * instance of its primary constructor that is a subtype of the expected type. * (5.2) If constructor refers to an extractor, convert to application of * unapply or unapplySeq method. * * (6) Convert all other types to TypeTree nodes. * (7) When in TYPEmode but not FUNmode or HKmode, check that types are fully parameterized * (7.1) In HKmode, higher-kinded types are allowed, but they must have the expected kind-arity * (8) When in both EXPRmode and FUNmode, add apply method calls to values of object type. * (9) If there are undetermined type variables and not POLYmode, infer expression instance * Then, if tree's type is not a subtype of expected type, try the following adaptations: * (10) If the expected type is Byte, Short or Char, and the expression * is an integer fitting in the range of that type, convert it to that type. * (11) Widen numeric literals to their expected type, if necessary * (12) When in mode EXPRmode, convert E to { E; () } if expected type is scala.Unit. * (13) When in mode EXPRmode, apply AnnotationChecker conversion if expected type is annotated. * (14) When in mode EXPRmode, apply a view * If all this fails, error */ def adaptInterpolated(tree: Tree, pt: Type)(implicit ctx: Context): Tree = { assert(pt.exists) def methodStr = err.refStr(methPart(tree).tpe) def adaptOverloaded(ref: TermRef) = { val altDenots = ref.denot.alternatives typr.println(i"adapt overloaded $ref with alternatives ${altDenots map (_.info)}%, %") val alts = altDenots map (alt => TermRef.withSig(ref.prefix, ref.name, alt.info.signature, alt)) def expectedStr = err.expectedTypeStr(pt) resolveOverloaded(alts, pt) match { case alt :: Nil => adapt(tree.withType(alt), pt) case Nil => def noMatches = errorTree(tree, i"""none of the ${err.overloadedAltsStr(altDenots)} |match $expectedStr""".stripMargin) def hasEmptyParams(denot: SingleDenotation) = denot.info.paramTypess == ListOfNil pt match { case pt: FunProto => tryInsertApply(tree, pt)((_, _) => noMatches) case _ => if (altDenots exists (_.info.paramTypess == ListOfNil)) typed(untpd.Apply(untpd.TypedSplice(tree), Nil), pt) else noMatches } case alts => val remainingDenots = alts map (_.denot.asInstanceOf[SingleDenotation]) def all = if (remainingDenots.length == 2) "both" else "all" errorTree(tree, i"""Ambiguous overload. The ${err.overloadedAltsStr(remainingDenots)} |$all match $expectedStr""".stripMargin) } } def adaptToArgs(wtp: Type, pt: FunProto) = wtp match { case _: MethodType | _: PolyType => tree case _ => tryInsertApply(tree, pt) { val more = tree match { case Apply(_, _) => " more" case _ => "" } (_, _) => errorTree(tree, i"$methodStr does not take$more parameters") } } def adaptNoArgs(wtp: Type): Tree = wtp match { case wtp: ExprType => adaptInterpolated(tree.withType(wtp.resultType), pt) case wtp: ImplicitMethodType if constrainResult(wtp, pt) => def implicitArgError(msg: => String): Tree = { ctx.error(msg, tree.pos.endPos) EmptyTree } val args = (wtp.paramNames, wtp.paramTypes).zipped map { (pname, formal) => def where = i"parameter $pname of $methodStr" inferImplicit(formal, EmptyTree, tree.pos.endPos) match { case SearchSuccess(arg, _, _) => arg case ambi: AmbiguousImplicits => implicitArgError(s"ambiguous implicits: ${ambi.explanation} of $where") case failure: SearchFailure => implicitArgError(i"no implicit argument of type $formal found for $where" + failure.postscript) } } adapt(tpd.Apply(tree, args), pt) case wtp: MethodType if !pt.isInstanceOf[SingletonType] => val arity = if (defn.isFunctionType(pt)) defn.functionArity(pt) else if (pt eq AnyFunctionProto) wtp.paramTypes.length else -1 if (arity >= 0 && !tree.symbol.isConstructor) typed(etaExpand(tree, wtp.paramNames take arity), pt) else if (wtp.paramTypes.isEmpty) adaptInterpolated(tpd.Apply(tree, Nil), pt) else errorTree(tree, i"""missing arguments for $methodStr |follow this method with `_' if you want to treat it as a partially applied function""".stripMargin) case _ => if (tree.tpe <:< pt) tree else if (ctx.mode is Mode.Pattern) tree // no subtype check for pattern else { typr.println(s"adapt to subtype ${tree.tpe.show} !<:< ${pt.show}") //typr.println(TypeComparer.explained(implicit ctx => tree.tpe <:< pt)) adaptToSubType(wtp) } } def adaptToSubType(wtp: Type): Tree = { // try converting a constant to the target type val folded = ConstFold(tree, pt) if (folded ne tree) return folded // drop type if prototype is Unit if (pt isRef defn.UnitClass) return tpd.Block(tree :: Nil, Literal(Constant(()))) // convert function literal to SAM closure tree match { case Closure(Nil, id @ Ident(nme.ANON_FUN), _) if defn.isFunctionType(wtp) && !defn.isFunctionType(pt) => pt match { case SAMType(meth) if wtp <:< meth.info.toFunctionType => // was ... && isFullyDefined(pt, ForceDegree.noBottom) // but this prevents case blocks from implementing polymorphic partial functions, // since we do not know the result parameter a priori. Have to wait until the // body is typechecked. return cpy.Closure(tree, Nil, id, TypeTree(pt)).withType(pt) case _ => } case _ => } // try an implicit conversion inferView(tree, pt) match { case SearchSuccess(inferred, _, _) => adapt(inferred, pt) case failure: SearchFailure => if (pt.isInstanceOf[ProtoType]) tree else err.typeMismatch(tree, pt, failure) } } tree match { case _: MemberDef | _: PackageDef | _: Import | _: WithoutTypeOrPos[_] => tree case _ => tree.tpe.widen match { case ErrorType => tree case ref: TermRef => adaptOverloaded(ref) case poly: PolyType => if (pt.isInstanceOf[PolyProto]) tree else { val (_, tvars) = constrained(poly, tree) adaptInterpolated(tree appliedToTypes tvars, pt) } case wtp => pt match { case pt: FunProto => adaptToArgs(wtp, pt) case pt: PolyProto => tryInsertApply(tree, pt) { (_, _) => tree // error will be reported in typedTypeApply } case _ => if (ctx.mode is Mode.Type) if (tree.tpe <:< pt) tree else err.typeMismatch(tree, pt) else adaptNoArgs(wtp) } } } } }