// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. // http://code.google.com/p/protobuf/ // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. #include #include #include #include #include #include #include #include #include #include #include #include #include #undef PACKAGE // autoheader #defines this. :( namespace google { namespace protobuf { const FieldDescriptor::CppType FieldDescriptor::kTypeToCppTypeMap[MAX_TYPE + 1] = { static_cast(0), // 0 is reserved for errors CPPTYPE_DOUBLE, // TYPE_DOUBLE CPPTYPE_FLOAT, // TYPE_FLOAT CPPTYPE_INT64, // TYPE_INT64 CPPTYPE_UINT64, // TYPE_UINT64 CPPTYPE_INT32, // TYPE_INT32 CPPTYPE_UINT64, // TYPE_FIXED64 CPPTYPE_UINT32, // TYPE_FIXED32 CPPTYPE_BOOL, // TYPE_BOOL CPPTYPE_STRING, // TYPE_STRING CPPTYPE_MESSAGE, // TYPE_GROUP CPPTYPE_MESSAGE, // TYPE_MESSAGE CPPTYPE_STRING, // TYPE_BYTES CPPTYPE_UINT32, // TYPE_UINT32 CPPTYPE_ENUM, // TYPE_ENUM CPPTYPE_INT32, // TYPE_SFIXED32 CPPTYPE_INT64, // TYPE_SFIXED64 CPPTYPE_INT32, // TYPE_SINT32 CPPTYPE_INT64, // TYPE_SINT64 }; const char * const FieldDescriptor::kTypeToName[MAX_TYPE + 1] = { "ERROR", // 0 is reserved for errors "double", // TYPE_DOUBLE "float", // TYPE_FLOAT "int64", // TYPE_INT64 "uint64", // TYPE_UINT64 "int32", // TYPE_INT32 "fixed64", // TYPE_FIXED64 "fixed32", // TYPE_FIXED32 "bool", // TYPE_BOOL "string", // TYPE_STRING "group", // TYPE_GROUP "message", // TYPE_MESSAGE "bytes", // TYPE_BYTES "uint32", // TYPE_UINT32 "enum", // TYPE_ENUM "sfixed32", // TYPE_SFIXED32 "sfixed64", // TYPE_SFIXED64 "sint32", // TYPE_SINT32 "sint64", // TYPE_SINT64 }; const char * const FieldDescriptor::kLabelToName[MAX_LABEL + 1] = { "ERROR", // 0 is reserved for errors "optional", // LABEL_OPTIONAL "required", // LABEL_REQUIRED "repeated", // LABEL_REPEATED }; #ifndef _MSC_VER // MSVC doesn't need these and won't even accept them. const int FieldDescriptor::kMaxNumber; const int FieldDescriptor::kFirstReservedNumber; const int FieldDescriptor::kLastReservedNumber; #endif namespace { const string kEmptyString; // A DescriptorPool contains a bunch of hash_maps to implement the // various Find*By*() methods. Since hashtable lookups are O(1), it's // most efficient to construct a fixed set of large hash_maps used by // all objects in the pool rather than construct one or more small // hash_maps for each object. // // The keys to these hash_maps are (parent, name) or (parent, number) // pairs. Unfortunately STL doesn't provide hash functions for pair<>, // so we must invent our own. // // TODO(kenton): Use StringPiece rather than const char* in keys? It would // be a lot cleaner but we'd just have to convert it back to const char* // for the open source release. typedef pair PointerStringPair; // Used by GCC/SGI STL only. (Why isn't this provided by the standard // library? :( ) struct CStringEqual { inline bool operator()(const char* a, const char* b) const { return strcmp(a, b) == 0; } }; struct PointerStringPairEqual { inline bool operator()(const PointerStringPair& a, const PointerStringPair& b) const { return a.first == b.first && strcmp(a.second, b.second) == 0; } }; template struct PointerIntegerPairHash { size_t operator()(const PairType& p) const { // FIXME(kenton): What is the best way to compute this hash? I have // no idea! This seems a bit better than an XOR. return reinterpret_cast(p.first) * ((1 << 16) - 1) + p.second; } // Used only by MSVC and platforms where hash_map is not available. static const size_t bucket_size = 4; static const size_t min_buckets = 8; inline bool operator()(const PairType& a, const PairType& b) const { return a.first < b.first || (a.first == b.first && a.second < b.second); } }; typedef pair DescriptorIntPair; typedef