/**************************************************************************** * net/socket/recvfrom.c * * Copyright (C) 2007-2009, 2011-2014 Gregory Nutt. All rights reserved. * Author: Gregory Nutt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. Neither the name NuttX nor the names of its contributors may be * used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /**************************************************************************** * Included Files ****************************************************************************/ #include #ifdef CONFIG_NET #include #include #include #include #include #include #include #ifdef CONFIG_NET_PKT # include #endif #include #include #include #include #include #include #include #include #include "netdev/netdev.h" #include "devif/devif.h" #include "tcp/tcp.h" #include "udp/udp.h" #include "pkt/pkt.h" #include "socket/socket.h" /**************************************************************************** * Pre-processor Definitions ****************************************************************************/ #define UDPBUF ((struct udp_iphdr_s *)&dev->d_buf[NET_LL_HDRLEN(dev)]) #define TCPBUF ((struct tcp_iphdr_s *)&dev->d_buf[NET_LL_HDRLEN(dev)]) /**************************************************************************** * Private Types ****************************************************************************/ #if defined(CONFIG_NET_UDP) || defined(CONFIG_NET_TCP) struct recvfrom_s { FAR struct socket *rf_sock; /* The parent socket structure */ #ifdef CONFIG_NET_SOCKOPTS uint32_t rf_starttime; /* rcv start time for determining timeout */ #endif FAR struct devif_callback_s *rf_cb; /* Reference to callback instance */ sem_t rf_sem; /* Semaphore signals recv completion */ size_t rf_buflen; /* Length of receive buffer */ uint8_t *rf_buffer; /* Pointer to receive buffer */ #ifdef CONFIG_NET_IPv6 FAR struct sockaddr_in6 *rf_from; /* Address of sender */ #else FAR struct sockaddr_in *rf_from; /* Address of sender */ #endif size_t rf_recvlen; /* The received length */ int rf_result; /* Success:OK, failure:negated errno */ }; #endif /* CONFIG_NET_UDP || CONFIG_NET_TCP */ /**************************************************************************** * Private Functions ****************************************************************************/ /**************************************************************************** * Function: recvfrom_newdata * * Description: * Copy the read data from the packet * * Parameters: * dev The sructure of the network driver that caused the interrupt * pstate recvfrom state structure * * Returned Value: * The number of bytes taken from the packet. * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #if defined(CONFIG_NET_UDP) || defined(CONFIG_NET_TCP) static size_t recvfrom_newdata(FAR struct net_driver_s *dev, FAR struct recvfrom_s *pstate) { size_t recvlen; /* Get the length of the data to return */ if (dev->d_len > pstate->rf_buflen) { recvlen = pstate->rf_buflen; } else { recvlen = dev->d_len; } /* Copy the new appdata into the user buffer */ memcpy(pstate->rf_buffer, dev->d_appdata, recvlen); nllvdbg("Received %d bytes (of %d)\n", (int)recvlen, (int)dev->d_len); /* Update the accumulated size of the data read */ pstate->rf_recvlen += recvlen; pstate->rf_buffer += recvlen; pstate->rf_buflen -= recvlen; return recvlen; } #endif /* CONFIG_NET_UDP || CONFIG_NET_TCP */ /**************************************************************************** * Function: recvfrom_newpktdata * * Description: * Copy the read data from the packet * * Parameters: * dev The structure of the network driver that caused the interrupt * pstate recvfrom state structure * * Returned Value: * None. * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #ifdef CONFIG_NET_PKT static void recvfrom_newpktdata(FAR struct net_driver_s *dev, FAR struct recvfrom_s *pstate) { size_t recvlen; if (dev->d_len > pstate->rf_buflen) { recvlen = pstate->rf_buflen; } else { recvlen = dev->d_len; } /* Copy the new packet data into the user buffer */ memcpy(pstate->rf_buffer, dev->d_buf, recvlen); nllvdbg("Received %d bytes (of %d)\n", (int)recvlen, (int)dev->d_len); /* Update the accumulated size of the data read */ pstate->rf_recvlen += recvlen; pstate->rf_buffer += recvlen; pstate->rf_buffer -= recvlen; } #endif /* CONFIG_NET_PKT */ /**************************************************************************** * Function: recvfrom_newtcpdata * * Description: * Copy the read data from the packet * * Parameters: * dev The sructure of the network driver that caused the interrupt * pstate recvfrom state structure * * Returned Value: * None. * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #ifdef CONFIG_NET_TCP static inline void recvfrom_newtcpdata(FAR struct net_driver_s *dev, FAR struct recvfrom_s *pstate) { /* Take as much data from the