// Protocol Buffers - Google's data interchange format // Copyright 2014 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef __GOOGLE_PROTOBUF_RUBY_PROTOBUF_H__ #define __GOOGLE_PROTOBUF_RUBY_PROTOBUF_H__ #include #include #include #include "upb.h" // Forward decls. struct DescriptorPool; struct Descriptor; struct FieldDescriptor; struct EnumDescriptor; struct MessageLayout; struct MessageField; struct MessageHeader; struct MessageBuilderContext; struct EnumBuilderContext; struct Builder; typedef struct DescriptorPool DescriptorPool; typedef struct Descriptor Descriptor; typedef struct FieldDescriptor FieldDescriptor; typedef struct OneofDescriptor OneofDescriptor; typedef struct EnumDescriptor EnumDescriptor; typedef struct MessageLayout MessageLayout; typedef struct MessageField MessageField; typedef struct MessageHeader MessageHeader; typedef struct MessageBuilderContext MessageBuilderContext; typedef struct OneofBuilderContext OneofBuilderContext; typedef struct EnumBuilderContext EnumBuilderContext; typedef struct Builder Builder; /* It can be a bit confusing how the C structs defined below and the Ruby objects interact and hold references to each other. First, a few principles: - Ruby's "TypedData" abstraction lets a Ruby VALUE hold a pointer to a C struct (or arbitrary memory chunk), own it, and free it when collected. Thus, each struct below will have a corresponding Ruby object wrapping/owning it. - To get back from an underlying upb {msg,enum}def to the Ruby object, we keep a global hashmap, accessed by get_def_obj/add_def_obj below. The in-memory structure is then something like: Ruby | upb | DescriptorPool ------------|-----------> upb_symtab____________________ | | (message types) \ | v \ Descriptor ---------------|-----------> upb_msgdef (enum types)| |--> msgclass | | ^ | | (dynamically built) | | | (submsg fields) | |--> MessageLayout | | | / |--------------------------|> decoder method| | / \--------------------------|> serialize | | / | handlers v | / FieldDescriptor -----------|-----------> upb_fielddef / | | / | v (enum fields) / EnumDescriptor ------------|-----------> upb_enumdef <----------' | | ^ | \___/ `---------------|-----------------' (get_def_obj map) */ // ----------------------------------------------------------------------------- // Ruby class structure definitions. // ----------------------------------------------------------------------------- struct DescriptorPool { upb_symtab* symtab; }; struct Descriptor { const upb_msgdef* msgdef; MessageLayout* layout; VALUE klass; // begins as nil const upb_handlers* fill_handlers; const upb_pbdecodermethod* fill_method; const upb_json_parsermethod* json_fill_method; const upb_handlers* pb_serialize_handlers; const upb_handlers* json_serialize_handlers; const upb_handlers* json_serialize_handlers_preserve; }; struct FieldDescriptor { const upb_fielddef* fielddef; }; struct OneofDescriptor { const upb_oneofdef* oneofdef; }; struct EnumDescriptor { const upb_enumdef* enumdef; VALUE module; // begins as nil }; struct MessageBuilderContext { VALUE descriptor; VALUE builder; }; struct OneofBuilderContext { VALUE descriptor; VALUE builder; }; struct EnumBuilderContext { VALUE enumdesc; }; struct Builder { VALUE pending_list; upb_def** defs; // used only while finalizing }; extern VALUE cDescriptorPool; extern VALUE cDescriptor; extern VALUE cFieldDescriptor; extern VALUE cEnumDescriptor; extern VALUE cMessageBuilderContext; extern VALUE cOneofBuilderContext; extern VALUE cEnumBuilderContext; extern VALUE cBuilder; extern VALUE cError; extern VALUE cParseError; extern VALUE cTypeError; // We forward-declare all of