aboutsummaryrefslogtreecommitdiff
path: root/compiler/src/dotty/tools/dotc/typer/ProtoTypes.scala
blob: 398a7a17e69e6190ea295e607cfd2ced9c252352 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
package dotty.tools
package dotc
package typer

import core._
import ast._
import Contexts._, Types._, Flags._, Denotations._, Names._, StdNames._, NameOps._, Symbols._
import NameKinds.DepParamName
import Trees._
import Constants._
import Scopes._
import annotation.unchecked
import util.Positions._
import util.{Stats, SimpleMap}
import util.common._
import Decorators._
import Uniques._
import ErrorReporting.errorType
import config.Printers.typr
import collection.mutable

object ProtoTypes {

  import tpd._

  /** A trait defining an `isCompatible` method. */
  trait Compatibility {

    /** Is there an implicit conversion from `tp` to `pt`? */
    def viewExists(tp: Type, pt: Type)(implicit ctx: Context): Boolean

    /** A type `tp` is compatible with a type `pt` if one of the following holds:
     *    1. `tp` is a subtype of `pt`
     *    2. `pt` is by name parameter type, and `tp` is compatible with its underlying type
     *    3. there is an implicit conversion from `tp` to `pt`.
     *    4. `tp` is a numeric subtype of `pt` (this case applies even if implicit conversions are disabled)
     */
    def isCompatible(tp: Type, pt: Type)(implicit ctx: Context): Boolean =
      (tp.widenExpr relaxed_<:< pt.widenExpr) || viewExists(tp, pt)

    /** Test compatibility after normalization in a fresh typerstate. */
    def normalizedCompatible(tp: Type, pt: Type)(implicit ctx: Context) = {
      val nestedCtx = ctx.fresh.setExploreTyperState
      val normTp = normalize(tp, pt)(nestedCtx)
      isCompatible(normTp, pt)(nestedCtx) ||
        pt.isRef(defn.UnitClass) && normTp.isParameterless
    }

    private def disregardProto(pt: Type)(implicit ctx: Context): Boolean = pt.dealias match {
      case _: OrType => true
      case pt => pt.isRef(defn.UnitClass)
    }

    /** Check that the result type of the current method
     *  fits the given expected result type.
     */
    def constrainResult(mt: Type, pt: Type)(implicit ctx: Context): Boolean = pt match {
      case pt: FunProto =>
        mt match {
          case mt: MethodType =>
            constrainResult(resultTypeApprox(mt), pt.resultType)
          case _ =>
            true
        }
      case _: ValueTypeOrProto if !disregardProto(pt) =>
        isCompatible(normalize(mt, pt), pt)
      case pt: WildcardType if pt.optBounds.exists =>
        isCompatible(normalize(mt, pt), pt)
      case _ =>
        true
    }
  }

  object NoViewsAllowed extends Compatibility {
    override def viewExists(tp: Type, pt: Type)(implicit ctx: Context): Boolean = false
  }

  /** A trait for prototypes that match all types */
  trait MatchAlways extends ProtoType {
    def isMatchedBy(tp1: Type)(implicit ctx: Context) = true
    def map(tm: TypeMap)(implicit ctx: Context): ProtoType = this
    def fold[T](x: T, ta: TypeAccumulator[T])(implicit ctx: Context): T = x
  }

  /** A class marking ignored prototypes that can be revealed by `deepenProto` */
  case class IgnoredProto(ignored: Type) extends UncachedGroundType with MatchAlways {
    override def deepenProto(implicit ctx: Context): Type = ignored
  }