packet as we can */ size_t recvlen = recvfrom_newdata(dev, pstate); /* If there is more data left in the packet that we could not buffer, than * add it to the read-ahead buffers. */ if (recvlen < dev->d_len) { #ifdef CONFIG_NET_TCP_READAHEAD FAR struct tcp_conn_s *conn = (FAR struct tcp_conn_s *)pstate->rf_sock->s_conn; FAR uint8_t *buffer = (FAR uint8_t *)dev->d_appdata + recvlen; uint16_t buflen = dev->d_len - recvlen; #ifdef CONFIG_DEBUG_NET uint16_t nsaved; nsaved = tcp_datahandler(conn, buffer, buflen); #else (void)tcp_datahandler(conn, buffer, buflen); #endif /* There are complicated buffering issues that are not addressed fully * here. For example, what if up_datahandler() cannot buffer the * remainder of the packet? In that case, the data will be dropped but * still ACKed. Therefore it would not be resent. * * This is probably not an issue here because we only get here if the * read-ahead buffers are empty and there would have to be something * serioulsy wrong with the configuration not to be able to buffer a * partial packet in this context. */ #ifdef CONFIG_DEBUG_NET if (nsaved < buflen) { ndbg("ERROR: packet data not saved (%d bytes)\n", buflen - nsaved); } #endif #else ndbg("ERROR: packet data lost (%d bytes)\n", dev->d_len - recvlen); #endif } /* Indicate no data in the buffer */ dev->d_len = 0; } #endif /* CONFIG_NET_TCP */ /**************************************************************************** * Function: recvfrom_newudpdata * * Description: * Copy the read data from the packet * * Parameters: * dev The sructure of the network driver that caused the interrupt * pstate recvfrom state structure * * Returned Value: * None. * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #ifdef CONFIG_NET_UDP static inline void recvfrom_newudpdata(FAR struct net_driver_s *dev, FAR struct recvfrom_s *pstate) { /* Take as much data from the packet as we can */ (void)recvfrom_newdata(dev, pstate); /* Indicate no data in the buffer */ dev->d_len = 0; } #endif /* CONFIG_NET_TCP */ /**************************************************************************** * Function: recvfrom_readahead * * Description: * Copy the read data from the packet * * Parameters: * dev The structure of the network driver that caused the interrupt * pstate recvfrom state structure * * Returned Value: * None * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #if defined(CONFIG_NET_TCP) && defined(CONFIG_NET_TCP_READAHEAD) static inline void recvfrom_readahead(struct recvfrom_s *pstate) { FAR struct tcp_conn_s *conn = (FAR struct tcp_conn_s *)pstate->rf_sock->s_conn; FAR struct iob_s *iob; int recvlen; /* Check there is any TCP data already buffered in a read-ahead * buffer. */ while ((iob = iob_peek_queue(&conn->readahead)) != NULL && pstate->rf_buflen > 0) { DEBUGASSERT(iob->io_pktlen > 0); /* Transfer that buffered data from the I/O buffer chain into * the user buffer. */ recvlen = iob_copyout(pstate->rf_buffer, iob, pstate->rf_buflen, 0); nllvdbg("Received %d bytes (of %d)\n", recvlen, iob->io_pktlen); /* Update the accumulated size of the data read */ pstate->rf_recvlen += recvlen; pstate->rf_buffer += recvlen; pstate->rf_buflen -= recvlen; /* If we took all of the ata from the I/O buffer chain is empty, then * release it. If there is still data available in the I/O buffer * chain, then just trim the data that we have taken from the * beginning of the I/O buffer chain. */ if (recvlen >= iob->io_pktlen) { FAR struct iob_s *tmp; /* Remove the I/O buffer chain from the head of the read-ahead * buffer queue. */ tmp = iob_remove_queue(&conn->readahead); DEBUGASSERT(tmp == iob); UNUSED(tmp); /* And free the I/O buffer chain */ (void)iob_free_chain(iob); } else { /* The bytes that we have received from the head of the I/O * buffer chain (probably changing the head of the I/O * buffer queue). */ (void)iob_trimhead_queue(&conn->readahead, recvlen); } } } #endif /* CONFIG_NET_UDP || CONFIG_NET_TCP */ /**************************************************************************** * Function: recvfrom_timeout * * Description: * Check for recvfrom timeout. * * Parameters: * pstate recvfrom state structure * * Returned Value: * TRUE:timeout FALSE:no timeout * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #if defined(CONFIG_NET_UDP) || defined(CONFIG_NET_TCP) #ifdef CONFIG_NET_SOCKOPTS static int recvfrom_timeout(struct recvfrom_s *pstate) { FAR struct socket *psock = 0; socktimeo_t timeo = 0; /* Check for a timeout configured via setsockopts(SO_RCVTIMEO). If none... * we well let the read hang forever (except for the special case below). */ /* Get the socket reference from the private data */ psock = pstate->rf_sock; if (psock) { /* Recover the timeout value (zero if no timeout) */ timeo = psock->s_rcvtimeo; } /* Use a fixed, configurable delay under the following circumstances: * * 1) This delay function