// Protocol Buffers - Google's data interchange format // Copyright 2014 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "protobuf.h" // ----------------------------------------------------------------------------- // Parsing. // ----------------------------------------------------------------------------- #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs) // Creates a handlerdata that simply contains the offset for this field. static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) { size_t* hd_ofs = ALLOC(size_t); *hd_ofs = ofs; upb_handlers_addcleanup(h, hd_ofs, free); return hd_ofs; } typedef struct { size_t ofs; const upb_msgdef *md; } submsg_handlerdata_t; // Creates a handlerdata that contains offset and submessage type information. static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs, const upb_fielddef* f) { submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t); hd->ofs = ofs; hd->md = upb_fielddef_msgsubdef(f); upb_handlers_addcleanup(h, hd, free); return hd; } // A handler that starts a repeated field. Gets the Repeated*Field instance for // this field (such an instance always exists even in an empty message). static void *startseq_handler(void* closure, const void* hd) { MessageHeader* msg = closure; const size_t *ofs = hd; return (void*)DEREF(Message_data(msg), *ofs, VALUE); } // Handlers that append primitive values to a repeated field (a regular Ruby // array for now). #define DEFINE_APPEND_HANDLER(type, ctype) \ static bool append##type##_handler(void *closure, const void *hd, \ ctype val) { \ VALUE ary = (VALUE)closure; \ RepeatedField_push_native(ary, &val); \ return true; \ } DEFINE_APPEND_HANDLER(bool, bool) DEFINE_APPEND_HANDLER(int32, int32_t) DEFINE_APPEND_HANDLER(uint32, uint32_t) DEFINE_APPEND_HANDLER(float, float) DEFINE_APPEND_HANDLER(int64, int64_t) DEFINE_APPEND_HANDLER(uint64, uint64_t) DEFINE_APPEND_HANDLER(double, double) // Appends a string to a repeated field (a regular Ruby array for now). static void* appendstr_handler(void *closure, const void *hd, size_t size_hint) { VALUE ary = (VALUE)closure; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyStringUtf8Encoding); RepeatedField_push(ary, str); return (void*)str; } // Appends a 'bytes' string to a repeated field (a regular Ruby array for now). static void* appendbytes_handler(void *closure, const void *hd, size_t size_hint) { VALUE ary = (VALUE)closure; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyString8bitEncoding); RepeatedField_push(ary, str); return (void*)str; } // Sets a non-repeated string field in a message. static void* str_handler(void *closure, const void *hd, size_t size_hint) { MessageHeader* msg = closure; const size_t *ofs = hd; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyStringUtf8Encoding); DEREF(Message_data(msg), *ofs, VALUE) = str; return (void*)str; } // Sets a non-repeated 'bytes' field in a message. static void* bytes_handler(void *closure, const void *hd, size_t size_hint) { MessageHeader* msg = closure; const size_t *ofs = hd; VALUE str = rb_str_new2(""); rb_enc_associate(str, kRubyString8bitEncoding); DEREF(Message_data(msg), *ofs, VALUE) = str; return (void*)str; } static size_t stringdata_handler(void* closure, const void* hd, const char* str, size_t len, const upb_bufhandle* handle) { VALUE rb_str = (VALUE)closure; rb_str_cat(rb_str, str, len); return len; } // Appends a submessage to a repeated field (a regular Ruby array for now). static void *appendsubmsg_handler(void *closure, const void *hd) { VALUE ary = (VALUE)closure; const submsg_handlerdata_t *submsgdata = hd; VALUE subdesc = get_def_obj((void*)submsgdata->md); VALUE subklass = Descriptor_msgclass(subdesc); VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass); RepeatedField_push(ary, submsg_rb); MessageHeader* submsg; TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); return submsg; } // Sets a non-repeated submessage field in a message. static void *submsg_handler(void *closure, const void *hd) { MessageHeader* msg = closure; const submsg_handlerdata_t* submsgdata = hd; VALUE subdesc = get_def_obj((void*)submsgdata->md); VALUE subklass = Descriptor_msgclass(subdesc); if (DEREF(Message_data(msg), submsgdata->ofs, VALUE) == Qnil) { DEREF(Message_data(msg), submsgdata->ofs, VALUE) = rb_class_new_instance(0, NULL, subklass); } VALUE submsg_rb = DEREF(Message_data(msg), submsgdata->ofs, VALUE); MessageHeader* submsg; TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); return submsg; } static void add_handlers_for_message(const void *closure, upb_handlers *h) { Descriptor* desc = ruby_to_Descriptor( get_def_obj((void*)upb_handlers_msgdef(h))); // Ensure layout exists. We may be invoked to create handlers for a given // message if we are included as a submsg of another message type before our // class is actually built, so to work around this, we just create the layout // (and handlers, in the class-building function) on-demand. if (desc->layout == NULL) { desc->layout = create_layout(desc->msgdef); } upb_msg_iter i; for (upb_msg_begin(&i, desc->msgdef); !upb_msg_done(&i); upb_msg_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); size_t offset = desc->layout->offsets[upb_fielddef_index(f)]; if (upb_fielddef_isseq(f)) { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); upb_handlers_setstartseq(h, f, startseq_handler, &attr); upb_handlerattr_uninit(&attr); switch (upb_fielddef_type(f)) { #define SET_HANDLER(utype, ltype) \ case utype: \ upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ break; SET_HANDLER(UPB_TYPE_BOOL, bool); SET_HANDLER(UPB_TYPE_INT32, int32); SET_HANDLER(UPB_TYPE_UINT32, uint32); SET_HANDLER(UPB_TYPE_ENUM, int32); SET_HANDLER(UPB_TYPE_FLOAT, float); SET_HANDLER(UPB_TYPE_INT64, int64); SET_HANDLER(UPB_TYPE_UINT64, uint64); SET_HANDLER(UPB_TYPE_DOUBLE, double); #undef SET_HANDLER case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; upb_handlers_setstartstr(h, f, is_bytes ? appendbytes_handler : appendstr_handler, NULL); upb_handlers_setstring(h, f, stringdata_handler, NULL); } case UPB_TYPE_MESSAGE: { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f)); upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); upb_handlerattr_uninit(&attr); break; } } } switch (upb_fielddef_type(f)) { case UPB_TYPE_BOOL: case UPB_TYPE_INT32: case UPB_TYPE_UINT32: case UPB_TYPE_ENUM: case UPB_TYPE_FLOAT: case UPB_TYPE_INT64: case UPB_TYPE_UINT64: case UPB_TYPE_DOUBLE: // The shim writes directly at the given offset (instead of using // DEREF()) so we need to add the msg overhead. upb_shim_set(h, f, offset + sizeof(MessageHeader), -1); break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); upb_handlers_setstartstr(h, f, is_bytes ? bytes_handler : str_handler, &attr); upb_handlers_setstring(h, f, stringdata_handler, &attr); upb_handlerattr_uninit(&attr); break; } case UPB_TYPE_MESSAGE: { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f)); upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); upb_handlerattr_uninit(&attr); break; } } } } // Creates upb handlers for populating a message. static const upb_handlers *new_fill_handlers(Descriptor* desc, const void* owner) { // TODO(cfallin, haberman): once upb gets a caching/memoization layer for // handlers, reuse subdef handlers so that e.g. if we already parse // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to // parse A-with-field-of-type-B-with-field-of-type-C. return upb_handlers_newfrozen(desc->msgdef, owner, add_handlers_for_message, NULL); } // Constructs the handlers for filling a message's data into an in-memory // object. const upb_handlers* get_fill_handlers(Descriptor* desc) { if (!desc->fill_handlers) { desc->fill_handlers = new_fill_handlers(desc, &desc->fill_handlers); } return desc->fill_handlers; } // Constructs the upb decoder method for parsing messages of this type. // This is called from the message class creation code. const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc, const void* owner) { const upb_handlers* handlers = get_fill_handlers(desc); upb_pbdecodermethodopts opts; upb_pbdecodermethodopts_init(&opts, handlers); const upb_pbdecodermethod *ret = upb_pbdecodermethod_new(&opts, owner); return