  /** A prototype for expressions [] that are part of a selection operation:
   *
   *       [ ].name: proto
   */
  abstract case class SelectionProto(name: Name, memberProto: Type, compat: Compatibility, privateOK: Boolean)
  extends CachedProxyType with ProtoType with ValueTypeOrProto {

    override def isMatchedBy(tp1: Type)(implicit ctx: Context) = {
      name == nme.WILDCARD || {
        val mbr = if (privateOK) tp1.member(name) else tp1.nonPrivateMember(name)
        def qualifies(m: SingleDenotation) =
          memberProto.isRef(defn.UnitClass) ||
          compat.normalizedCompatible(m.info, memberProto)
        mbr match { // hasAltWith inlined for performance
          case mbr: SingleDenotation => mbr.exists && qualifies(mbr)
          case _ => mbr hasAltWith qualifies
        }
      }
    }

    def underlying(implicit ctx: Context) = WildcardType

    def derivedSelectionProto(name: Name, memberProto: Type, compat: Compatibility)(implicit ctx: Context) =
      if ((name eq this.name) && (memberProto eq this.memberProto) && (compat eq this.compat)) this
      else SelectionProto(name, memberProto, compat, privateOK)

    override def equals(that: Any): Boolean = that match {
      case that: SelectionProto =>
        (name eq that.name) && (memberProto == that.memberProto) && (compat eq that.compat) && (privateOK == that.privateOK)
      case _ =>
        false
    }

    def map(tm: TypeMap)(implicit ctx: Context) = derivedSelectionProto(name, tm(memberProto), compat)
    def fold[T](x: T, ta: TypeAccumulator[T])(implicit ctx: Context) = ta(x, memberProto)

    override def deepenProto(implicit ctx: Context) = derivedSelectionProto(name, memberProto.deepenProto, compat)

    override def computeHash = {
      val delta = (if (compat eq NoViewsAllowed) 1 else 0) | (if (privateOK) 2 else 0)
      addDelta(doHash(name, memberProto), delta)
    }
  }

  class CachedSelectionProto(name: Name, memberProto: Type, compat: Compatibility, privateOK: Boolean)
  extends SelectionProto(name, memberProto, compat, privateOK)

  object SelectionProto {
    def apply(name: Name, memberProto: Type, compat: Compatibility, privateOK: Boolean)(implicit ctx: Context): SelectionProto = {
      val selproto = new CachedSelectionProto(name, memberProto, compat, privateOK)
      if (compat eq NoViewsAllowed) unique(selproto) else selproto
    }
  }

  /** Create a selection proto-type, but only one level deep;
   *  treat constructors specially
   */
  def selectionProto(name: Name, tp: Type, typer: Typer)(implicit ctx: Context) =
    if (name.isConstructorName) WildcardType
    else tp match {
      case tp: UnapplyFunProto => new UnapplySelectionProto(name)
      case tp => SelectionProto(name, IgnoredProto(tp), typer, privateOK = true)
    }

  /** A prototype for expressions [] that are in some unspecified selection operation
   *
   *    [].?: ?
   *
   *  Used to indicate that expression is in a context where the only valid
   *  operation is further selection. In this case, the expression need not be a value.
   *  @see checkValue
   */
  @sharable object AnySelectionProto extends SelectionProto(nme.WILDCARD, WildcardType, NoViewsAllowed, true)

  /** A prototype for selections in pattern constructors */
  class UnapplySelectionProto(name: Name) extends SelectionProto(name, WildcardType, NoViewsAllowed, true)

  trait ApplyingProto extends ProtoType

  /** A prototype for expressions that appear in function position
   *
   *  [](args): resultType
   */
  case class FunProto(args: List[untpd.Tree], resType: Type, typer: Typer)(implicit ctx: Context)
  extends UncachedGroundType with ApplyingProto {
    private var myTypedArgs: List[Tree] = Nil

    override def resultType(implicit ctx: Context) = resType

    /** A map in which typed arguments can be stored to be later integrated in `typedArgs`. */
    private var myTypedArg: SimpleMap[untpd.Tree, Tree] = SimpleMap.Empty