pair EnumIntPair; struct PointerStringPairHash { size_t operator()(const PointerStringPair& p) const { // FIXME(kenton): What is the best way to compute this hash? I have // no idea! This seems a bit better than an XOR. hash cstring_hash; return reinterpret_cast(p.first) * ((1 << 16) - 1) + cstring_hash(p.second); } // Used only by MSVC and platforms where hash_map is not available. static const size_t bucket_size = 4; static const size_t min_buckets = 8; inline bool operator()(const PointerStringPair& a, const PointerStringPair& b) const { if (a.first < b.first) return true; if (a.first > b.first) return false; return strcmp(a.second, b.second) < 0; } }; struct Symbol { enum Type { NULL_SYMBOL, MESSAGE, FIELD, ENUM, ENUM_VALUE, SERVICE, METHOD, PACKAGE }; Type type; union { const Descriptor* descriptor; const FieldDescriptor* field_descriptor; const EnumDescriptor* enum_descriptor; const EnumValueDescriptor* enum_value_descriptor; const ServiceDescriptor* service_descriptor; const MethodDescriptor* method_descriptor; const FileDescriptor* package_file_descriptor; }; inline Symbol() : type(NULL_SYMBOL) { descriptor = NULL; } inline bool IsNull() const { return type == NULL_SYMBOL; } #define CONSTRUCTOR(TYPE, TYPE_CONSTANT, FIELD) \ inline explicit Symbol(const TYPE* value) { \ type = TYPE_CONSTANT; \ this->FIELD = value; \ } CONSTRUCTOR(Descriptor , MESSAGE , descriptor ) CONSTRUCTOR(FieldDescriptor , FIELD , field_descriptor ) CONSTRUCTOR(EnumDescriptor , ENUM , enum_descriptor ) CONSTRUCTOR(EnumValueDescriptor, ENUM_VALUE, enum_value_descriptor ) CONSTRUCTOR(ServiceDescriptor , SERVICE , service_descriptor ) CONSTRUCTOR(MethodDescriptor , METHOD , method_descriptor ) CONSTRUCTOR(FileDescriptor , PACKAGE , package_file_descriptor) #undef CONSTRUCTOR const FileDescriptor* GetFile() const { switch (type) { case NULL_SYMBOL: return NULL; case MESSAGE : return descriptor ->file(); case FIELD : return field_descriptor ->file(); case ENUM : return enum_descriptor ->file(); case ENUM_VALUE : return enum_value_descriptor->type()->file(); case SERVICE : return service_descriptor ->file(); case METHOD : return method_descriptor ->service()->file(); case PACKAGE : return package_file_descriptor; } return NULL; } }; const Symbol kNullSymbol; typedef hash_map, CStringEqual> SymbolsByNameMap; typedef hash_map SymbolsByParentMap; typedef hash_map, CStringEqual> FilesByNameMap; typedef hash_map > FieldsByNumberMap; typedef hash_map > EnumValuesByNumberMap; } // anonymous namespace // =================================================================== // DescriptorPool::Tables class DescriptorPool::Tables { public: Tables(); ~Tables(); // Checkpoint the state of the tables. Future calls to Rollback() will // return the Tables to this state. This is used when building files, since // some kinds of validation errors cannot be detected until the file's // descriptors have already been added to the tables. BuildFile() calls // Checkpoint() before it starts building and Rollback() if it encounters // an error. void Checkpoint(); // Roll back the Tables to the state of the last Checkpoint(), removing // everything that was added after that point. void Rollback(); // The stack of files which are currently being built. Used to detect // cyclic dependencies when loading files from a DescriptorDatabase. Not // used when fallback_database_ == NULL. vector pending_files_; // A set of files which we have tried to load from the fallback database // and encountered errors. We will not attempt to load them again. // Not used when fallback_database_ == NULL. hash_set known_bad_files_; // ----------------------------------------------------------------- // Finding