the Ruby method implementations here because we // sometimes call the methods directly across .c files, rather than going // through Ruby's method dispatching (e.g. during message parse). It's cleaner // to keep the list of object methods together than to split them between // static-in-file definitions and header declarations. void DescriptorPool_mark(void* _self); void DescriptorPool_free(void* _self); VALUE DescriptorPool_alloc(VALUE klass); void DescriptorPool_register(VALUE module); DescriptorPool* ruby_to_DescriptorPool(VALUE value); VALUE DescriptorPool_add(VALUE _self, VALUE def); VALUE DescriptorPool_build(VALUE _self); VALUE DescriptorPool_lookup(VALUE _self, VALUE name); VALUE DescriptorPool_generated_pool(VALUE _self); void Descriptor_mark(void* _self); void Descriptor_free(void* _self); VALUE Descriptor_alloc(VALUE klass); void Descriptor_register(VALUE module); Descriptor* ruby_to_Descriptor(VALUE value); VALUE Descriptor_name(VALUE _self); VALUE Descriptor_name_set(VALUE _self, VALUE str); VALUE Descriptor_each(VALUE _self); VALUE Descriptor_lookup(VALUE _self, VALUE name); VALUE Descriptor_add_field(VALUE _self, VALUE obj); VALUE Descriptor_add_oneof(VALUE _self, VALUE obj); VALUE Descriptor_each_oneof(VALUE _self); VALUE Descriptor_lookup_oneof(VALUE _self, VALUE name); VALUE Descriptor_msgclass(VALUE _self); extern const rb_data_type_t _Descriptor_type; void FieldDescriptor_mark(void* _self); void FieldDescriptor_free(void* _self); VALUE FieldDescriptor_alloc(VALUE klass); void FieldDescriptor_register(VALUE module); FieldDescriptor* ruby_to_FieldDescriptor(VALUE value); VALUE FieldDescriptor_name(VALUE _self); VALUE FieldDescriptor_name_set(VALUE _self, VALUE str); VALUE FieldDescriptor_type(VALUE _self); VALUE FieldDescriptor_type_set(VALUE _self, VALUE type); VALUE FieldDescriptor_label(VALUE _self); VALUE FieldDescriptor_label_set(VALUE _self, VALUE label); VALUE FieldDescriptor_number(VALUE _self); VALUE FieldDescriptor_number_set(VALUE _self, VALUE number); VALUE FieldDescriptor_submsg_name(VALUE _self); VALUE FieldDescriptor_submsg_name_set(VALUE _self, VALUE value); VALUE FieldDescriptor_subtype(VALUE _self); VALUE FieldDescriptor_get(VALUE _self, VALUE msg_rb); VALUE FieldDescriptor_set(VALUE _self, VALUE msg_rb, VALUE value); upb_fieldtype_t ruby_to_fieldtype(VALUE type); VALUE fieldtype_to_ruby(upb_fieldtype_t type); void OneofDescriptor_mark(void* _self); void OneofDescriptor_free(void* _self); VALUE OneofDescriptor_alloc(VALUE klass); void OneofDescriptor_register(VALUE module); OneofDescriptor* ruby_to_OneofDescriptor(VALUE value); VALUE OneofDescriptor_name(VALUE _self); VALUE OneofDescriptor_name_set(VALUE _self, VALUE value); VALUE OneofDescriptor_add_field(VALUE _self, VALUE field); VALUE OneofDescriptor_each(VALUE _self, VALUE field); void EnumDescriptor_mark(void* _self); void EnumDescriptor_free(void* _self); VALUE EnumDescriptor_alloc(VALUE klass); void EnumDescriptor_register(VALUE module); EnumDescriptor* ruby_to_EnumDescriptor(VALUE value); VALUE EnumDescriptor_name(VALUE _self); VALUE EnumDescriptor_name_set(VALUE _self, VALUE str); VALUE EnumDescriptor_add_value(VALUE _self, VALUE name, VALUE number); VALUE EnumDescriptor_lookup_name(VALUE _self, VALUE name); VALUE EnumDescriptor_lookup_value(VALUE _self, VALUE number); VALUE EnumDescriptor_each(VALUE _self); VALUE EnumDescriptor_enummodule(VALUE _self); extern const rb_data_type_t _EnumDescriptor_type; void MessageBuilderContext_mark(void* _self); void MessageBuilderContext_free(void* _self); VALUE MessageBuilderContext_alloc(VALUE klass); void MessageBuilderContext_register(VALUE