ret; } static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) { if (desc->fill_method == NULL) { desc->fill_method = new_fillmsg_decodermethod( desc, &desc->fill_method); } return desc->fill_method; } /* * call-seq: * MessageClass.decode(data) => message * * Decodes the given data (as a string containing bytes in protocol buffers wire * format) under the interpretration given by this message class's definition * and returns a message object with the corresponding field values. */ VALUE Message_decode(VALUE klass, VALUE data) { VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar); Descriptor* desc = ruby_to_Descriptor(descriptor); VALUE msgklass = Descriptor_msgclass(descriptor); if (TYPE(data) != T_STRING) { rb_raise(rb_eArgError, "Expected string for binary protobuf data."); } VALUE msg_rb = rb_class_new_instance(0, NULL, msgklass); MessageHeader* msg; TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); const upb_pbdecodermethod* method = msgdef_decodermethod(desc); const upb_handlers* h = upb_pbdecodermethod_desthandlers(method); upb_pbdecoder decoder; upb_sink sink; upb_status status = UPB_STATUS_INIT; upb_pbdecoder_init(&decoder, method, &status); upb_sink_reset(&sink, h, msg); upb_pbdecoder_resetoutput(&decoder, &sink); upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), upb_pbdecoder_input(&decoder)); upb_pbdecoder_uninit(&decoder); if (!upb_ok(&status)) { rb_raise(rb_eRuntimeError, "Error occurred during parsing: %s.", upb_status_errmsg(&status)); } return msg_rb; } /* * call-seq: * MessageClass.decode_json(data) => message * * Decodes the given data (as a string containing bytes in protocol buffers wire * format) under the interpretration given by this message class's definition * and returns a message object with the corresponding field values. */ VALUE Message_decode_json(VALUE klass, VALUE data) { VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar); Descriptor* desc = ruby_to_Descriptor(descriptor); VALUE msgklass = Descriptor_msgclass(descriptor); if (TYPE(data) != T_STRING) { rb_raise(rb_eArgError, "Expected string for JSON data."); } // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to // convert, because string handlers pass data directly to message string // fields. VALUE msg_rb = rb_class_new_instance(0, NULL, msgklass); MessageHeader* msg; TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); upb_status status = UPB_STATUS_INIT; upb_json_parser parser; upb_json_parser_init(&parser, &status); upb_sink sink; upb_sink_reset(&sink, get_fill_handlers(desc), msg); upb_json_parser_resetoutput(&parser, &sink); upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), upb_json_parser_input(&parser)); upb_json_parser_uninit(&parser); if (!upb_ok(&status)) { rb_raise(rb_eRuntimeError, "Error occurred during parsing: %s.", upb_status_errmsg(&status)); } return msg_rb; } // ----------------------------------------------------------------------------- // Serializing. // ----------------------------------------------------------------------------- // // The code below also comes from upb's prototype Ruby binding, developed by // haberman@. /* stringsink *****************************************************************/ // This should probably be factored into a common upb component. typedef struct { upb_byteshandler handler; upb_bytessink sink; char *ptr; size_t len, size; } stringsink; static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { stringsink *sink = _sink; sink->len = 0; return sink; } static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, size_t len, const upb_bufhandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); stringsink *sink = _sink; size_t new_size = sink->size; while (sink->len + len > new_size) { new_size *= 2; } if (new_size != sink->size) { sink->ptr = realloc(sink->ptr, new_size); sink->size = new_size; } memcpy(sink->ptr + sink->len, ptr, len); sink->len += len; return len; } void stringsink_init(stringsink *sink) { upb_byteshandler_init(&sink->handler); upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); upb_bytessink_reset(&sink->sink, &sink->handler, sink); sink->size = 32; sink->ptr = malloc(sink->size); sink->len = 0; } void stringsink_uninit(stringsink *sink) { free(sink->ptr); } /* msgvisitor *****************************************************************/ // TODO: If/when we support proto2 semantics in addition to the current proto3 // semantics, which means that we have true field presence, we will want to // modify msgvisitor so that it emits all present fields rather than all // non-default-value fields. // // Likewise, when implementing JSON serialization, we may need to have a // 'verbose' mode that outputs all fields and a 'concise' mode that outputs only // those with non-default values. static void putmsg(VALUE msg, const Descriptor* desc, upb_sink *sink, int depth); static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { upb_selector_t ret; bool ok = upb_handlers_getselector(f, type, &ret); UPB_ASSERT_VAR(ok, ok); return ret; } static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) { if (str == Qnil) return; assert(BUILTIN_TYPE(str) == RUBY_T_STRING); upb_sink subsink; // Ensure that the string has the correct encoding. We also check at field-set // time, but the user may have mutated the string object since then. native_slot_validate_string_encoding(upb_fielddef_type(f), str); upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str), &subsink); upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str), RSTRING_LEN(str), NULL); upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); } static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink, int depth) { if (submsg == Qnil) return; upb_sink subsink; VALUE descriptor = rb_iv_get(submsg, kDescriptorInstanceVar); Descriptor* subdesc = ruby_to_Descriptor(descriptor); upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); putmsg(submsg, subdesc, &subsink, depth + 1); upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); } static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink, int depth) { if (ary == Qnil) return; upb_sink subsink; upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); upb_fieldtype_t type = upb_fielddef_type(f); upb_selector_t sel = 0; if (upb_fielddef_isprimitive(f)) { sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); } int size = NUM2INT(RepeatedField_length(ary)); for (int i = 0; i < size; i++) { void* memory = RepeatedField_index_native(ary, i); switch (type) { #define T(upbtypeconst, upbtype, ctype) \ case upbtypeconst: \ upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \ break; T(UPB_TYPE_FLOAT, float, float) T(UPB_TYPE_DOUBLE, double, double) T(UPB_TYPE_BOOL, bool, int8_t) case UPB_TYPE_ENUM: T(UPB_TYPE_INT32, int32, int32_t) T(UPB_TYPE_UINT32, uint32, uint32_t) T(UPB_TYPE_INT64, int64, int64_t) T(UPB_TYPE_UINT64, uint64, uint64_t) case UPB_TYPE_STRING: case UPB_TYPE_BYTES: putstr(*((VALUE *)memory), f, &subsink); break; case UPB_TYPE_MESSAGE: putsubmsg(*((VALUE *)memory), f, &subsink, depth); break; #undef T } } upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); } static void putmsg(VALUE msg_rb, const Descriptor* desc, upb_sink *sink, int depth) { upb_sink_startmsg(sink); // Protect against cycles (possible because users may freely reassign message // and repeated fields) by imposing a maximum recursion depth. if (depth > UPB_SINK_MAX_NESTING) { rb_raise(rb_eRuntimeError, "Maximum recursion depth exceeded during encoding."); } MessageHeader* msg; TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); void* msg_data = Message_data(msg); upb_msg_iter i; for (upb_msg_begin(&i, desc->msgdef); !upb_msg_done(&i); upb_msg_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); uint32_t offset = desc->layout->offsets[upb_fielddef_index(f)]; if (upb_fielddef_isseq(f)) { VALUE ary = DEREF(msg_data, offset, VALUE); if (ary != Qnil) { putary(ary, f, sink, depth); } } else if (upb_fielddef_isstring(f)) { VALUE str = DEREF(msg_data, offset, VALUE); if (RSTRING_LEN(str) > 0) { putstr(str, f, sink); } } else if (upb_fielddef_issubmsg(f)) { putsubmsg(DEREF(msg_data, offset, VALUE), f, sink, depth); } else { upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); #define