has been enabled with CONFIG_NET_TCP_RECVDELAY > 0 * 2) Some data has already been received from the socket. Since this can * only be true for a TCP/IP socket, this logic applies only to TCP/IP * sockets. And either * 3) There is no configured receive timeout, or * 4) The configured receive timeout is greater than than the delay */ #if CONFIG_NET_TCP_RECVDELAY > 0 if ((timeo == 0 || timeo > CONFIG_NET_TCP_RECVDELAY) && pstate->rf_recvlen > 0) { /* Use the configured timeout */ timeo = CONFIG_NET_TCP_RECVDELAY; } #endif /* Is there an effective timeout? */ if (timeo) { /* Yes.. Check if the timeout has elapsed */ return net_timeo(pstate->rf_starttime, timeo); } /* No timeout -- hang forever waiting for data. */ return FALSE; } #endif /* CONFIG_NET_SOCKOPTS */ #endif /* CONFIG_NET_UDP || CONFIG_NET_TCP */ /**************************************************************************** * Function: recvfrom_pktsender * * Description: * * Parameters: * * Returned Values: * * Assumptions: * ****************************************************************************/ #ifdef CONFIG_NET_PKT static inline void recvfrom_pktsender(FAR struct net_driver_s *dev, FAR struct recvfrom_s *pstate) { } #endif /* CONFIG_NET_PKT */ /**************************************************************************** * Function: recvfrom_pktinterrupt * * Description: * * Parameters: * * Returned Values: * * Assumptions: * ****************************************************************************/ #ifdef CONFIG_NET_PKT static uint16_t recvfrom_pktinterrupt(FAR struct net_driver_s *dev, FAR void *conn, FAR void *pvpriv, uint16_t flags) { struct recvfrom_s *pstate = (struct recvfrom_s *)pvpriv; nllvdbg("flags: %04x\n", flags); /* 'priv' might be null in some race conditions (?) */ if (pstate) { /* If a new packet is available, then complete the read action. */ if ((flags & PKT_NEWDATA) != 0) { /* Copy the packet */ recvfrom_newpktdata(dev, pstate); /* We are finished. */ nllvdbg("PKT done\n"); /* Don't allow any further call backs. */ pstate->rf_cb->flags = 0; pstate->rf_cb->priv = NULL; pstate->rf_cb->event = NULL; #if 0 /* Save the sender's address in the caller's 'from' location */ recvfrom_pktsender(dev, pstate); #endif /* indicate that the data has been consumed */ flags &= ~PKT_NEWDATA; /* Wake up the waiting thread, returning the number of bytes * actually read. */ sem_post(&pstate->rf_sem); } } return flags; } #endif /* CONFIG_NET_PKT */ /**************************************************************************** * Function: recvfrom_tcpsender * * Description: * Getting the sender's address from the UDP packet * * Parameters: * dev - The device driver data structure * pstate - the recvfrom state structure * * Returned Value: * None * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #ifdef CONFIG_NET_TCP static inline void recvfrom_tcpsender(FAR struct net_driver_s *dev, FAR struct recvfrom_s *pstate) { #ifdef CONFIG_NET_IPv6 FAR struct sockaddr_in6 *infrom = pstate->rf_from; #else FAR struct sockaddr_in *infrom = pstate->rf_from; #endif if (infrom) { infrom->sin_family = AF_INET; infrom->sin_port = TCPBUF->srcport; #ifdef CONFIG_NET_IPv6 net_ipaddr_copy(infrom->sin6_addr.s6_addr, TCPBUF->srcipaddr); #else net_ipaddr_copy(infrom->sin_addr.s_addr, net_ip4addr_conv32(TCPBUF->srcipaddr)); #endif } } #endif /**************************************************************************** * Function: recvfrom_tcpinterrupt * * Description: * This function is called from the interrupt level to perform the actual * TCP receive operation via by the lower, device interfacing layer. * * Parameters: * dev The structure of the network driver that caused the interrupt * conn The connection structure associated with the socket * flags Set of events describing why the callback was invoked * * Returned Value: * None * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #ifdef CONFIG_NET_TCP static uint16_t recvfrom_tcpinterrupt(FAR struct net_driver_s *dev, FAR void *conn, FAR void *pvpriv, uint16_t flags) { FAR struct recvfrom_s *pstate = (struct recvfrom_s *)pvpriv; nllvdbg("flags: %04x\n", flags); /* 'priv' might be null in some race conditions (?) */ if (pstate) { /* If new data is available, then complete the read action. */ if ((flags & TCP_NEWDATA) != 0) { /* Copy the data from the packet (saving any unused bytes from the * packet in the read-ahead buffer). */ recvfrom_newtcpdata(dev, pstate); /* Save the sender's address in the caller's 'from' location */ recvfrom_tcpsender(dev, pstate); /* Indicate that the data has been consumed and that an ACK * should be sent. */ flags = (flags & ~TCP_NEWDATA) | TCP_SNDACK; /* Check for transfer complete. We will consider the transfer * complete in own of two different ways, depending on the setting * of CONFIG_NET_TCP_RECVDELAY. * * 1) If CONFIG_NET_TCP_RECVDELAY == 0 then we