    /** A map recording the typer states in which arguments stored in myTypedArg were typed */
    private var evalState: SimpleMap[untpd.Tree, TyperState] = SimpleMap.Empty

    def isMatchedBy(tp: Type)(implicit ctx: Context) =
      typer.isApplicable(tp, Nil, typedArgs, resultType)

    def derivedFunProto(args: List[untpd.Tree] = this.args, resultType: Type, typer: Typer = this.typer) =
      if ((args eq this.args) && (resultType eq this.resultType) && (typer eq this.typer)) this
      else new FunProto(args, resultType, typer)

    override def notApplied = WildcardType

    /** Forget the types of any arguments that have been typed producing a constraint in a
     *  typer state that is not yet committed into the one of the current context `ctx`.
     *  This is necessary to avoid "orphan" TypeParamRefs that are referred to from
     *  type variables in the typed arguments, but that are not registered in the
     *  current constraint. A test case is pos/t1756.scala.
     *  @return True if all arguments have types (in particular, no types were forgotten).
     */
    def allArgTypesAreCurrent()(implicit ctx: Context): Boolean = {
      evalState foreachBinding { (arg, tstate) =>
        if (tstate.uncommittedAncestor.constraint ne ctx.typerState.constraint) {
          typr.println(i"need to invalidate $arg / ${myTypedArg(arg)}, ${tstate.constraint}, current = ${ctx.typerState.constraint}")
          myTypedArg = myTypedArg.remove(arg)
          evalState = evalState.remove(arg)
        }
      }
      myTypedArg.size == args.length
    }

    private def cacheTypedArg(arg: untpd.Tree, typerFn: untpd.Tree => Tree)(implicit ctx: Context): Tree = {
      var targ = myTypedArg(arg)
      if (targ == null) {
        targ = typerFn(arg)
        if (!ctx.reporter.hasPending) {
          myTypedArg = myTypedArg.updated(arg, targ)
          evalState = evalState.updated(arg, ctx.typerState)
        }
      }
      targ
    }

    /** The typed arguments. This takes any arguments already typed using
     *  `typedArg` into account.
     */
    def typedArgs: List[Tree] = {
      if (myTypedArgs.size != args.length)
        myTypedArgs = args.mapconserve(cacheTypedArg(_, typer.typed(_)))
      myTypedArgs
    }

    /** Type single argument and remember the unadapted result in `myTypedArg`.
     *  used to avoid repeated typings of trees when backtracking.
     */
    def typedArg(arg: untpd.Tree, formal: Type)(implicit ctx: Context): Tree = {
      val targ = cacheTypedArg(arg, typer.typedUnadapted(_, formal))
      typer.adapt(targ, formal, arg)
    }

    /** The type of the argument `arg`.
     *  @pre `arg` has been typed before
     */
    def typeOfArg(arg: untpd.Tree)(implicit ctx: Context): Type =
      myTypedArg(arg).tpe

    private var myTupled: Type = NoType

    /** The same proto-type but with all arguments combined in a single tuple */
    def tupled: FunProto = myTupled match {
      case pt: FunProto =>
        pt
      case _ =>
        myTupled = new FunProto(untpd.Tuple(args) :: Nil, resultType, typer)
        tupled
    }

    /** Somebody called the `tupled` method of this prototype */
    def isTupled: Boolean = myTupled.isInstanceOf[FunProto]

    /** If true, the application of this prototype was canceled. */
    private var toDrop: Boolean = false

    /** Cancel the application of this prototype. This can happen for a nullary
     *  application `f()` if `f` refers to a symbol that exists both in parameterless
     *  form `def f` and nullary method form `def f()`. A common example for such
     *  a method is `toString`. If in that case the type in the denotation is
     *  parameterless, we compensate by dropping the application.
     */
    def markAsDropped() = {
      assert(args.isEmpty)
      toDrop = true
    }

    def isDropped: Boolean = toDrop

    override def toString = s"FunProto(${args mkString ","} => $resultType)"

    def map(tm: TypeMap)(implicit ctx: Context): FunProto =
      derivedFunProto(args, tm(resultType), typer)

    def fold[T](x: T, ta: TypeAccumulator[T])(implicit ctx: Context): T =
      ta(ta.foldOver(x, typedArgs.tpes), resultType)

    override def deepenProto(implicit ctx: Context) = derivedFunProto(args, resultType.deepenProto, typer)
  }


  /** A prototype for expressions that appear in function position
   *
   *  [](args): resultType, where args are known to be typed
   */
  class FunProtoTyped(args: List[tpd.Tree], resultType: Type, typer: Typer)(implicit ctx: Context) extends FunProto(args, resultType, typer)(ctx) {
    override def typedArgs = args
  }

