/************************************************************************************************ * arch/arm/src/kinetis/kinetis_vectors.S * arch/arm/src/chip/kinetis_vectors.S * * Copyright (C) 2011, 2013-2014 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ************************************************************************************************/ /************************************************************************************************ * Included Files ************************************************************************************************/ #include #include #include "exc_return.h" /************************************************************************************************ * Preprocessor Definitions ************************************************************************************************/ /* Configuration ********************************************************************************/ #ifdef CONFIG_ARCH_HIPRI_INTERRUPT /* In kernel mode without an interrupt stack, this interrupt handler will set the MSP to the * stack pointer of the interrupted thread. If the interrupted thread was a privileged * thread, that will be the MSP otherwise it will be the PSP. If the PSP is used, then the * value of the MSP will be invalid when the interrupt handler returns because it will be a * pointer to an old position in the unprivileged stack. Then when the high priority * interrupt occurs and uses this stale MSP, there will most likely be a system failure. * * If the interrupt stack is selected, on the other hand, then the interrupt handler will * always set the the MSP to the interrupt stack. So when the high priority interrupt occurs, * it will either use the MSP of the last privileged thread to run or, in the case of the * nested interrupt, the interrupt stack if no privileged task has run. */ # if defined(CONFIG_BUILD_PROTECTED) && CONFIG_ARCH_INTERRUPTSTACK < 4 # error Interrupt stack must be used with high priority interrupts in kernel mode # endif /* Use the the BASEPRI to control interrupts is required if nested, high * priority interrupts are supported. */ # ifndef CONFIG_ARMV7M_USEBASEPRI # error CONFIG_ARMV7M_USEBASEPRI must be used with CONFIG_ARCH_HIPRI_INTERRUPT # endif #endif /* Memory Map ***********************************************************************************/ /* * 0x0000:0000 - Beginning of FLASH. Address of vectors * 0x1800:0000 - Start of CPU SRAM and start of .data (_sdata) * - End of .data (_edata) and start of .bss (_sbss) * - End of .bss (_ebss) and bottom of idle stack * - _ebss + CONFIG_IDLETHREAD_STACKSIZE = end of idle stack, start of heap. NOTE * that the ARM uses a decrement before store stack so that the correct initial * value is the end of the stack + 4; * - Heap ends at the configured end of SRAM. */ #define IDLE_STACK (_ebss+CONFIG_IDLETHREAD_STACKSIZE-4) #define HEAP_BASE (_ebss+CONFIG_IDLETHREAD_STACKSIZE) /************************************************************************************************ * Global Symbols ************************************************************************************************/ .syntax unified .thumb .file "kinetis_vectors.S" /* Check if common ARMv7 interrupt vectoring is used (see arch/arm/src/armv7-m/up_vectors.S) */ #ifndef CONFIG_ARMV7M_CMNVECTOR .globl __start /************************************************************************************************ * Macros ************************************************************************************************/ /* On entry into an IRQ, the hardware automatically saves the xPSR, PC, LR, R12, R0-R3 * registers on the stack, then branches to an instantantiation of the following * macro. This macro simply loads the IRQ number into R0, then jumps to the common * IRQ handling logic. */ .macro HANDLER, label, irqno .thumb_func \label: mov r0, #\irqno b exception_common .endm /************************************************************************************************ * Vectors ************************************************************************************************/ .section .vectors, "ax" .code 16 .align 2 .globl _vectors .type _vectors, function _vectors: /* Processor Exceptions *************************************************************************/ .word IDLE_STACK /* Vector 0: Reset stack pointer */ .word __start /* Vector 1: Reset vector */ .word kinetis_nmi /* Vector 2: Non-Maskable Interrupt (NMI) */ .word kinetis_hardfault /* Vector 3: Hard fault */ .word kinetis_mpu /* Vector 4: Memory management (MPU) */ .word kinetis_busfault /* Vector 5: Bus fault */ .word kinetis_usagefault /* Vector 6: Usage fault */ .word kinetis_reserved /* Vector 7: Reserved */ .word kinetis_reserved /* Vector 8: Reserved */ .word kinetis_reserved /* Vector 9: Reserved */ .word kinetis_reserved /* Vector 10: Reserved */ .word kinetis_svcall /* Vector 11: SVC call */ .word kinetis_dbgmonitor /* Vector 12: Debug monitor */ .word kinetis_reserved /* Vector 13: Reserved */ .word kinetis_pendsv /* Vector 14: Pendable system service request */ .word kinetis_systick /* Vector 15: System tick */ /* External Interrupts **************************************************************************/ /* K40 Family *********************************************************************************** * * The interrupt vectors for the following parts is defined in Freescale document * K40P144M100SF2RM */ #if defined(CONFIG_ARCH_CHIP_MK40X128VLQ100) || defined(CONFIG_ARCH_CHIP_MK40X128VMD100) || \ defined(CONFIG_ARCH_CHIP_MK40X256VLQ100) || defined(CONFIG_ARCH_CHIP_MK40X256VMD100) || \ defined(CONFIG_ARCH_CHIP_MK40N512VLQ100) || defined(CONFIG_ARCH_CHIP_MK40N512VMD100) .word kinetis_dmach0 /* Vector 16: DMA channel 0 transfer complete */ .word kinetis_dmach1 /* Vector 17: DMA channel 1 transfer complete */ .word kinetis_dmach2 /* Vector 18: DMA channel 2 transfer complete */ .word kinetis_dmach3 /* Vector 19: DMA channel 3 transfer complete */ .word kinetis_dmach4 /* Vector 20: DMA channel 4 transfer complete */ .word kinetis_dmach5 /* Vector 21: DMA channel 5 transfer complete */ .word kinetis_dmach6 /* Vector 22: DMA channel 6 transfer complete */ .word kinetis_dmach7 /* Vector 23: DMA channel 7 transfer complete */ .word kinetis_dmach8 /* Vector 24: DMA channel 8 transfer complete */ .word kinetis_dmach9 /* Vector 25: DMA channel 9 transfer complete */ .word kinetis_dmach10 /* Vector 26: DMA channel 10 transfer complete */ .word kinetis_dmach11 /* Vector 27: DMA channel 11 transfer complete */ .word kinetis_dmach12 /* Vector 28: DMA channel 12 transfer complete */ .word kinetis_dmach13 /* Vector 29: DMA channel 13 transfer complete */ .word kinetis_dmach14 /* Vector 30: DMA channel 14 transfer complete */ .word kinetis_dmach15 /* Vector 31: DMA channel 15 transfer complete */ .word kinetis_dmaerr /* Vector 32: DMA error interrupt channels 0-15 */ .word kinetis_mcm /* Vector 33: MCM Normal interrupt */ .word kinetis_flashcc /* Vector 34: Flash memory command complete */ .word kinetis_flashrc /* Vector 35: Flash memory read collision */ .word kinetis_smclvd /* Vector 36: Mode Controller low-voltage detect, low-voltage warning */ .word kinetis_llwu /* Vector 37: LLWU Normal Low Leakage Wakeup */ .word kinetis_wdog /* Vector 38: Watchdog */ .word kinetis_reserved /* Vector 39: Reserved */ .word kinetis_i2c0 /* Vector 40: I2C0 */ .word kinetis_i2c1 /* Vector 41: I2C1 */ .word kinetis_spi0 /* Vector 42: SPI0 all sources */ .word kinetis_spi1 /* Vector 43: SPI1 all sources */ .word kinetis_spi2 /* Vector 44: SPI2 all sources */ .word kinetis_can0mb /* Vector 45: CAN0 OR'ed Message buffer (0-15) */ .word kinetis_can0bo /* Vector 46: CAN0 Bus Off */ .word kinetis_can0err /* Vector 47: CAN0 Error */ .word kinetis_can0tw /* Vector 48: CAN0 Transmit Warning */ .word kinetis_can0rw /* Vector 49: CAN0 Receive Warning */ .word kinetis_can0wu /* Vector 50: CAN0 Wake UP */ .word kinetis_reserved /* Vector 51: Reserved */ .word kinetis_reserved /* Vector 52: Reserved */ .word kinetis_can1mb /* Vector 53: CAN1 OR'ed Message buffer (0-15) */ .word kinetis_can1bo /* Vector 54: CAN1 Bus Off */ .word kinetis_can1err /* Vector 55: CAN1 Error */ .word kinetis_can1tw /* Vector 56: CAN1 Transmit Warning */ .word kinetis_can1rw /* Vector 57: CAN1 Receive Warning */ .word kinetis_can1wu /* Vector 58: CAN1 Wake UP */ .word kinetis_reserved /* Vector 59: Reserved */ .word kinetis_reserved /* Vector 60: Reserved */ .word kinetis_uart0s /* Vector 61: UART0 status */ .word kinetis_uart0e /* Vector 62: UART0 error */ .word kinetis_uart1s /* Vector 63: UART1 status */ .word kinetis_uart1e /* Vector 64: UART1 error */ .word kinetis_uart2s /* Vector 65: UART2 status */ .word kinetis_uart2e /* Vector 66: UART2 error */ .word kinetis_uart3s /* Vector 67: UART3 status */ .word kinetis_uart3e /* Vector 68: UART3 error */ .word kinetis_uart4s /* Vector 69: UART4 status */ .word kinetis_uart4e /* Vector 70: UART4 error */ .word kinetis_uart5s /* Vector 71: UART5 status */ .word kinetis_uart5e /* Vector 72: UART5 error */ .word kinetis_adc0 /* Vector 73: ADC0 */ .word kinetis_adc1 /* Vector 74: ADC1 */ .word kinetis_cmp0 /* Vector 75: CMP0 */ .word kinetis_cmp1 /* Vector 76: CMP1 */ .word kinetis_cmp2 /* Vector 77: CMP2 */ .word kinetis_ftm0 /* Vector 78: FTM0 all sources */ .word kinetis_ftm1 /* Vector 79: FTM1 all sources */ .word kinetis_ftm2 /* Vector 80: FTM2 all sources */ .word kinetis_cmt /* Vector 81: CMT */ .word kinetis_rtc /* Vector 82: RTC alarm interrupt */ .word kinetis_reserved /* Vector 83: Reserved */ .word kinetis_pitch0 /* Vector 84: PIT channel 0 */ .word kinetis_pitch1 /* Vector 85: PIT channel 1 */ .word kinetis_pitch2 /* Vector 86: PIT channel 2 */ .word kinetis_pitch3 /* Vector 87: PIT channel 3 */ .word kinetis_pdb /* Vector 88: PDB */ .word kinetis_usbotg /* Vector 88: USB OTG */ .word kinetis_usbcd /* Vector 90: USB charger detect */ .word kinetis_reserved /* Vector 91: Reserved */ .word kinetis_reserved /* Vector 92: Reserved */ .word kinetis_reserved /* Vector 93: Reserved */ .word kinetis_reserved /* Vector 94: Reserved */ .word kinetis_i2s0 /* Vector 95: I2S0 */ .word kinetis_sdhc /* Vector 96: SDHC */ .word kinetis_dac0 /* Vector 97: DAC0 */ .word kinetis_dac1 /* Vector 98: DAC1 */ .word kinetis_tsi /* Vector 97: TSI all sources */ .word kinetis_mcg /* Vector 100: MCG */ .word kinetis_lpt /* Vector 101: Low power timer */ .word kinetis_slcd /* Vector 102: Segment LCD all sources */ .word kinetis_porta /* Vector 103: Pin detect port A */ .word kinetis_portb /* Vector 104: Pin detect port B */ .word kinetis_portc /* Vector 105: Pin detect port C */ .word kinetis_portd /* Vector 106: Pin detect port D */ .word kinetis_porte /* Vector 107: Pin detect port E */ .word kinetis_reserved /* Vector 108: Reserved */ .word kinetis_reserved /* Vector 109: Reserved */ .word kinetis_swi /* Vector 110: Software interrupt */ /* K60 Family *********************************************************************************** * * The memory map for the following parts is defined in Freescale document * K60P144M100SF2RM */ #elif defined(CONFIG_ARCH_CHIP_MK60N256VLQ100) || defined(CONFIG_ARCH_CHIP_MK60X256VLQ100) || \ defined(CONFIG_ARCH_CHIP_MK60N512VLQ100) || defined(CONFIG_ARCH_CHIP_MK60N256VMD100) || \ defined(CONFIG_ARCH_CHIP_MK60X256VMD100) || defined(CONFIG_ARCH_CHIP_MK60N512VMD100) .word kinetis_dmach0 /* Vector 16: DMA channel 0 transfer complete */ .word kinetis_dmach1 /* Vector 17: DMA channel 1 transfer complete */ .word kinetis_dmach2 /* Vector 18: DMA channel 2 transfer complete */ .word kinetis_dmach3 /* Vector 19: DMA channel 3 transfer complete */ .word kinetis_dmach4 /* Vector 20: DMA channel 4 transfer complete */ .word kinetis_dmach5 /* Vector 21: DMA channel 5 transfer complete */ .word kinetis_dmach6 /* Vector 22: DMA channel 6 transfer complete */ .word kinetis_dmach7 /* Vector 23: DMA channel 7 transfer complete */ .word kinetis_dmach8 /* Vector 24: DMA channel 8 transfer complete */ .word kinetis_dmach9 /* Vector 25: DMA channel 9 transfer complete */ .word kinetis_dmach10 /* Vector 26: DMA channel 10 transfer complete */ .word kinetis_dmach11 /* Vector 27: DMA channel 11 transfer complete */ .word kinetis_dmach12 /* Vector 28: DMA channel 12 transfer complete */ .word kinetis_dmach13 /* Vector 29: DMA channel 13 transfer complete */ .word kinetis_dmach14 /* Vector 30: DMA channel 14 transfer complete */ .word kinetis_dmach15 /* Vector 31: DMA channel 15 transfer complete */ .word kinetis_dmaerr /* Vector 32: DMA error interrupt channels 0-15 */ .word kinetis_mcm /* Vector 33: MCM Normal interrupt */ .word kinetis_flashcc /* Vector 34: Flash memory command complete */ .word kinetis_flashrc /* Vector 35: Flash memory read collision */ .word kinetis_smclvd /* Vector 36: Mode Controller low-voltage detect, low-voltage warning */ .word kinetis_llwu /* Vector 37: LLWU Normal Low Leakage Wakeup */ .word kinetis_wdog /* Vector 38: Watchdog */ .word kinetis_rngb /* Vector 39: Random number generator */ .word kinetis_i2c0 /* Vector 40: I2C0 */ .word kinetis_i2c1 /* Vector 41: I2C1 */ .word kinetis_spi0 /* Vector 42: SPI0 all sources */ .word kinetis_spi1 /* Vector 43: SPI1 all sources */ .word kinetis_spi2 /* Vector 44: SPI2 all sources */ .word kinetis_can0mb /* Vector 45: CAN0 OR'ed Message buffer (0-15) */ .word kinetis_can0bo /* Vector 46: CAN0 Bus Off */ .word kinetis_can0err /* Vector 47: CAN0 Error */ .word kinetis_can0tw /* Vector 48: CAN0 Transmit Warning */ .word kinetis_can0rw /* Vector 49: CAN0 Receive Warning */ .word kinetis_can0wu /* Vector 50: CAN0 Wake UP */ .word kinetis_reserved /* Vector 51: Reserved */ .word kinetis_reserved /* Vector 52: Reserved */ .word kinetis_can1mb /* Vector 53: CAN1 OR'ed Message buffer (0-15) */ .word kinetis_can1bo /* Vector 54: CAN1 Bus Off */ .word kinetis_can1err /* Vector 55: CAN1 Error */ .word kinetis_can1tw /* Vector 56: CAN1 Transmit Warning */ .word kinetis_can1rw /* Vector 57: CAN1 Receive Warning */ .word kinetis_can1wu /* Vector 58: CAN1 Wake UP */ .word kinetis_reserved /* Vector 59: Reserved */ .word kinetis_reserved /* Vector 60: Reserved */ .word kinetis_uart0s /* Vector 61: UART0 status */ .word kinetis_uart0e /* Vector 62: UART0 error */ .word kinetis_uart1s /* Vector 63: UART1 status */ .word kinetis_uart1e /* Vector 64: UART1 error */ .word kinetis_uart2s /* Vector 65: UART2 status */ .word kinetis_uart2e /* Vector 66: UART2 error */ .word kinetis_uart3s /* Vector 67: UART3 status */ .word kinetis_uart3e /* Vector 68: UART3 error */ .word kinetis_uart4s /* Vector 69: UART4 status */ .word kinetis_uart4e /* Vector 70: UART4 error */ .word kinetis_uart5s /* Vector 71: UART5 status */ .word kinetis_uart5e /* Vector 72: UART5 error */ .word kinetis_adc0 /* Vector 73: ADC0 */ .word kinetis_adc1 /* Vector 74: ADC1 */ .word kinetis_cmp0 /* Vector 75: CMP0 */ .word kinetis_cmp1 /* Vector 76: CMP1 */ .word kinetis_cmp2 /* Vector 77: CMP2 */ .word kinetis_ftm0 /* Vector 78: FTM0 all sources */ .word kinetis_ftm1 /* Vector 79: FTM1 all sources */ .word kinetis_ftm2 /* Vector 80: FTM2 all sources */ .word kinetis_cmt /* Vector 81: CMT */ .word kinetis_rtc /* Vector 82: RTC alarm interrupt */ .word kinetis_reserved /* Vector 83: Reserved */ .word kinetis_pitch0 /* Vector 