will consider the * TCP/IP transfer complete as soon as any data has been received. * This is safe because if any additional data is received, it * will be retained inthe TCP/IP read-ahead buffer until the * next receive is performed. * 2) CONFIG_NET_TCP_RECVDELAY > 0 may be set to wait a little * bit to determine if more data will be received. You might * do this if read-ahead buffereing is disabled and we want to * minimize the loss of back-to-back packets. In this case, * the transfer is complete when either a) the entire user buffer * is full or 2) when the receive timeout occurs (below). */ #if CONFIG_NET_TCP_RECVDELAY > 0 if (pstate->rf_buflen == 0) #else if (pstate->rf_recvlen > 0) #endif { nllvdbg("TCP resume\n"); /* The TCP receive buffer is full. Return now and don't allow * any further TCP call backs. */ pstate->rf_cb->flags = 0; pstate->rf_cb->priv = NULL; pstate->rf_cb->event = NULL; /* Wake up the waiting thread, returning the number of bytes * actually read. */ sem_post(&pstate->rf_sem); } #ifdef CONFIG_NET_SOCKOPTS /* Reset the timeout. We will want a short timeout to terminate * the TCP receive. */ pstate->rf_starttime = clock_systimer(); #endif } /* Check for a loss of connection. * * TCP_CLOSE: The remote host has closed the connection * TCP_ABORT: The remote host has aborted the connection * TCP_TIMEDOUT: Connection aborted due to too many retransmissions. */ else if ((flags & (TCP_CLOSE | TCP_ABORT | TCP_TIMEDOUT)) != 0) { nllvdbg("Lost connection\n"); /* Stop further callbacks */ pstate->rf_cb->flags = 0; pstate->rf_cb->priv = NULL; pstate->rf_cb->event = NULL; /* Handle loss-of-connection event */ net_lostconnection(pstate->rf_sock, flags); /* Check if the peer gracefully closed the connection. */ if ((flags & TCP_CLOSE) != 0) { /* This case should always return success (zero)! The value of * rf_recvlen, if zero, will indicate that the connection was * gracefully closed. */ pstate->rf_result = 0; } else { /* If no data has been received, then return ENOTCONN. * Otherwise, let this return success. The failure will * be reported the next time that recv[from]() is called. */ #if CONFIG_NET_TCP_RECVDELAY > 0 if (pstate->rf_recvlen > 0) { pstate->rf_result = 0; } else { pstate->rf_result = -ENOTCONN; } #else pstate->rf_result = -ENOTCONN; #endif } /* Wake up the waiting thread */ sem_post(&pstate->rf_sem); } #ifdef CONFIG_NET_SOCKOPTS /* No data has been received -- this is some other event... probably a * poll -- check for a timeout. */ else if (recvfrom_timeout(pstate)) { /* Yes.. the timeout has elapsed... do not allow any further * callbacks */ nllvdbg("TCP timeout\n"); pstate->rf_cb->flags = 0; pstate->rf_cb->priv = NULL; pstate->rf_cb->event = NULL; /* Report an error only if no data has been received. (If * CONFIG_NET_TCP_RECVDELAY then rf_recvlen should always be * zero). */ #if CONFIG_NET_TCP_RECVDELAY > 0 if (pstate->rf_recvlen == 0) #endif { /* Report the timeout error */ pstate->rf_result = -EAGAIN; } /* Wake up the waiting thread, returning either the error -EAGAIN * that signals the timeout event or the data received up to * the point tht the timeout occured (no error). */ sem_post(&pstate->rf_sem); } #endif /* CONFIG_NET_SOCKOPTS */ } return flags; } #endif /* CONFIG_NET_TCP */ /**************************************************************************** * Function: recvfrom_udpsender * * Description: * Getting the sender's address from the UDP packet * * Parameters: * dev - The device driver data structure * pstate - the recvfrom state structure * * Returned Value: * None * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #ifdef CONFIG_NET_UDP static inline void recvfrom_udpsender(struct net_driver_s *dev, struct recvfrom_s *pstate) { #ifdef CONFIG_NET_IPv6 FAR struct sockaddr_in6 *infrom = pstate->rf_from; #else FAR struct sockaddr_in *infrom = pstate->rf_from; #endif if (infrom) { infrom->sin_family = AF_INET; infrom->sin_port = UDPBUF->srcport; #ifdef CONFIG_NET_IPv6 net_ipaddr_copy(infrom->sin6_addr.s6_addr, UDPBUF->srcipaddr); #else net_ipaddr_copy(infrom->sin_addr.s_addr, net_ip4addr_conv32(UDPBUF->srcipaddr)); #endif } } #endif /**************************************************************************** * Function: recvfrom_udpinterrupt * * Description: * This function is called from the interrupt level to perform the actual * UDP receive operation via by the lower, device interfacing layer. * * Parameters: * dev The structure of the network driver that caused the interrupt * conn The connection structure associated with the socket * flags Set of events describing why the callback was invoked * * Returned Value: * None * * Assumptions: * Running at the interrupt level * ****************************************************************************/ #ifdef CONFIG_NET_UDP static uint16_t recvfrom_udpinterrupt(struct net_driver_s *dev, void *pvconn, void *pvpriv, uint16_t flags) { struct recvfrom_s *pstate = (struct recvfrom_s *)pvpriv; nllvdbg("flags: %04x\n", flags); /* 'priv' might be null in some race conditions (?) */ if (pstate) { /* If new data is available, then complete the read action. */ if ((flags & UDP_NEWDATA) != 0) { /* Copy the data from the packet */ recvfrom_newudpdata(dev, pstate); /* We are finished. */ nllvdbg("UDP done\n"); /* Don't allow any further UDP call backs. */ pstate->rf_cb->flags = 0; pstate->rf_cb->priv = NULL; pstate->rf_cb->event = NULL; /* Save the sender's address in the caller's 'from' location */ recvfrom_udpsender(dev, pstate); /* Indicate that the data has been consumed */ flags &= ~UDP_NEWDATA; /* Wake up the waiting thread, returning the number of bytes * actually read. */ sem_post(&pstate->rf_sem); } #ifdef CONFIG_NET_SOCKOPTS /* No data has been received -- this is some other event... probably a * poll -- check for a timeout. */ else if (recvfrom_timeout(pstate)) { /* Yes.. the timeout has elapsed... do not allow any further * callbacks */ nllvdbg("UDP timeout\n"); /* Stop further callbacks */ pstate->rf_cb->flags = 0; pstate->rf_cb->priv = NULL; pstate->rf_cb->event = NULL; /* Report a timeout error */ pstate->rf_result = -EAGAIN; /* Wake up the waiting thread */ sem_post(&pstate->rf_sem); } #endif /* CONFIG_NET_SOCKOPTS */ } return flags; } #endif /* CONFIG_NET_UDP */ /**************************************************************************** * Function: recvfrom_init * * Description: * Initialize the state structure * * Parameters: * psock Pointer to the socket structure for the socket * buf Buffer to receive data * len Length of buffer * pstate A pointer to the state structure to be initialized * * Returned Value: * None * * Assumptions: * ****************************************************************************/ #if defined(CONFIG_NET_UDP) || defined(CONFIG_NET_TCP) static void recvfrom_init(FAR struct socket *psock, FAR void *buf, size_t len, #ifdef CONFIG_NET_IPv6 FAR struct sockaddr_in6 *infrom, #else FAR struct sockaddr_in *infrom, #endif struct recvfrom_s *pstate) { /* Initialize the state structure. */ memset(pstate, 0, sizeof(struct recvfrom_s)); (void)sem_init(&pstate->rf_sem, 0, 0); /* Doesn't really fail */ pstate->rf_buflen = len; pstate->rf_buffer = buf; pstate->rf_from = infrom; /* Set up the start time for the timeout */ pstate->rf_sock = psock; #ifdef CONFIG_NET_SOCKOPTS pstate->rf_starttime = clock_systimer(); #endif } /* The only uninitialization that has to be performed is destroying the * semaphore. */ #define recvfrom_uninit(s) sem_destroy(&(s)->rf_sem) #endif /* CONFIG_NET_UDP || CONFIG_NET_TCP */ /**************************************************************************** * Function: recvfrom_result * * Description: * Evaluate the result of the recv operations * * Parameters: * result The result of the net_lockedwait operation (may indicate EINTR) * pstate A pointer to the state structure to be initialized * * Returned Value: * The result of the recv operation with errno set appropriately * * Assumptions: * ****************************************************************************/ #if defined(CONFIG_NET_UDP) || defined(CONFIG_NET_TCP) static ssize_t recvfrom_result(int result, struct recvfrom_s *pstate) { int save_errno = errno; /* In case something we do changes it */ /* Check for a error/timeout detected by the interrupt handler. Errors are * signaled by negative errno values for the rcv length */ if (pstate->rf_result < 0) { /* This might return EAGAIN on a timeout or ENOTCONN on loss of * connection (TCP only) */ return pstate->rf_result; } /* If net_lockedwait failed, then we were probably reawakened by a signal. In * this case, net_lockedwait will have set errno appropriately. */ if (result < 0) { return -save_errno; } return pstate->rf_recvlen; } #endif /* CONFIG_NET_UDP || CONFIG_NET_TCP */ /**************************************************************************** * Function: pkt_recvfrom * * Description: * Perform the recvfrom operation for packet socket * * Parameters: * * Returned Value: * * Assumptions: * ****************************************************************************/ #ifdef CONFIG_NET_PKT static ssize_t pkt_recvfrom(FAR struct socket *psock, FAR void *buf, size_t len, FAR struct sockaddr_ll *from) { FAR struct pkt_conn_s *conn = (FAR struct pkt_conn_s *)psock->s_conn; struct recvfrom_s state; net_lock_t save; int ret; /* Perform the packet recvfrom() operation */ /* Initialize the state structure. This is done with interrupts * disabled because we don't want anything to happen until we * are ready. */ save = net_lock(); recvfrom_init(psock, buf, len, (struct sockaddr_in *)from, &state); /* TODO recvfrom_init() expects from to be of type sockaddr_in, but * in our case is sockaddr_ll */ #if 0 ret = pkt_connect(conn, NULL); if (ret < 0) { goto errout_with_state; } #endif /* Set up the callback in the connection */ state.rf_cb = pkt_callback_alloc(conn); if (state.rf_cb) { state.rf_cb->flags = (PKT_NEWDATA | PKT_POLL); state.rf_cb->priv = (void*)&state; state.rf_cb->event = recvfrom_pktinterrupt; /* Notify the device driver of the receive call */ /* netdev_rxnotify(conn->ripaddr); */ /* Wait for either the receive to complete or for an error/timeout to occur. * NOTES: (1) net_lockedwait will also terminate if a signal is received, (2) * interrupts are disabled! They will be re-enabled while the task sleeps * and automatically re-enabled when the task restarts. */ ret = net_lockedwait(&state.rf_sem); /* Make sure that no further interrupts are processed */ pkt_callback_free(conn, state.rf_cb); ret = recvfrom_result(ret, &state); } else { ret = -EBUSY; } #if 0 /* Not used */ errout_with_state: #endif net_unlock(save); recvfrom_uninit(&state); return ret; } #endif /* CONFIG_NET_PKT */ /**************************************************************************** * Function: udp_recvfrom * * Description: * Perform the recvfrom operation for a UDP SOCK_DGRAM * * Parameters: * psock Pointer to the socket structure for the SOCK_DRAM socket * buf Buffer to receive data * len Length of buffer * infrom INET address of source (may be NULL) * * Returned Value: * On success, returns the number of characters sent. On error, * -errno is returned (see recvfrom for list of errnos). * * Assumptions: * ****************************************************************************/ #ifdef CONFIG_NET_UDP #ifdef CONFIG_NET_IPv6 static ssize_t udp_recvfrom(FAR struct socket *psock, FAR void *buf, size_t len, FAR struct sockaddr_in6 *infrom ) #else static ssize_t udp_recvfrom(FAR struct socket *psock, FAR void *buf, size_t len, FAR struct sockaddr_in *infrom ) #endif { FAR struct udp_conn_s *conn = (FAR struct udp_conn_s *)psock->s_conn; struct recvfrom_s state; net_lock_t save; int ret; /* Perform the UDP recvfrom() operation */ /* Initialize the state structure. This is done with interrupts * disabled because we don't want anything to happen until we * are ready. */ save = net_lock(); recvfrom_init(psock, buf, len, infrom, &state); /* Setup the UDP remote connection */ ret = udp_connect(conn, NULL); if (ret < 0) { goto errout_with_state; } /* Set up the callback in the connection */ state.rf_cb = udp_callback_alloc(conn); if (state.rf_cb) { /* Set up the callback in the connection */ state.rf_cb->flags = (UDP_NEWDATA | UDP_POLL); state.rf_cb->priv = (void*)&state; state.rf_cb->event = recvfrom_udpinterrupt; /* Notify the device driver of the receive call */ netdev_rxnotify(conn->ripaddr); /* Wait for either the receive to complete or for an error/timeout to occur. * NOTES: (1) net_lockedwait will also terminate if a signal is received, (2) * interrupts are disabled! They will be re-enabled while the task sleeps * and automatically re-enabled when the task restarts. */ ret = net_lockedwait(&state. rf_sem); /* Make sure that no further interrupts are processed */ udp_callback_free(conn, state.rf_cb); ret = recvfrom_result(ret, &state); } else { ret = -EBUSY; } errout_with_state: net_unlock(save); recvfrom_uninit(&state); return ret; } #endif /* CONFIG_NET_UDP */ /**************************************************************************** * Function: tcp_recvfrom * * Description: * Perform the recvfrom operation for a TCP/IP SOCK_STREAM * * Parameters: * psock Pointer to the socket structure for the SOCK_DRAM socket * buf Buffer to receive data * len Length of buffer * infrom INET address of source (may be NULL) * * Returned Value: * On success, returns the number of characters sent. On error, * -errno is returned (see recvfrom for list of errnos). * * Assumptions: * ****************************************************************************/ #ifdef CONFIG_NET_TCP #ifdef CONFIG_NET_IPv6 static ssize_t tcp_recvfrom(FAR struct socket *psock, FAR void *buf, size_t len, FAR struct sockaddr_in6 *infrom ) #else static ssize_t tcp_recvfrom(FAR struct socket *psock, FAR void *buf, size_t len, FAR struct sockaddr_in *infrom ) #endif { struct recvfrom_s state; net_lock_t save; int ret; /* Initialize the state structure. This is done with interrupts * disabled because we don't want anything to happen until we * are ready. */ save = net_lock(); recvfrom_init(psock, buf, len, infrom, &state); /* Handle any any TCP data already buffered in a read-ahead buffer. NOTE * that there may be read-ahead data to be retrieved even after the * socket has been disconnected. */ #ifdef CONFIG_NET_TCP_READAHEAD recvfrom_readahead(&state); /* The default return value is the number of bytes that we just copied * into the user buffer. We will return this if the socket has become * disconnected or if the user request was completely satisfied with * data from the readahead buffers. */ ret = state.rf_recvlen; #else /* Otherwise, the default return value of zero is used (only for the case * where len == state.rf_buflen is zero). */ ret = 0; #endif /* Verify that the SOCK_STREAM has been and still is connected */ if (!