items. // Find symbols. These return a null Symbol (symbol.IsNull() is true) // if not found. FindSymbolOfType() additionally returns null if the // symbol is not of the given type. inline Symbol FindSymbol(const string& key) const; inline Symbol FindSymbolOfType(const string& key, const Symbol::Type type) const; inline Symbol FindNestedSymbol(const void* parent, const string& name) const; inline Symbol FindNestedSymbolOfType(const void* parent, const string& name, const Symbol::Type type) const; // These return NULL if not found. inline const FileDescriptor* FindFile(const string& key) const; inline const FieldDescriptor* FindFieldByNumber( const Descriptor* parent, int number) const; inline const EnumValueDescriptor* FindEnumValueByNumber( const EnumDescriptor* parent, int number) const; // ----------------------------------------------------------------- // Adding items. // These add items to the corresponding tables. They return false if // the key already exists in the table. For AddSymbol(), the strings passed // in must be ones that were constructed using AllocateString(), as they will // be used as keys in the symbols_by_name_ and symbols_by_parent_ maps // without copying. (If parent is NULL, nothing is added to // symbols_by_parent_.) bool AddSymbol(const string& full_name, const void* parent, const string& name, Symbol symbol); bool AddFile(const FileDescriptor* file); bool AddFieldByNumber(const FieldDescriptor* field); bool AddEnumValueByNumber(const EnumValueDescriptor* value); // Like AddSymbol(), but only adds to symbols_by_parent_, not // symbols_by_name_. Used for enum values, which need to be registered // under multiple parents (their type and its parent). bool AddAliasUnderParent(const void* parent, const string& name, Symbol symbol); // ----------------------------------------------------------------- // Allocating memory. // Allocate an object which will be reclaimed when the pool is // destroyed. Note that the object's destructor will never be called, // so its fields must be plain old data (primitive data types and // pointers). All of the descriptor types are such objects. template Type* Allocate(); // Allocate an array of objects which will be reclaimed when the // pool in destroyed. Again, destructors are never called. template Type* AllocateArray(int count); // Allocate a string which will be destroyed when the pool is destroyed. // The string is initialized to the given value for convenience. string* AllocateString(const string& value); // Allocate a protocol message object. template Type* AllocateMessage(); private: vector strings_; // All strings in the pool. vector messages_; // All messages in the pool. vector allocations_; // All other memory allocated in the pool. SymbolsByNameMap symbols_by_name_; SymbolsByParentMap symbols_by_parent_; FilesByNameMap files_by_name_; FieldsByNumberMap fields_by_number_; // Includes extensions. EnumValuesByNumberMap enum_values_by_number_; int strings_before_checkpoint_; int messages_before_checkpoint_; int allocations_before_checkpoint_; vector symbols_after_checkpoint_; vector symbols_by_parent_after_checkpoint_; vector files_after_checkpoint_; vector field_numbers_after_checkpoint_; vector enum_numbers_after_checkpoint_; // Allocate some bytes which will be reclaimed when the pool is // destroyed. void* AllocateBytes(int size); }; DescriptorPool::Tables::Tables() : strings_before_checkpoint_(0), messages_before_checkpoint_(0), allocations_before_checkpoint_(0) {} DescriptorPool::Tables::~Tables() { for (int i = 0; i < allocations_.size(); i++) { operator delete(allocations_[i]); } STLDeleteElements(&strings_); STLDeleteElements(&messages_); } void