module); MessageBuilderContext* ruby_to_MessageBuilderContext(VALUE value); VALUE MessageBuilderContext_initialize(VALUE _self, VALUE descriptor, VALUE builder); VALUE MessageBuilderContext_optional(int argc, VALUE* argv, VALUE _self); VALUE MessageBuilderContext_required(int argc, VALUE* argv, VALUE _self); VALUE MessageBuilderContext_repeated(int argc, VALUE* argv, VALUE _self); VALUE MessageBuilderContext_map(int argc, VALUE* argv, VALUE _self); VALUE MessageBuilderContext_oneof(VALUE _self, VALUE name); void OneofBuilderContext_mark(void* _self); void OneofBuilderContext_free(void* _self); VALUE OneofBuilderContext_alloc(VALUE klass); void OneofBuilderContext_register(VALUE module); OneofBuilderContext* ruby_to_OneofBuilderContext(VALUE value); VALUE OneofBuilderContext_initialize(VALUE _self, VALUE descriptor, VALUE builder); VALUE OneofBuilderContext_optional(int argc, VALUE* argv, VALUE _self); void EnumBuilderContext_mark(void* _self); void EnumBuilderContext_free(void* _self); VALUE EnumBuilderContext_alloc(VALUE klass); void EnumBuilderContext_register(VALUE module); EnumBuilderContext* ruby_to_EnumBuilderContext(VALUE value); VALUE EnumBuilderContext_initialize(VALUE _self, VALUE enumdesc); VALUE EnumBuilderContext_value(VALUE _self, VALUE name, VALUE number); void Builder_mark(void* _self); void Builder_free(void* _self); VALUE Builder_alloc(VALUE klass); void Builder_register(VALUE module); Builder* ruby_to_Builder(VALUE value); VALUE Builder_initialize(VALUE _self); VALUE Builder_add_message(VALUE _self, VALUE name); VALUE Builder_add_enum(VALUE _self, VALUE name); VALUE Builder_finalize_to_pool(VALUE _self, VALUE pool_rb); // ----------------------------------------------------------------------------- // Native slot storage abstraction. // ----------------------------------------------------------------------------- #define NATIVE_SLOT_MAX_SIZE sizeof(uint64_t) size_t native_slot_size(upb_fieldtype_t type); void native_slot_set(upb_fieldtype_t type, VALUE type_class, void* memory, VALUE value); // Atomically (with respect to Ruby VM calls) either update the value and set a // oneof case, or do neither. If |case_memory| is null, then no case value is // set. void native_slot_set_value_and_case(upb_fieldtype_t type, VALUE type_class, void* memory, VALUE value, uint32_t* case_memory, uint32_t case_number); VALUE native_slot_get(upb_fieldtype_t type, VALUE type_class, const void* memory); void native_slot_init(upb_fieldtype_t type, void* memory); void native_slot_mark(upb_fieldtype_t type, void* memory); void native_slot_dup(upb_fieldtype_t type, void* to, void* from); void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from); bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2); VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value); void native_slot_check_int_range_precision(upb_fieldtype_t type, VALUE value); extern rb_encoding* kRubyStringUtf8Encoding; extern rb_encoding* kRubyStringASCIIEncoding; extern rb_encoding* kRubyString8bitEncoding; VALUE field_type_class(const upb_fielddef* field); #define MAP_KEY_FIELD 1 #define MAP_VALUE_FIELD 2 // Oneof case slot value to indicate that no oneof case is set. The value `0` is // safe because field numbers are used as case identifiers, and no field can // have a number of 0. #define ONEOF_CASE_NONE 0 // These operate on a map field (i.e., a repeated field of submessages whose // submessage type is a map-entry msgdef). bool is_map_field(const upb_fielddef* field); const upb_fielddef* map_field_key(const upb_fielddef* field); const upb_fielddef* map_field_value(const upb_fielddef* field); // These operate on a map-entry