_SS_ISCONNECTED(psock->s_flags)) { /* Was any data transferred from the readahead buffer after we were * disconnected? If so, then return the number of bytes received. We * will wait to return end disconnection indications the next time that * recvfrom() is called. * * If no data was received (i.e., ret == 0 -- it will not be negative) * and the connection was gracefully closed by the remote peer, then return * success. If rf_recvlen is zero, the caller of recvfrom() will get an * end-of-file indication. */ #ifdef CONFIG_NET_TCP_READAHEAD if (ret <= 0 && !_SS_ISCLOSED(psock->s_flags)) #else if (!_SS_ISCLOSED(psock->s_flags)) #endif { /* Nothing was previously received from the readahead buffers. * The SOCK_STREAM must be (re-)connected in order to receive any * additional data. */ ret = -ENOTCONN; } } /* In general, this uIP-based implementation will not support non-blocking * socket operations... except in a few cases: Here for TCP receive with read-ahead * enabled. If this socket is configured as non-blocking then return EAGAIN * if no data was obtained from the read-ahead buffers. */ else #ifdef CONFIG_NET_TCP_READAHEAD if (_SS_ISNONBLOCK(psock->s_flags)) { /* Return the number of bytes read from the read-ahead buffer if * something was received (already in 'ret'); EAGAIN if not. */ if (ret <= 0) { /* Nothing was received */ ret = -EAGAIN; } } /* It is okay to block if we need to. If there is space to receive anything * more, then we will wait to receive the data. Otherwise return the number * of bytes read from the read-ahead buffer (already in 'ret'). */ else #endif /* We get here when we we decide that we need to setup the wait for incoming * TCP/IP data. Just a few more conditions to check: * * 1) Make sure thet there is buffer space to receive additional data * (state.rf_buflen > 0). This could be zero, for example, if read-ahead * buffering was enabled and we filled the user buffer with data from * the read-ahead buffers. And * 2) if read-ahead buffering is enabled (CONFIG_NET_TCP_READAHEAD) * and delay logic is disabled (CONFIG_NET_TCP_RECVDELAY == 0), then we * not want to wait if we already obtained some data from the read-ahead * buffer. In that case, return now with what we have (don't want for more * because there may be no timeout). */ #if CONFIG_NET_TCP_RECVDELAY == 0 && defined(CONFIG_NET_TCP_READAHEAD) if (state.rf_recvlen == 0 && state.rf_buflen > 0) #else if (state.rf_buflen > 0) #endif { FAR struct tcp_conn_s *conn = (FAR struct tcp_conn_s *)psock->s_conn; /* Set up the callback in the connection */ state.rf_cb = tcp_callback_alloc(conn); if (state.rf_cb) { state.rf_cb->flags = (TCP_NEWDATA | TCP_POLL | TCP_CLOSE | TCP_ABORT | TCP_TIMEDOUT); state.rf_cb->priv = (void*)&state; state.rf_cb->event = recvfrom_tcpinterrupt; /* Wait for either the receive to complete or for an error/timeout * to occur. * * NOTES: (1) net_lockedwait will also terminate if a signal is * received, (2) interrupts may be disabled! They will be re- * enabled while the task sleeps and automatically re-enabled when * the task restarts. */ ret = net_lockedwait(&state.rf_sem); /* Make sure that no further interrupts are processed */ tcp_callback_free(conn, state.rf_cb); ret = recvfrom_result(ret, &state); } else { ret = -EBUSY; } } net_unlock(save); recvfrom_uninit(&state); return (ssize_t)ret; } #endif /* CONFIG_NET_TCP */ /**************************************************************************** * Global Functions ****************************************************************************/ /**************************************************************************** * Function: psock_recvfrom * * Description: * recvfrom() receives messages from a socket, and may be used to receive * data on a socket whether or not it is connection-oriented. * * If from is not NULL, and the underlying protocol provides the source * address, this source address is filled in. The argument fromlen * initialized to the size of the buffer associated with from, and modified * on return to indicate the actual size of the address stored there. * * Parameters: * psock A pointer to a NuttX-specific, internal socket structure * buf Buffer to receive data * len Length of buffer * flags Receive flags * from Address of source (may be NULL) * fromlen The length of the address structure * * Returned Value: * On success, returns the number of characters sent. If no data is * available to be received and the peer has performed an orderly shutdown, * recv() will return 0. Otherwise, on errors, -1 is returned, and errno * is set appropriately: * * EAGAIN * The socket is marked non-blocking and the receive operation would block, * or a receive timeout had been set and the timeout expired before data * was received. * EBADF * The argument sockfd is an invalid descriptor. * ECONNREFUSED * A remote host refused to allow the network connection (typically because * it is not running the requested service). * EFAULT * The receive buffer pointer(s) point outside the process's address space. * EINTR * The receive was interrupted by delivery of a signal before any data were * available. * EINVAL * Invalid argument passed. * ENOMEM * Could not allocate memory. * ENOTCONN * The socket is associated with a connection-oriented protocol and has * not been connected. * ENOTSOCK * The argument sockfd does not refer to a socket. * * Assumptions: * ****************************************************************************/ ssize_t psock_recvfrom(FAR struct socket *psock, FAR void *buf, size_t len, int flags,FAR struct sockaddr *from, FAR socklen_t *fromlen) { #if defined(CONFIG_NET_PKT) FAR struct sockaddr_ll *llfrom = (struct sockaddr_ll *)from; #endif #if defined(CONFIG_NET_UDP) || defined(CONFIG_NET_TCP) #ifdef CONFIG_NET_IPv6 FAR struct sockaddr_in6 *infrom = (struct sockaddr_in6 *)from; #else FAR struct sockaddr_in *infrom = (struct sockaddr_in *)from; #endif #endif ssize_t ret; int err; /* Verify that non-NULL pointers were passed */ #ifdef CONFIG_DEBUG if (!buf) { err = EINVAL; goto errout; } #endif /* Verify that the sockfd corresponds to valid, allocated socket */ if (!psock || psock->s_crefs <= 0) { err = EBADF; goto errout; } /* If a 'from' address has been provided, verify that it is large * enough to hold this address family. */ if (from) { #ifdef CONFIG_NET_IPv6 if (*fromlen < sizeof(struct sockaddr_in6)) #else if (*fromlen < sizeof(struct sockaddr_in)) #endif { err = EINVAL; goto errout; } } /* Set the socket state to receiving */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_RECV); /* Read from the network interface driver buffer */ /* Or perform the TCP/IP or UDP recv() operation */ #if defined(CONFIG_NET_PKT) if (psock->s_type == SOCK_RAW) { ret = pkt_recvfrom(psock, buf, len, llfrom); } else #endif #if defined(CONFIG_NET_TCP) if (psock->s_type == SOCK_STREAM) { ret = tcp_recvfrom(psock, buf, len, infrom); } else #endif #if defined(CONFIG_NET_UDP) if (psock->s_type == SOCK_DGRAM) { ret = udp_recvfrom(psock, buf, len, infrom); } else #endif { ndbg("ERROR: Unsupported socket type: %d\n", psock->s_type); ret = -ENOSYS; } /* Set the socket state to idle */ psock->s_flags = _SS_SETSTATE(psock->s_flags, _SF_IDLE); /* Handle returned errors */ if (ret < 0) { err = -ret; goto errout; } /* Success return */ return ret; errout: errno = err; return ERROR; } /**************************************************************************** * Function: recvfrom * * Description: * recvfrom() receives messages from a socket, and may be used to receive * data on a socket whether or not it is connection-oriented. * * If from is not NULL, and the underlying protocol provides the source * address, this source address is filled in. The argument fromlen * initialized to the size of the buffer associated with from, and modified * on return to indicate the actual size of the address stored there. * * Parameters: * sockfd Socket descriptor of socket * buf Buffer to receive data * len Length of buffer * flags Receive flags * from Address of source (may be NULL) * fromlen The length of the address structure * * Returned Value: * On success, returns the number of characters sent. On error, * -1 is returned, and errno is set appropriately: * * EAGAIN * The socket is marked non-blocking and the receive operation would block, * or a receive timeout had been set and the timeout expired before data * was received. * EBADF * The argument sockfd is an invalid descriptor. * ECONNREFUSED * A remote host refused to allow the network connection (typically because * it is not running the requested service). * EFAULT * The receive buffer pointer(s) point outside the process's address space. * EINTR * The receive was interrupted by delivery of a signal before any data were * available. * EINVAL * Invalid argument passed. * ENOMEM * Could not allocate memory. * ENOTCONN * The socket is associated with a connection-oriented protocol and has * not been connected. * ENOTSOCK * The argument sockfd does not refer to a socket. * * Assumptions: * ****************************************************************************/ ssize_t recvfrom(int sockfd, FAR void *buf, size_t len, int flags, FAR struct sockaddr *from, FAR socklen_t *fromlen) { FAR struct socket *psock; /* Get the underlying socket structure */ psock = sockfd_socket(sockfd); /* Then let psock_recvfrom() do all of the work */ return psock_recvfrom(psock, buf, len, flags, from, fromlen); } #endif /* CONFIG_NET */