DescriptorPool::Tables::Checkpoint() { strings_before_checkpoint_ = strings_.size(); messages_before_checkpoint_ = messages_.size(); allocations_before_checkpoint_ = allocations_.size(); symbols_after_checkpoint_.clear(); symbols_by_parent_after_checkpoint_.clear(); files_after_checkpoint_.clear(); field_numbers_after_checkpoint_.clear(); enum_numbers_after_checkpoint_.clear(); } void DescriptorPool::Tables::Rollback() { for (int i = 0; i < symbols_after_checkpoint_.size(); i++) { symbols_by_name_.erase(symbols_after_checkpoint_[i]); } for (int i = 0; i < symbols_by_parent_after_checkpoint_.size(); i++) { symbols_by_parent_.erase(symbols_by_parent_after_checkpoint_[i]); } for (int i = 0; i < files_after_checkpoint_.size(); i++) { files_by_name_.erase(files_after_checkpoint_[i]); } for (int i = 0; i < field_numbers_after_checkpoint_.size(); i++) { fields_by_number_.erase(field_numbers_after_checkpoint_[i]); } for (int i = 0; i < enum_numbers_after_checkpoint_.size(); i++) { enum_values_by_number_.erase(enum_numbers_after_checkpoint_[i]); } symbols_after_checkpoint_.clear(); symbols_by_parent_after_checkpoint_.clear(); files_after_checkpoint_.clear(); field_numbers_after_checkpoint_.clear(); enum_numbers_after_checkpoint_.clear(); STLDeleteContainerPointers( strings_.begin() + strings_before_checkpoint_, strings_.end()); STLDeleteContainerPointers( messages_.begin() + messages_before_checkpoint_, messages_.end()); for (int i = allocations_before_checkpoint_; i < allocations_.size(); i++) { operator delete(allocations_[i]); } strings_.resize(strings_before_checkpoint_); messages_.resize(messages_before_checkpoint_); allocations_.resize(allocations_before_checkpoint_); } // ------------------------------------------------------------------- inline Symbol DescriptorPool::Tables::FindSymbol(const string& key) const { const Symbol* result = FindOrNull(symbols_by_name_, key.c_str()); if (result == NULL) { return kNullSymbol; } else { return *result; } } inline Symbol DescriptorPool::Tables::FindSymbolOfType( const string& key, const Symbol::Type type) const { Symbol result = FindSymbol(key); if (result.type != type) return kNullSymbol; return result; } inline Symbol DescriptorPool::Tables::FindNestedSymbol( const void* parent, const string& name) const { const Symbol* result = FindOrNull(symbols_by_parent_, PointerStringPair(parent, name.c_str())); if (result == NULL) { return kNullSymbol; } else { return *result; } } inline Symbol DescriptorPool::Tables::FindNestedSymbolOfType( const void* parent, const string& name, const Symbol::Type type) const { Symbol result = FindNestedSymbol(parent, name); if (result.type != type) return kNullSymbol; return result; } inline const FileDescriptor* DescriptorPool::Tables::FindFile( const string& key) const { return FindPtrOrNull(files_by_name_, key.c_str()); } inline const FieldDescriptor* DescriptorPool::Tables::FindFieldByNumber( const Descriptor* parent, int number) const { return FindPtrOrNull(fields_by_number_, make_pair(parent, number)); } inline const EnumValueDescriptor* DescriptorPool::Tables::FindEnumValueByNumber( const EnumDescriptor* parent, int number) const { return FindPtrOrNull(enum_values_by_number_, make_pair(parent, number)); } // ------------------------------------------------------------------- bool DescriptorPool::Tables::AddSymbol( const string& full_name, const void* parent, const string& name, Symbol symbol) { if (InsertIfNotPresent(&symbols_by_name_, full_name.c_str(), symbol)) { symbols_after_checkpoint_.push_back(full_name.c_str()); if (parent != NULL && !AddAliasUnderParent(parent, name, symbol)) { GOOGLE_LOG(DFATAL) << "\"" << full_name << "\" not previously defined in " "symbols_by_name_, but