msgdef. const upb_fielddef* map_entry_key(const upb_msgdef* msgdef); const upb_fielddef* map_entry_value(const upb_msgdef* msgdef); // ----------------------------------------------------------------------------- // Repeated field container type. // ----------------------------------------------------------------------------- typedef struct { upb_fieldtype_t field_type; VALUE field_type_class; void* elements; int size; int capacity; } RepeatedField; void RepeatedField_mark(void* self); void RepeatedField_free(void* self); VALUE RepeatedField_alloc(VALUE klass); VALUE RepeatedField_init(int argc, VALUE* argv, VALUE self); void RepeatedField_register(VALUE module); extern const rb_data_type_t RepeatedField_type; extern VALUE cRepeatedField; RepeatedField* ruby_to_RepeatedField(VALUE value); VALUE RepeatedField_each(VALUE _self); VALUE RepeatedField_index(int argc, VALUE* argv, VALUE _self); void* RepeatedField_index_native(VALUE _self, int index); int RepeatedField_size(VALUE _self); VALUE RepeatedField_index_set(VALUE _self, VALUE _index, VALUE val); void RepeatedField_reserve(RepeatedField* self, int new_size); VALUE RepeatedField_push(VALUE _self, VALUE val); void RepeatedField_push_native(VALUE _self, void* data); VALUE RepeatedField_pop_one(VALUE _self); VALUE RepeatedField_insert(int argc, VALUE* argv, VALUE _self); VALUE RepeatedField_replace(VALUE _self, VALUE list); VALUE RepeatedField_clear(VALUE _self); VALUE RepeatedField_length(VALUE _self); VALUE RepeatedField_dup(VALUE _self); VALUE RepeatedField_deep_copy(VALUE _self); VALUE RepeatedField_to_ary(VALUE _self); VALUE RepeatedField_eq(VALUE _self, VALUE _other); VALUE RepeatedField_hash(VALUE _self); VALUE RepeatedField_inspect(VALUE _self); VALUE RepeatedField_plus(VALUE _self, VALUE list); // Defined in repeated_field.c; also used by Map. void validate_type_class(upb_fieldtype_t type, VALUE klass); // ----------------------------------------------------------------------------- // Map container type. // ----------------------------------------------------------------------------- typedef struct { upb_fieldtype_t key_type; upb_fieldtype_t value_type; VALUE value_type_class; VALUE parse_frame; upb_strtable table; } Map; void Map_mark(void* self); void Map_free(void* self); VALUE Map_alloc(VALUE klass); VALUE Map_init(int argc, VALUE* argv, VALUE self); void Map_register(VALUE module); VALUE Map_set_frame(VALUE self, VALUE val); extern const rb_data_type_t Map_type; extern VALUE cMap; Map* ruby_to_Map(VALUE value); VALUE Map_each(VALUE _self); VALUE Map_keys(VALUE _self); VALUE Map_values(VALUE _self); VALUE Map_index(VALUE _self, VALUE key); VALUE Map_index_set(VALUE _self, VALUE key, VALUE value); VALUE Map_has_key(VALUE _self, VALUE key); VALUE Map_delete(VALUE _self, VALUE key); VALUE Map_clear(VALUE _self); VALUE Map_length(VALUE _self); VALUE Map_dup(VALUE _self); VALUE Map_deep_copy(VALUE _self); VALUE Map_eq(VALUE _self, VALUE _other); VALUE Map_hash(VALUE _self); VALUE Map_to_h(VALUE _self); VALUE Map_inspect(VALUE _self); VALUE Map_merge(VALUE _self, VALUE hashmap); VALUE Map_merge_into_self(VALUE _self, VALUE hashmap); typedef struct { Map* self; upb_strtable_iter it; } Map_iter; void Map_begin(VALUE _self, Map_iter* iter); void Map_next(Map_iter* iter); bool Map_done(Map_iter* iter); VALUE Map_iter_key(Map_iter* iter); VALUE Map_iter_value(Map_iter* iter); // ----------------------------------------------------------------------------- // Message layout / storage. // ----------------------------------------------------------------------------- #define MESSAGE_FIELD_NO_CASE ((size_t)-1) struct MessageField { size_t