  /** A prototype for implicitly inferred views:
   *
   *    []: argType => resultType
   */
  abstract case class ViewProto(argType: Type, resType: Type)
  extends CachedGroundType with ApplyingProto {

    override def resultType(implicit ctx: Context) = resType

    def isMatchedBy(tp: Type)(implicit ctx: Context): Boolean =
      ctx.typer.isApplicable(tp, argType :: Nil, resultType)

    def derivedViewProto(argType: Type, resultType: Type)(implicit ctx: Context) =
      if ((argType eq this.argType) && (resultType eq this.resultType)) this
      else ViewProto(argType, resultType)

    def map(tm: TypeMap)(implicit ctx: Context): ViewProto = derivedViewProto(tm(argType), tm(resultType))

    def fold[T](x: T, ta: TypeAccumulator[T])(implicit ctx: Context): T =
      ta(ta(x, argType), resultType)

    override def deepenProto(implicit ctx: Context) = derivedViewProto(argType, resultType.deepenProto)
  }

  class CachedViewProto(argType: Type, resultType: Type) extends ViewProto(argType, resultType) {
    override def computeHash = doHash(argType, resultType)
  }

  object ViewProto {
    def apply(argType: Type, resultType: Type)(implicit ctx: Context) =
      unique(new CachedViewProto(argType, resultType))
  }

  class UnapplyFunProto(argType: Type, typer: Typer)(implicit ctx: Context) extends FunProto(
    untpd.TypedSplice(dummyTreeOfType(argType))(ctx) :: Nil, WildcardType, typer)

  /** A prototype for expressions [] that are type-parameterized:
   *
   *    [] [targs] resultType
   */
  case class PolyProto(targs: List[Type], resType: Type) extends UncachedGroundType with ProtoType {

    override def resultType(implicit ctx: Context) = resType

    override def isMatchedBy(tp: Type)(implicit ctx: Context) = {
      def isInstantiatable(tp: Type) = tp.widen match {
        case tp: PolyType => tp.paramNames.length == targs.length
        case _ => false
      }
      isInstantiatable(tp) || tp.member(nme.apply).hasAltWith(d => isInstantiatable(d.info))
    }

    def derivedPolyProto(targs: List[Type], resultType: Type) =
      if ((targs eq this.targs) && (resType eq this.resType)) this
      else PolyProto(targs, resType)

    override def notApplied = WildcardType

    def map(tm: TypeMap)(implicit ctx: Context): PolyProto =
      derivedPolyProto(targs mapConserve tm, tm(resultType))

    def fold[T](x: T, ta: TypeAccumulator[T])(implicit ctx: Context): T =
      ta(ta.foldOver(x, targs), resultType)

    override def deepenProto(implicit ctx: Context) = derivedPolyProto(targs, resultType.deepenProto)
  }

  /** A prototype for expressions [] that are known to be functions:
   *
   *    [] _
   */
  @sharable object AnyFunctionProto extends UncachedGroundType with MatchAlways

  /** A prototype for type constructors that are followed by a type application */
  @sharable object AnyTypeConstructorProto extends UncachedGroundType with MatchAlways

  /** Add all parameters of given type lambda `tl` to the constraint's domain.
   *  If the constraint contains already some of these parameters in its domain,
   *  make a copy of the type lambda and add the copy's type parameters instead.
   *  Return either the original type lambda, or the copy, if one was made.
   *  Also, if `owningTree` is non-empty, add a type variable for each parameter.
   *  @return  The added type lambda, and the list of created type variables.
   */
  def constrained(tl: TypeLambda, owningTree: untpd.Tree)(implicit ctx: Context): (TypeLambda, List[TypeTree]) = {
    val state = ctx.typerState
    assert(!(ctx.typerState.isCommittable && owningTree.isEmpty),
      s"inconsistent: no typevars were added to committable constraint ${state.constraint}")