84: PIT channel 0 */ .word kinetis_pitch1 /* Vector 85: PIT channel 1 */ .word kinetis_pitch2 /* Vector 86: PIT channel 2 */ .word kinetis_pitch3 /* Vector 87: PIT channel 3 */ .word kinetis_pdb /* Vector 88: PDB */ .word kinetis_usbotg /* Vector 88: USB OTG */ .word kinetis_usbcd /* Vector 90: USB charger detect */ .word kinetis_emactmr /* Vector 91: Ethernet MAC IEEE 1588 timer interrupt */ .word kinetis_emactx /* Vector 92: Ethernet MAC transmit interrupt */ .word kinetis_emacrx /* Vector 93: Ethernet MAC receive interrupt */ .word kinetis_emacmisc /* Vector 94: Ethernet MAC error and misc interrupt */ .word kinetis_i2s0 /* Vector 95: I2S0 */ .word kinetis_sdhc /* Vector 96: SDHC */ .word kinetis_dac0 /* Vector 97: DAC0 */ .word kinetis_dac1 /* Vector 98: DAC1 */ .word kinetis_tsi /* Vector 97: TSI all sources */ .word kinetis_mcg /* Vector 100: MCG */ .word kinetis_lpt /* Vector 101: Low power timer */ .word kinetis_reserved /* Vector 102: Reserved */ .word kinetis_porta /* Vector 103: Pin detect port A */ .word kinetis_portb /* Vector 104: Pin detect port B */ .word kinetis_portc /* Vector 105: Pin detect port C */ .word kinetis_portd /* Vector 106: Pin detect port D */ .word kinetis_porte /* Vector 107: Pin detect port E */ .word kinetis_reserved /* Vector 108: Reserved */ .word kinetis_reserved /* Vector 109: Reserved */ .word kinetis_reserved /* Vector 110: Reserved */ .word kinetis_reserved /* Vector 111: Reserved */ .word kinetis_reserved /* Vector 112: Reserved */ .word kinetis_reserved /* Vector 113: Reserved */ .word kinetis_reserved /* Vector 114: Reserved */ .word kinetis_reserved /* Vector 115: Reserved */ .word kinetis_reserved /* Vector 116: Reserved */ .word kinetis_reserved /* Vector 117: Reserved */ .word kinetis_reserved /* Vector 118: Reserved */ .word kinetis_reserved /* Vector 119: Reserved */ #else # error "No vectors for this Kinetis part" #endif /************************************************************************************************ * .text ************************************************************************************************/ .text .type handlers, function .thumb_func handlers: /* Processor Exceptions *************************************************************************/ HANDLER kinetis_reserved, KINETIS_IRQ_RESERVED /* Unexpected/reserved vector */ HANDLER kinetis_nmi, KINETIS_IRQ_NMI /* Vector 2: Non-Maskable Interrupt (NMI) */ HANDLER kinetis_hardfault, KINETIS_IRQ_HARDFAULT /* Vector 3: Hard fault */ HANDLER kinetis_mpu, KINETIS_IRQ_MEMFAULT /* Vector 4: Memory management (MPU) */ HANDLER kinetis_busfault, KINETIS_IRQ_BUSFAULT /* Vector 5: Bus fault */ HANDLER kinetis_usagefault, KINETIS_IRQ_USAGEFAULT /* Vector 6: Usage fault */ HANDLER kinetis_svcall, KINETIS_IRQ_SVCALL /* Vector 11: SVC call */ HANDLER kinetis_dbgmonitor, KINETIS_IRQ_DBGMONITOR /* Vector 12: Debug Monitor */ HANDLER kinetis_pendsv, KINETIS_IRQ_PENDSV /* Vector 14: Penable system service request */ HANDLER kinetis_systick, KINETIS_IRQ_SYSTICK /* Vector 15: System tick */ /* External Interrupts **************************************************************************/ /* K40 Family *********************************************************************************** * * The interrupt vectors for the following parts is defined in Freescale document * K40P144M100SF2RM */ #if defined(CONFIG_ARCH_CHIP_MK40X128VLQ100) || defined(CONFIG_ARCH_CHIP_MK40X128VMD100) || \ defined(CONFIG_ARCH_CHIP_MK40X256VLQ100) || defined(CONFIG_ARCH_CHIP_MK40X256VMD100) || \ defined(CONFIG_ARCH_CHIP_MK40N512VLQ100) || defined(CONFIG_ARCH_CHIP_MK40N512VMD100) HANDLER kinetis_dmach0, KINETIS_IRQ_DMACH0 /* Vector 16: DMA channel 0 transfer complete */ HANDLER kinetis_dmach1, KINETIS_IRQ_DMACH1 /* Vector 17: DMA channel 1 transfer complete */ HANDLER kinetis_dmach2, KINETIS_IRQ_DMACH2 /* Vector 18: DMA channel 2 transfer complete */ HANDLER kinetis_dmach3, KINETIS_IRQ_DMACH3 /* Vector 19: DMA channel 3 transfer complete */ HANDLER kinetis_dmach4, KINETIS_IRQ_DMACH4 /* Vector 20: DMA channel 4 transfer complete */ HANDLER kinetis_dmach5, KINETIS_IRQ_DMACH5 /* Vector 21: DMA channel 5 transfer complete */ HANDLER kinetis_dmach6, KINETIS_IRQ_DMACH6 /* Vector 22: DMA channel 6 transfer complete */ HANDLER kinetis_dmach7, KINETIS_IRQ_DMACH7 /* Vector 23: DMA channel 7 transfer complete */ HANDLER kinetis_dmach8, KINETIS_IRQ_DMACH8 /* Vector 24: DMA channel 8 transfer complete */ HANDLER kinetis_dmach9, KINETIS_IRQ_DMACH9 /* Vector 25: DMA channel 9 transfer complete */ HANDLER kinetis_dmach10, KINETIS_IRQ_DMACH10 /* Vector 26: DMA channel 10 transfer complete */ HANDLER kinetis_dmach11, KINETIS_IRQ_DMACH11 /* Vector 27: DMA channel 11 transfer complete */ HANDLER kinetis_dmach12, KINETIS_IRQ_DMACH12 /* Vector 28: DMA channel 12 transfer complete */ HANDLER kinetis_dmach13, KINETIS_IRQ_DMACH13 /* Vector 29: DMA channel 13 transfer complete */ HANDLER kinetis_dmach14, KINETIS_IRQ_DMACH14 /* Vector 30: DMA channel 14 transfer complete */ HANDLER kinetis_dmach15, KINETIS_IRQ_DMACH15 /* Vector 31: DMA channel 15 transfer complete */ HANDLER kinetis_dmaerr, KINETIS_IRQ_DMAERR /* Vector 32: DMA error interrupt channels 0-15 */ HANDLER kinetis_mcm, KINETIS_IRQ_MCM /* Vector 33: MCM Normal interrupt */ HANDLER kinetis_flashcc, KINETIS_IRQ_FLASHCC /* Vector 34: Flash memory command complete */ HANDLER kinetis_flashrc, KINETIS_IRQ_FLASHRC /* Vector 35: Flash memory read collision */ HANDLER kinetis_smclvd, KINETIS_IRQ_SMCLVD /* Vector 36: Mode Controller low-voltage detect, low-voltage warning */ HANDLER kinetis_llwu, KINETIS_IRQ_LLWU /* Vector 37: LLWU Normal Low Leakage Wakeup */ HANDLER kinetis_wdog, KINETIS_IRQ_WDOG /* Vector 38: Watchdog */ HANDLER kinetis_i2c0, KINETIS_IRQ_I2C0 /* Vector 40: I2C0 */ HANDLER kinetis_i2c1, KINETIS_IRQ_I2C1 /* Vector 41: I2C1 */ HANDLER kinetis_spi0, KINETIS_IRQ_SPI0 /* Vector 42: SPI0 all sources */ HANDLER kinetis_spi1, KINETIS_IRQ_SPI1 /* Vector 43: SPI1 all sources */ HANDLER kinetis_spi2, KINETIS_IRQ_SPI2 /* Vector 44: SPI2 all sources */ HANDLER kinetis_can0mb, KINETIS_IRQ_CAN0MB /* Vector 45: CAN0 OR'ed Message buffer (0-15) */ HANDLER kinetis_can0bo, KINETIS_IRQ_CAN0BO /* Vector 46: CAN0 Bus Off */ HANDLER kinetis_can0err, KINETIS_IRQ_CAN0ERR /* Vector 47: CAN0 Error */ HANDLER kinetis_can0tw, KINETIS_IRQ_CAN0TW /* Vector 48: CAN0 Transmit Warning */ HANDLER kinetis_can0rw, KINETIS_IRQ_CAN0RW /* Vector 49: CAN0 Receive Warning */ HANDLER kinetis_can0wu, KINETIS_IRQ_CAN0WU /* Vector 50: CAN0 Wake UP */ HANDLER kinetis_can1mb, KINETIS_IRQ_CAN1MB /* Vector 53: CAN1 OR'ed Message buffer (0-15) */ HANDLER kinetis_can1bo, KINETIS_IRQ_CAN1BO /* Vector 54: CAN1 Bus Off */ HANDLER kinetis_can1err, KINETIS_IRQ_CAN1ERR /* Vector 55: CAN1 Error */ HANDLER kinetis_can1tw, KINETIS_IRQ_CAN1TW /* Vector 56: CAN1 Transmit Warning */ HANDLER kinetis_can1rw, KINETIS_IRQ_CAN1RW /* Vector 57: CAN1 Receive Warning */ HANDLER kinetis_can1wu, KINETIS_IRQ_CAN1WU /* Vector 58: CAN1 Wake UP */ HANDLER kinetis_uart0s, KINETIS_IRQ_UART0S /* Vector 61: UART0 status */ HANDLER kinetis_uart0e, KINETIS_IRQ_UART0E /* Vector 62: UART0 error */ HANDLER kinetis_uart1s, KINETIS_IRQ_UART1S /* Vector 63: UART1 status */ HANDLER kinetis_uart1e, KINETIS_IRQ_UART1E /* Vector 64: UART1 error */ HANDLER kinetis_uart2s, KINETIS_IRQ_UART2S /* Vector 65: UART2 status */ HANDLER kinetis_uart2e, KINETIS_IRQ_UART2E /* Vector 66: UART2 error */ HANDLER kinetis_uart3s, KINETIS_IRQ_UART3S /* Vector 67: UART3 status */ HANDLER kinetis_uart3e, KINETIS_IRQ_UART3E /* Vector 68: UART3 error */ HANDLER kinetis_uart4s, KINETIS_IRQ_UART4S /* Vector 69: UART4 status */ HANDLER kinetis_uart4e, KINETIS_IRQ_UART4E /* Vector 70: UART4 error */ HANDLER kinetis_uart5s, KINETIS_IRQ_UART5S /* Vector 71: UART5 status */ HANDLER kinetis_uart5e, KINETIS_IRQ_UART5E /* Vector 72: UART5 error */ HANDLER kinetis_adc0, KINETIS_IRQ_ADC0 /* Vector 73: ADC0 */ HANDLER kinetis_adc1, KINETIS_IRQ_ADC1 /* Vector 74: ADC1 */ HANDLER kinetis_cmp0, KINETIS_IRQ_CMP0 /* Vector 75: CMP0 */ HANDLER kinetis_cmp1, KINETIS_IRQ_CMP1 /* Vector 76: CMP1 */ HANDLER kinetis_cmp2, KINETIS_IRQ_CMP2 /* Vector 77: CMP2 */ HANDLER kinetis_ftm0, KINETIS_IRQ_FTM0 /* Vector 78: FTM0 all sources */ HANDLER kinetis_ftm1, KINETIS_IRQ_FTM1 /* Vector 79: FTM1 all sources */ HANDLER kinetis_ftm2, KINETIS_IRQ_FTM2 /* Vector 80: FTM2 all sources */ HANDLER kinetis_cmt, KINETIS_IRQ_CMT /* Vector 81: CMT */ HANDLER kinetis_rtc, KINETIS_IRQ_RTC /* Vector 82: RTC alarm interrupt */ HANDLER kinetis_pitch0, KINETIS_IRQ_PITCH0 /* Vector 84: PIT channel 0 */ HANDLER kinetis_pitch1, KINETIS_IRQ_PITCH1 /* Vector 85: PIT channel 1 */ HANDLER kinetis_pitch2, KINETIS_IRQ_PITCH2 /* Vector 86: PIT channel 2 */ HANDLER kinetis_pitch3, KINETIS_IRQ_PITCH3 /* Vector 87: PIT channel 3 */ HANDLER kinetis_pdb, KINETIS_IRQ_PDB /* Vector 88: PDB */ HANDLER kinetis_usbotg, KINETIS_IRQ_USBOTG /* Vector 88: USB OTG */ HANDLER kinetis_usbcd, KINETIS_IRQ_USBCD /* Vector 90: USB charger detect */ HANDLER kinetis_i2s0, KINETIS_IRQ_I2S0 /* Vector 95: I2S0 */ HANDLER kinetis_sdhc, KINETIS_IRQ_SDHC /* Vector 96: SDHC */ HANDLER kinetis_dac0, KINETIS_IRQ_DAC0 /* Vector 97: DAC0 */ HANDLER kinetis_dac1, KINETIS_IRQ_DAC1 /* Vector 98: DAC1 */ HANDLER kinetis_tsi, KINETIS_IRQ_TSI /* Vector 97: TSI all sources */ HANDLER kinetis_mcg, KINETIS_IRQ_MCG /* Vector 100: MCG */ HANDLER kinetis_lpt, KINETIS_IRQ_LPT /* Vector 101: Low power timer */ HANDLER kinetis_slcd, KINETIS_IRQ_SLCD /* Vector 102: Segment LCD all sources */ HANDLER kinetis_porta, KINETIS_IRQ_PORTA /* Vector 103: Pin detect port A */ HANDLER kinetis_portb, KINETIS_IRQ_PORTB /* Vector 104: Pin detect port B */ HANDLER kinetis_portc, KINETIS_IRQ_PORTC /* Vector 105: Pin detect port C */ HANDLER kinetis_portd, KINETIS_IRQ_PORTD /* Vector 106: Pin detect port D */ HANDLER kinetis_porte, KINETIS_IRQ_PORTE /* Vector 107: Pin detect port E */ HANDLER kinetis_swi, KINETIS_IRQ_SWI /* Vector 110: Software interrupt */ /* K60 Family *********************************************************************************** * * The memory map for the following parts is defined in Freescale document * K60P144M100SF2RM */ #elif defined(CONFIG_ARCH_CHIP_MK60N256VLQ100) || defined(CONFIG_ARCH_CHIP_MK60X256VLQ100) || \ defined(CONFIG_ARCH_CHIP_MK60N512VLQ100) || defined(CONFIG_ARCH_CHIP_MK60N256VMD100) || \ defined(CONFIG_ARCH_CHIP_MK60X256VMD100) || defined(CONFIG_ARCH_CHIP_MK60N512VMD100) HANDLER kinetis_dmach0, KINETIS_IRQ_DMACH0 /* Vector 16: DMA channel 0 transfer complete */ HANDLER kinetis_dmach1, KINETIS_IRQ_DMACH1 /* Vector 17: DMA channel 1 transfer complete */ HANDLER kinetis_dmach2, KINETIS_IRQ_DMACH2 /* Vector 18: DMA channel 2 transfer complete */ HANDLER kinetis_dmach3, KINETIS_IRQ_DMACH3 /* Vector 19: DMA channel 3 transfer complete */ HANDLER kinetis_dmach4, KINETIS_IRQ_DMACH4 /* Vector 20: DMA channel 4 transfer complete */ HANDLER kinetis_dmach5, KINETIS_IRQ_DMACH5 /* Vector 21: DMA channel 5 transfer complete */ HANDLER kinetis_dmach6, KINETIS_IRQ_DMACH6 /* Vector 22: DMA channel 6 transfer complete */ HANDLER kinetis_dmach7, KINETIS_IRQ_DMACH7 /* Vector 23: DMA channel 7 transfer complete */ HANDLER kinetis_dmach8, KINETIS_IRQ_DMACH8 /* Vector 24: DMA channel 8 transfer complete */ HANDLER kinetis_dmach9, KINETIS_IRQ_DMACH9 /* Vector 25: DMA channel 9 transfer complete */ HANDLER kinetis_dmach10, KINETIS_IRQ_DMACH10 /* Vector 26: DMA channel 10 transfer complete */ HANDLER kinetis_dmach11, KINETIS_IRQ_DMACH11 /* Vector 27: DMA channel 11 transfer complete */ HANDLER kinetis_dmach12, KINETIS_IRQ_DMACH12 /* Vector 28: DMA channel 12 transfer complete */ HANDLER kinetis_dmach13, KINETIS_IRQ_DMACH13 /* Vector 29: DMA channel 13 transfer complete */ HANDLER kinetis_dmach14, KINETIS_IRQ_DMACH14 /* Vector 30: DMA channel 14 transfer complete */ HANDLER kinetis_dmach15, KINETIS_IRQ_DMACH15 /* Vector 31: DMA channel 15 transfer complete */ HANDLER kinetis_dmaerr, KINETIS_IRQ_DMAERR /* Vector 32: DMA error interrupt channels 0-15 */ HANDLER kinetis_mcm, KINETIS_IRQ_MCM /* Vector 33: MCM Normal interrupt */ HANDLER kinetis_flashcc, KINETIS_IRQ_FLASHCC /* Vector 34: Flash memory command complete */ HANDLER kinetis_flashrc, KINETIS_IRQ_FLASHRC /* Vector 35: Flash memory read collision */ HANDLER kinetis_smclvd, KINETIS_IRQ_SMCLVD /* Vector 36: Mode Controller low-voltage detect, low-voltage warning */ HANDLER kinetis_llwu, KINETIS_IRQ_LLWU /* Vector 37: LLWU Normal Low Leakage Wakeup */ HANDLER kinetis_wdog, KINETIS_IRQ_WDOG /* Vector 38: Watchdog */ HANDLER kinetis_rngb, KINETIS_IRQ_RNGB /* Vector 39: Random number generator */ HANDLER kinetis_i2c0, KINETIS_IRQ_I2C0 /* Vector 40: I2C0 */ HANDLER kinetis_i2c1, KINETIS_IRQ_I2C1 /* Vector 41: I2C1 */ HANDLER kinetis_spi0, KINETIS_IRQ_SPI0 /* Vector 42: SPI0 all sources */ HANDLER kinetis_spi1, KINETIS_IRQ_SPI1 /* Vector 43: SPI1 all sources */ HANDLER kinetis_spi2, KINETIS_IRQ_SPI2 /* Vector 44: SPI2 all sources */ HANDLER kinetis_can0mb, KINETIS_IRQ_CAN0MB /* Vector 45: CAN0 OR'ed Message buffer (0-15) */ HANDLER kinetis_can0bo, KINETIS_IRQ_CAN0BO /* Vector 46: CAN0 Bus Off */ HANDLER kinetis_can0err, KINETIS_IRQ_CAN0ERR /* Vector 47: CAN0 Error */ HANDLER kinetis_can0tw, KINETIS_IRQ_CAN0TW /* Vector 48: CAN0 Transmit Warning */ HANDLER kinetis_can0rw, KINETIS_IRQ_CAN0RW /* Vector 49: CAN0 Receive Warning */ HANDLER kinetis_can0wu, KINETIS_IRQ_CAN0WU /* Vector 50: CAN0 Wake UP */ HANDLER kinetis_can1mb, KINETIS_IRQ_CAN1MB /* Vector 53: CAN1 OR'ed Message buffer (0-15) */ HANDLER kinetis_can1bo, KINETIS_IRQ_CAN1BO /* Vector 54: CAN1 Bus Off */ HANDLER kinetis_can1err, KINETIS_IRQ_CAN1ERR /* Vector 55: CAN1 Error */ HANDLER kinetis_can1tw, KINETIS_IRQ_CAN1TW /* Vector 56: CAN1 Transmit Warning */ HANDLER kinetis_can1rw, KINETIS_IRQ_CAN1RW /* Vector 57: CAN1 Receive Warning */ HANDLER kinetis_can1wu, KINETIS_IRQ_CAN1WU /* Vector 58: CAN1 Wake UP */ HANDLER kinetis_uart0s, KINETIS_IRQ_UART0S /* Vector 61: UART0 status */ HANDLER kinetis_uart0e, KINETIS_IRQ_UART0E /* Vector 62: UART0 error */ HANDLER kinetis_uart1s, KINETIS_IRQ_UART1S /* Vector 63: UART1 status */ HANDLER kinetis_uart1e, KINETIS_IRQ_UART1E /* Vector 64: UART1 error */ HANDLER kinetis_uart2s, KINETIS_IRQ_UART2S /* Vector 65: UART2 status */ HANDLER kinetis_uart2e, KINETIS_IRQ_UART2E /* Vector 66: UART2 error */ HANDLER kinetis_uart3s, KINETIS_IRQ_UART3S /* Vector 67: UART3 status */ HANDLER kinetis_uart3e, KINETIS_IRQ_UART3E /* Vector 68: UART3 error */ HANDLER kinetis_uart4s, KINETIS_IRQ_UART4S /* Vector 69: UART4 status */ HANDLER kinetis_uart4e, KINETIS_IRQ_UART4E /* Vector 70: UART4 error */ HANDLER kinetis_uart5s, KINETIS_IRQ_UART5S /* Vector 71: UART5 status */ HANDLER kinetis_uart5e, KINETIS_IRQ_UART5E /* Vector 72: UART5 error */ HANDLER kinetis_adc0, KINETIS_IRQ_ADC0 /* Vector 73: ADC0 */ HANDLER kinetis_adc1, KINETIS_IRQ_ADC1 /* Vector 74: ADC1 */ HANDLER kinetis_cmp0, KINETIS_IRQ_CMP0 /* Vector 75: CMP0 */ HANDLER kinetis_cmp1, KINETIS_IRQ_CMP1 /* Vector 76: CMP1 */ HANDLER kinetis_cmp2, KINETIS_IRQ_CMP2 /* Vector 77: CMP2 */ HANDLER kinetis_ftm0, KINETIS_IRQ_FTM0 /* Vector 78: FTM0 all sources */ HANDLER kinetis_ftm1, KINETIS_IRQ_FTM1 /* Vector 79: FTM1 all sources */ HANDLER kinetis_ftm2, KINETIS_IRQ_FTM2 /* Vector 80: FTM2 all sources */ HANDLER kinetis_cmt, KINETIS_IRQ_CMT /* Vector 81: CMT */ HANDLER kinetis_rtc, KINETIS_IRQ_RTC /* Vector 82: RTC alarm interrupt */ HANDLER kinetis_pitch0, KINETIS_IRQ_PITCH0 /* Vector 84: PIT channel 0 */ HANDLER kinetis_pitch1, KINETIS_IRQ_PITCH1 /* Vector 85: PIT channel 1 */ HANDLER kinetis_pitch2, KINETIS_IRQ_PITCH2 /* Vector 86: PIT channel 2 */ HANDLER kinetis_pitch3, KINETIS_IRQ_PITCH3 /* Vector 87: PIT channel 3 */ HANDLER kinetis_pdb, KINETIS_IRQ_PDB /* Vector 88: PDB */ HANDLER kinetis_usbotg, KINETIS_IRQ_USBOTG /* Vector 88: USB OTG */ HANDLER kinetis_usbcd, KINETIS_IRQ_USBCD /* Vector 90: USB charger detect */ HANDLER kinetis_emactmr, KINETIS_IRQ_EMACTMR /* Vector 91: Ethernet MAC IEEE 1588 timer interrupt */ HANDLER kinetis_emactx, KINETIS_IRQ_EMACTX /* Vector 92: Ethernet MAC transmit interrupt */ HANDLER kinetis_emacrx, KINETIS_IRQ_EMACRX /* Vector 93: Ethernet MAC receive interrupt */ HANDLER kinetis_emacmisc, KINETIS_IRQ_EMACMISC /* Vector 94: Ethernet MAC error and misc interrupt */ HANDLER kinetis_i2s0, KINETIS_IRQ_I2S0 /* Vector 95: I2S0 */ HANDLER kinetis_sdhc, KINETIS_IRQ_SDHC /* Vector 96: SDHC */ HANDLER kinetis_dac0, KINETIS_IRQ_DAC0 /* Vector 97: DAC0 */ HANDLER kinetis_dac1, KINETIS_IRQ_DAC1 /* Vector 98: DAC1 */ HANDLER kinetis_tsi, KINETIS_IRQ_TSI /* Vector 97: TSI all sources */ HANDLER kinetis_mcg, KINETIS_IRQ_MCG /* Vector 100: MCG */ HANDLER kinetis_lpt, KINETIS_IRQ_LPT /* Vector 101: Low power timer */ HANDLER kinetis_porta, KINETIS_IRQ_PORTA /* Vector 103: Pin detect port A */ HANDLER kinetis_portb, KINETIS_IRQ_PORTB /* Vector 104: Pin detect port B */ HANDLER kinetis_portc, KINETIS_IRQ_PORTC /* Vector 105: Pin detect port C */ HANDLER kinetis_portd, KINETIS_IRQ_PORTD /* Vector 106: Pin detect port D */ HANDLER kinetis_porte, KINETIS_IRQ_PORTE /* Vector 107: Pin detect port E */ #else # error "No handlers for this Kinetis part" #endif /* Common IRQ handling logic. On entry here, the return stack is on either * the PSP or the MSP and looks like the following: * * REG_XPSR * REG_R15 * REG_R14 * REG_R12 * REG_R3 * REG_R2 * REG_R1 * MSP->REG_R0 * * And * R0 contains the IRQ number * R14 Contains the EXC_RETURN value * We are in handler mode and the current SP is the MSP */ .globl exception_common .type exception_common, function exception_common: /* Complete the context save */ #ifdef CONFIG_BUILD_PROTECTED /* The EXC_RETURN value will be 0xfffffff9 (privileged thread) or 0xfffffff1 * (handler mode) if the stack is on the MSP. It can only be on the PSP if * EXC_RETURN is 0xfffffffd (unprivileged thread) */ tst r14, #EXC_RETURN_PROCESS_STACK /* nonzero if context on process stack */ beq 1f /* Branch if context already on the MSP */ mrs r1, psp /* R1=The process stack pointer (PSP) */ mov sp, r1 /* Set the MSP to the PSP */ 1: #endif /* r1 holds the value of the stack pointer AFTER the excption handling logic * pushed the various registers onto the stack. Get r2 = the value of the * stack pointer BEFORE the interrupt modified it. */ mov r2, sp /* R2=Copy of the main/process stack pointer */ add r2, #HW_XCPT_SIZE /* R2=MSP/PSP before the interrupt was taken */ #ifdef CONFIG_ARMV7M_USEBASEPRI mrs r3, basepri /* R3=Current BASEPRI setting */ #else mrs r3, primask /* R3=Current PRIMASK setting */ #endif #ifdef CONFIG_ARCH_FPU /* Skip over the block of memory reserved for floating pointer register save. * Lazy FPU register saving is used. FPU registers will be saved in this * block only if a context switch occurs (this means, of course, that the FPU * cannot be used in interrupt processing). */ sub sp, #(4*SW_FPU_REGS) #endif /* Save the remaining registers on the stack after the registers pushed * by the exception handling logic. r2=SP and r3=primask or basepri, r4-r11, * r14=register values. */ #ifdef CONFIG_BUILD_PROTECTED stmdb sp!, {r2-r11,r14} /* Save the remaining registers plus the SP value */ #else stmdb sp!, {r2-r11} /* Save the remaining registers plus the SP value */ #endif #ifndef CONFIG_ARCH_HIPRI_INTERRUPT /* Disable interrupts, select the stack to use for interrupt handling * and call up_doirq to handle the interrupt */ cpsid i /* Disable further interrupts */ #else /* Set the BASEPRI register so that further normal interrupts will be * masked. Nested, high priority may still occur, however. */ mov r2, #NVIC_SYSH_DISABLE_PRIORITY msr basepri, r2 /* Set the BASEPRI */ #endif /* There are two arguments to up_doirq: * * R0 = The IRQ number * R1 = The top of the stack points to the saved state */ mov r1, sp #if CONFIG_ARCH_INTERRUPTSTACK > 3 /* If CONFIG_ARCH_INTERRUPTSTACK is defined, we will set the MSP to use * a special special interrupt stack pointer. The way that this is done * here prohibits nested interrupts without some additional logic! */ ldr sp, =g_intstackbase str r1, [sp, #-4]! /* Save the MSP on the interrupt stack */ bl up_doirq /* R0=IRQ, R1=register save (msp) */ ldr r1, [sp, #+4]! /* Recover R1=main stack pointer */ #else /* Otherwise, we will re-use the interrupted thread's stack. That may * mean using either MSP or PSP stack for