offset; size_t case_offset; // for oneofs, a uint32. Else, MESSAGE_FIELD_NO_CASE. }; struct MessageLayout { const upb_msgdef* msgdef; MessageField* fields; size_t size; }; MessageLayout* create_layout(const upb_msgdef* msgdef); void free_layout(MessageLayout* layout); VALUE layout_get(MessageLayout* layout, const void* storage, const upb_fielddef* field); void layout_set(MessageLayout* layout, void* storage, const upb_fielddef* field, VALUE val); void layout_init(MessageLayout* layout, void* storage); void layout_mark(MessageLayout* layout, void* storage); void layout_dup(MessageLayout* layout, void* to, void* from); void layout_deep_copy(MessageLayout* layout, void* to, void* from); VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2); VALUE layout_hash(MessageLayout* layout, void* storage); VALUE layout_inspect(MessageLayout* layout, void* storage); // ----------------------------------------------------------------------------- // Message class creation. // ----------------------------------------------------------------------------- // This should probably be factored into a common upb component. typedef struct { upb_byteshandler handler; upb_bytessink sink; char *ptr; size_t len, size; } stringsink; void stringsink_uninit(stringsink *sink); struct MessageHeader { Descriptor* descriptor; // kept alive by self.class.descriptor reference. stringsink* unknown_fields; // store unknown fields in decoding. // Data comes after this. }; extern rb_data_type_t Message_type; VALUE build_class_from_descriptor(Descriptor* descriptor); void* Message_data(void* msg); void Message_mark(void* self); void Message_free(void* self); VALUE Message_alloc(VALUE klass); VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self); VALUE Message_initialize(int argc, VALUE* argv, VALUE _self); VALUE Message_dup(VALUE _self); VALUE Message_deep_copy(VALUE _self); VALUE Message_eq(VALUE _self, VALUE _other); VALUE Message_hash(VALUE _self); VALUE Message_inspect(VALUE _self); VALUE Message_to_h(VALUE _self); VALUE Message_index(VALUE _self, VALUE field_name); VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value); VALUE Message_descriptor(VALUE klass); VALUE Message_decode(VALUE klass, VALUE data); VALUE Message_encode(VALUE klass, VALUE msg_rb); VALUE Message_decode_json(VALUE klass, VALUE data); VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass); VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb); VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj); VALUE build_module_from_enumdesc(EnumDescriptor* enumdef); VALUE enum_lookup(VALUE self, VALUE number); VALUE enum_resolve(VALUE self, VALUE sym); const upb_pbdecodermethod *new_fillmsg_decodermethod( Descriptor* descriptor, const void *owner); // Maximum depth allowed during encoding, to avoid stack overflows due to // cycles. #define ENCODE_MAX_NESTING 63 // ----------------------------------------------------------------------------- // Global map from upb {msg,enum}defs to wrapper Descriptor/EnumDescriptor // instances. // ----------------------------------------------------------------------------- void add_def_obj(const void* def, VALUE value); VALUE get_def_obj(const void* def); // ----------------------------------------------------------------------------- // Utilities. // ----------------------------------------------------------------------------- void check_upb_status(const upb_status* status, const char* msg); #define CHECK_UPB(code, msg) do { \ upb_status status = UPB_STATUS_INIT; \ code; \ check_upb_status(&status, msg); \ } while (0) extern ID descriptor_instancevar_interned; #endif // __GOOGLE_PROTOBUF_RUBY_PROTOBUF_H__