    def newTypeVars(tl: TypeLambda): List[TypeTree] =
      for (n <- (0 until tl.paramNames.length).toList)
      yield {
        val tt = new TypeTree().withPos(owningTree.pos)
        tt.withType(new TypeVar(TypeParamRef(tl, n), state, tt, ctx.owner))
      }

    val added =
      if (state.constraint contains tl) tl.newLikeThis(tl.paramNames, tl.paramInfos, tl.resultType)
      else tl
    val tvars = if (owningTree.isEmpty) Nil else newTypeVars(added)
    ctx.typeComparer.addToConstraint(added, tvars.tpes.asInstanceOf[List[TypeVar]])
    (added, tvars)
  }

  /**  Same as `constrained(tl, EmptyTree)`, but returns just the created type lambda */
  def constrained(tl: TypeLambda)(implicit ctx: Context): TypeLambda = constrained(tl, EmptyTree)._1

  /** Create a new TypeParamRef that represents a dependent method parameter singleton */
  def newDepTypeParamRef(tp: Type)(implicit ctx: Context): TypeParamRef = {
    val poly = PolyType(DepParamName.fresh().toTypeName :: Nil)(
        pt => TypeBounds.upper(AndType(tp, defn.SingletonType)) :: Nil,
        pt => defn.AnyType)
    ctx.typeComparer.addToConstraint(poly, Nil)
    TypeParamRef(poly, 0)
  }

  /** The result type of `mt`, where all references to parameters of `mt` are
   *  replaced by either wildcards (if typevarsMissContext) or TypeParamRefs.
   */
  def resultTypeApprox(mt: MethodType)(implicit ctx: Context): Type =
    if (mt.isDependent) {
      def replacement(tp: Type) =
        if (ctx.mode.is(Mode.TypevarsMissContext)) WildcardType else newDepTypeParamRef(tp)
      mt.resultType.substParams(mt, mt.paramInfos.map(replacement))
    }
    else mt.resultType

  /** The normalized form of a type
   *   - unwraps polymorphic types, tracking their parameters in the current constraint
   *   - skips implicit parameters; if result type depends on implicit parameter,
   *     replace with Wildcard.
   *   - converts non-dependent method types to the corresponding function types
   *   - dereferences parameterless method types
   *   - dereferences nullary method types provided the corresponding function type
   *     is not a subtype of the expected type.
   * Note: We need to take account of the possibility of inserting a () argument list in normalization. Otherwise, a type with a
   *     def toString(): String
   * member would not count as a valid solution for ?{toString: String}. This would then lead to an implicit
   * insertion, with a nice explosion of inference search because of course every implicit result has some sort
   * of toString method. The problem is solved by dereferencing nullary method types if the corresponding
   * function type is not compatible with the prototype.
   */
  def normalize(tp: Type, pt: Type)(implicit ctx: Context): Type = Stats.track("normalize") {
    tp.widenSingleton match {
      case poly: PolyType => normalize(constrained(poly).resultType, pt)
      case mt: MethodType =>
        if (mt.isImplicit) resultTypeApprox(mt)
        else if (mt.isDependent) tp
        else {
          val rt = normalize(mt.resultType, pt)
          pt match {
            case pt: IgnoredProto  => mt
            case pt: ApplyingProto => mt.derivedLambdaType(mt.paramNames, mt.paramInfos, rt)
            case _ =>
              val ft = defn.FunctionOf(mt.paramInfos, rt)
              if (mt.paramInfos.nonEmpty || ft <:< pt) ft else rt
          }
        }
      case et: ExprType => et.resultType
      case _ => tp
    }
  }