T(upbtypeconst, upbtype, ctype, default_value) \ case upbtypeconst: { \ ctype value = DEREF(msg_data, offset, ctype); \ if (value != default_value) { \ upb_sink_put##upbtype(sink, sel, value); \ } \ } \ break; switch (upb_fielddef_type(f)) { T(UPB_TYPE_FLOAT, float, float, 0.0) T(UPB_TYPE_DOUBLE, double, double, 0.0) T(UPB_TYPE_BOOL, bool, uint8_t, 0) case UPB_TYPE_ENUM: T(UPB_TYPE_INT32, int32, int32_t, 0) T(UPB_TYPE_UINT32, uint32, uint32_t, 0) T(UPB_TYPE_INT64, int64, int64_t, 0) T(UPB_TYPE_UINT64, uint64, uint64_t, 0) case UPB_TYPE_STRING: case UPB_TYPE_BYTES: case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error."); } #undef T } } upb_status status; upb_sink_endmsg(sink, &status); } static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) { if (desc->pb_serialize_handlers == NULL) { desc->pb_serialize_handlers = upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers); } return desc->pb_serialize_handlers; } static const upb_handlers* msgdef_json_serialize_handlers(Descriptor* desc) { if (desc->json_serialize_handlers == NULL) { desc->json_serialize_handlers = upb_json_printer_newhandlers( desc->msgdef, &desc->json_serialize_handlers); } return desc->json_serialize_handlers; } /* * call-seq: * MessageClass.encode(msg) => bytes * * Encodes the given message object to its serialized form in protocol buffers * wire format. */ VALUE Message_encode(VALUE klass, VALUE msg_rb) { VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar); Descriptor* desc = ruby_to_Descriptor(descriptor); stringsink sink; stringsink_init(&sink); const upb_handlers* serialize_handlers = msgdef_pb_serialize_handlers(desc); upb_pb_encoder encoder; upb_pb_encoder_init(&encoder, serialize_handlers); upb_pb_encoder_resetoutput(&encoder, &sink.sink); putmsg(msg_rb, desc, upb_pb_encoder_input(&encoder), 0); VALUE ret = rb_str_new(sink.ptr, sink.len); upb_pb_encoder_uninit(&encoder); stringsink_uninit(&sink); return ret; } /* * call-seq: * MessageClass.encode_json(msg) => json_string * * Encodes the given message object into its serialized JSON representation. */ VALUE Message_encode_json(VALUE klass, VALUE msg_rb) { VALUE descriptor = rb_iv_get(klass, kDescriptorInstanceVar); Descriptor* desc = ruby_to_Descriptor(descriptor); stringsink sink; stringsink_init(&sink); const upb_handlers* serialize_handlers = msgdef_json_serialize_handlers(desc); upb_json_printer printer; upb_json_printer_init(&printer, serialize_handlers); upb_json_printer_resetoutput(&printer, &sink.sink); putmsg(msg_rb, desc, upb_json_printer_input(&printer), 0); VALUE ret = rb_str_new(sink.ptr, sink.len); upb_json_printer_uninit(&printer); stringsink_uninit(&sink); return ret; } /* * call-seq: * Google::Protobuf.encode(msg) => bytes * * Encodes the given message object to protocol buffers wire format. This is an * alternative to the #encode method on msg's class. */ VALUE Google_Protobuf_encode(VALUE self, VALUE msg_rb) { VALUE klass = CLASS_OF(msg_rb); return Message_encode(klass, msg_rb); } /* * call-seq: * Google::Protobuf.encode_json(msg) => json_string * * Encodes the given message object to its JSON representation. This is an * alternative to the #encode_json method on msg's class. */ VALUE Google_Protobuf_encode_json(VALUE self, VALUE msg_rb) { VALUE klass = CLASS_OF(msg_rb); return Message_encode_json(klass, msg_rb); } /* * call-seq: * Google::Protobuf.decode(class, bytes) => msg * * Decodes the given bytes as protocol buffers wire format under the * interpretation given by the given class's message definition. This is an * alternative to the #decode method on the given class. */ VALUE Google_Protobuf_decode(VALUE self, VALUE klass, VALUE msg_rb) { return Message_decode(klass, msg_rb); } /* * call-seq: * Google::Protobuf.decode_json(class, json_string) => msg * * Decodes the given JSON string under the interpretation given by the given * class's message definition. This is an alternative to the #decode_json method * on the given class. */ VALUE Google_Protobuf_decode_json(VALUE self, VALUE klass, VALUE msg_rb) { return Message_decode_json(klass, msg_rb); }