interrupt level processing (in * kernel mode). */ bl up_doirq /* R0=IRQ, R1=register save (msp) */ mov r1, sp /* Recover R1=main stack pointer */ #endif /* On return from up_doirq, R0 will hold a pointer to register context * array to use for the interrupt return. If that return value is the same * as current stack pointer, then things are relatively easy. */ cmp r0, r1 /* Context switch? */ beq 2f /* Branch if no context switch */ /* We are returning with a pending context switch. * * If the FPU is enabled, then we will need to restore FPU registers. * This is not done in normal interrupt save/restore because the cost * is prohibitive. This is only done when switching contexts. A * consequence of this is that floating point operations may not be * performed in interrupt handling logic. * * Here: * r0 = Address of the register save area * NOTE: It is a requirement that up_restorefpu() preserve the value of * r0! */ #ifdef CONFIG_ARCH_FPU bl up_restorefpu /* Restore the FPU registers */ #endif /* We are returning with a pending context switch. This case is different * because in this case, the register save structure does not lie in the * stack but, rather, within a TCB structure. We'll have to copy some * values to the stack. */ add r1, r0, #SW_XCPT_SIZE /* R1=Address of HW save area in reg array */ ldmia r1, {r4-r11} /* Fetch eight registers in HW save area */ ldr r1, [r0, #(4*REG_SP)] /* R1=Value of SP before interrupt */ stmdb r1!, {r4-r11} /* Store eight registers in HW save area */ #ifdef CONFIG_BUILD_PROTECTED ldmia r0, {r2-r11,r14} /* Recover R4-R11, r14 + 2 temp values */ #else ldmia r0, {r2-r11} /* Recover R4-R11 + 2 temp values */ #endif b 3f /* Re-join common logic */ /* We are returning with no context switch. We simply need to "unwind" * the same stack frame that we created * * Here: * r1 = Address of the return stack (same as r0) */ 2: #ifdef CONFIG_BUILD_PROTECTED ldmia r1!, {r2-r11,r14} /* Recover R4-R11, r14 + 2 temp values */ #else ldmia r1!, {r2-r11} /* Recover R4-R11 + 2 temp values */ #endif #ifdef CONFIG_ARCH_FPU /* Skip over the block of memory reserved for floating pointer register * save. Then R1 is the address of the HW save area */ add r1, #(4*SW_FPU_REGS) #endif /* Set up to return from the exception * * Here: * r1 = Address on the target thread's stack position at the start of * the registers saved by hardware * r3 = primask or basepri * r4-r11 = restored register values */ 3: #ifdef CONFIG_BUILD_PROTECTED /* The EXC_RETURN value will be 0xfffffff9 (privileged thread) or 0xfffffff1 * (handler mode) if the stack is on the MSP. It can only be on the PSP if * EXC_RETURN is 0xfffffffd (unprivileged thread) */ mrs r2, control /* R2=Contents of the control register */ tst r14, #EXC_RETURN_PROCESS_STACK /* nonzero if context on process stack */ beq 4f /* Branch if privileged */ orr r2, r2, #1 /* Unprivileged mode */ msr psp, r1 /* R1=The process stack pointer */ b 5f 4: bic r2, r2, #1 /* Privileged mode */ msr msp, r1 /* R1=The main stack pointer */ 5: msr control, r2 /* Save the updated control register */ #else msr msp, r1 /* Recover the return MSP value */ /* Preload r14 with the special return value first (so that the return * actually occurs with interrupts still disabled). */ ldr r14, =EXC_RETURN_PRIVTHR /* Load the special value */ #endif /* Restore the interrupt state */ #ifdef CONFIG_ARMV7M_USEBASEPRI msr basepri, r3 /* Restore interrupts priority masking */ #ifndef CONFIG_ARCH_HIPRI_INTERRUPT cpsie i /* Re-enable interrupts */ #endif #else msr primask, r3 /* Restore interrupts */ #endif /* Always return with R14 containing the special value that will: (1) * return to thread mode, and (2) continue to use the MSP */ bx r14 /* And return */ .size handlers, .-handlers /************************************************************************************************ * Name: g_intstackalloc/g_intstackbase * * Description: * Shouldn't happen * ************************************************************************************************/ #if CONFIG_ARCH_INTERRUPTSTACK > 3 .bss .global g_intstackalloc .global g_intstackbase .align 4 g_intstackalloc: .skip (CONFIG_ARCH_INTERRUPTSTACK & ~3) g_intstackbase: .size g_intstackalloc, .-g_intstackalloc #endif #endif /* CONFIG_ARMV7M_CMNVECTOR */ /************************************************************************************************ * .rodata ************************************************************************************************/ .section .rodata, "a" /* Variables: _sbss is the start of the BSS region (see ld.script) _ebss is the end * of the BSS regsion (see ld.script). The idle task stack starts at the end of BSS * and is of size CONFIG_IDLETHREAD_STACKSIZE. The IDLE thread is the thread that * the system boots on and, eventually, becomes the idle, do nothing task that runs * only when there is nothing else to run. The heap continues from there until the * end of memory. See g_idle_topstack below. */ .globl g_idle_topstack .type g_idle_topstack, object g_idle_topstack: .word HEAP_BASE .size g_idle_topstack, .-g_idle_topstack .end