  /** Approximate occurrences of parameter types and uninstantiated typevars
   *  by wildcard types.
   */
  final def wildApprox(tp: Type, theMap: WildApproxMap, seen: Set[TypeParamRef])(implicit ctx: Context): Type = tp match {
    case tp: NamedType => // default case, inlined for speed
      if (tp.symbol.isStatic) tp
      else tp.derivedSelect(wildApprox(tp.prefix, theMap, seen))
    case tp: RefinedType => // default case, inlined for speed
      tp.derivedRefinedType(
          wildApprox(tp.parent, theMap, seen),
          tp.refinedName,
          wildApprox(tp.refinedInfo, theMap, seen))
    case tp: TypeAlias => // default case, inlined for speed
      tp.derivedTypeAlias(wildApprox(tp.alias, theMap, seen))
    case tp @ TypeParamRef(poly, pnum) =>
      def wildApproxBounds(bounds: TypeBounds) =
        if (bounds.lo.isInstanceOf[NamedType] && bounds.hi.isInstanceOf[NamedType])
          WildcardType(wildApprox(bounds, theMap, seen).bounds)
        else if (seen.contains(tp)) WildcardType
        else WildcardType(wildApprox(bounds, theMap, seen + tp).bounds)
      def unconstrainedApprox = wildApproxBounds(poly.paramInfos(pnum))
      def approxPoly =
        if (ctx.mode.is(Mode.TypevarsMissContext)) unconstrainedApprox
        else
          ctx.typerState.constraint.entry(tp) match {
            case bounds: TypeBounds => wildApproxBounds(bounds)
            case NoType             => unconstrainedApprox
            case inst               => wildApprox(inst, theMap, seen)
          }
      approxPoly
    case TermParamRef(mt, pnum) =>
      WildcardType(TypeBounds.upper(wildApprox(mt.paramInfos(pnum), theMap, seen)))
    case tp: TypeVar =>
      wildApprox(tp.underlying, theMap, seen)
    case tp @ HKApply(tycon, args) =>
      wildApprox(tycon, theMap, seen) match {
        case _: WildcardType => WildcardType // this ensures we get a * type
        case tycon1 => tp.derivedAppliedType(tycon1, args.mapConserve(wildApprox(_, theMap, seen)))
      }
    case tp: AndType =>
      def approxAnd = {
        val tp1a = wildApprox(tp.tp1, theMap, seen)
        val tp2a = wildApprox(tp.tp2, theMap, seen)
        def wildBounds(tp: Type) =
          if (tp.isInstanceOf[WildcardType]) tp.bounds else TypeBounds.upper(tp)
        if (tp1a.isInstanceOf[WildcardType] || tp2a.isInstanceOf[WildcardType])
          WildcardType(wildBounds(tp1a) & wildBounds(tp2a))
        else
          tp.derivedAndType(tp1a, tp2a)
      }
      approxAnd
    case tp: OrType =>
      def approxOr = {
        val tp1a = wildApprox(tp.tp1, theMap, seen)
        val tp2a = wildApprox(tp.tp2, theMap, seen)
        if (tp1a.isInstanceOf[WildcardType] || tp2a.isInstanceOf[WildcardType])
          WildcardType(tp1a.bounds | tp2a.bounds)
        else
          tp.derivedOrType(tp1a, tp2a)
      }
      approxOr
    case tp: LazyRef =>
      WildcardType
    case tp: SelectionProto =>
      tp.derivedSelectionProto(tp.name, wildApprox(tp.memberProto, theMap, seen), NoViewsAllowed)
    case tp: ViewProto =>
      tp.derivedViewProto(
          wildApprox(tp.argType, theMap, seen),
          wildApprox(tp.resultType, theMap, seen))
    case  _: ThisType | _: BoundType | NoPrefix => // default case, inlined for speed
      tp
    case _ =>
      (if (theMap != null) theMap else new WildApproxMap(seen)).mapOver(tp)
  }

  @sharable object AssignProto extends UncachedGroundType with MatchAlways

  private[ProtoTypes] class WildApproxMap(val seen: Set[TypeParamRef])(implicit ctx: Context) extends TypeMap {
    def apply(tp: Type) = wildApprox(tp, this, seen)
  }

  /** Dummy tree to be used as an argument of a FunProto or ViewProto type */
  object dummyTreeOfType {
    def apply(tp: Type): Tree = untpd.Literal(Constant(null)) withTypeUnchecked tp
    def unapply(tree: untpd.Tree): Option[Type] = tree match {
      case Literal(Constant(null)) => Some(tree.typeOpt)
      case _ => None
    }
  }
}