was defined in symbols_by_parent_; " "this shouldn't be possible."; return false; } return true; } else { return false; } } bool DescriptorPool::Tables::AddAliasUnderParent( const void* parent, const string& name, Symbol symbol) { PointerStringPair by_parent_key(parent, name.c_str()); if (InsertIfNotPresent(&symbols_by_parent_, by_parent_key, symbol)) { symbols_by_parent_after_checkpoint_.push_back(by_parent_key); return true; } else { return false; } } bool DescriptorPool::Tables::AddFile(const FileDescriptor* file) { if (InsertIfNotPresent(&files_by_name_, file->name().c_str(), file)) { files_after_checkpoint_.push_back(file->name().c_str()); return true; } else { return false; } } bool DescriptorPool::Tables::AddFieldByNumber(const FieldDescriptor* field) { DescriptorIntPair key(field->containing_type(), field->number()); if (InsertIfNotPresent(&fields_by_number_, key, field)) { field_numbers_after_checkpoint_.push_back(key); return true; } else { return false; } } bool DescriptorPool::Tables::AddEnumValueByNumber( const EnumValueDescriptor* value) { EnumIntPair key(value->type(), value->number()); if (InsertIfNotPresent(&enum_values_by_number_, key, value)) { enum_numbers_after_checkpoint_.push_back(key); return true; } else { return false; } } // ------------------------------------------------------------------- template Type* DescriptorPool::Tables::Allocate() { return reinterpret_cast(AllocateBytes(sizeof(Type))); } template Type* DescriptorPool::Tables::AllocateArray(int count) { return reinterpret_cast(AllocateBytes(sizeof(Type) * count)); } string* DescriptorPool::Tables::AllocateString(const string& value) { string* result = new string(value); strings_.push_back(result); return result; } template Type* DescriptorPool::Tables::AllocateMessage() { Type* result = new Type; messages_.push_back(result); return result; } void* DescriptorPool::Tables::AllocateBytes(int size) { // TODO(kenton): Would it be worthwhile to implement this in some more // sophisticated way? Probably not for the open source release, but for // internal use we could easily plug in one of our existing memory pool // allocators... if (size == 0) return NULL; void* result = operator new(size); allocations_.push_back(result); return result; } // =================================================================== // DescriptorPool DescriptorPool::ErrorCollector::~ErrorCollector() {} DescriptorPool::DescriptorPool() : mutex_(NULL), fallback_database_(NULL), default_error_collector_(NULL), underlay_(NULL), tables_(new Tables), enforce_dependencies_(true), last_internal_build_generated_file_call_(NULL) {} DescriptorPool::DescriptorPool(DescriptorDatabase* fallback_database, ErrorCollector* error_collector) : mutex_(new Mutex), fallback_database_(fallback_database), default_error_collector_(error_collector), underlay_(NULL), tables_(new Tables), enforce_dependencies_(true), last_internal_build_generated_file_call_(NULL) { } DescriptorPool::DescriptorPool(const DescriptorPool* underlay) : mutex_(NULL), fallback_database_(NULL), default_error_collector_(NULL), underlay_(underlay), tables_(new Tables), last_internal_build_generated_file_call_(NULL) {} DescriptorPool::~DescriptorPool() { if (mutex_ != NULL) delete mutex_; } // DescriptorPool::BuildFile() defined later. // DescriptorPool::BuildFileCollectingErrors() defined later. // DescriptorPool::InternalBuildGeneratedFile() defined later. const DescriptorPool* DescriptorPool::generated_pool() { return internal_generated_pool(); } DescriptorPool* DescriptorPool::internal_generated_pool() { static DescriptorPool singleton; return &singleton; } void DescriptorPool::InternalDontEnforceDependencies() { enforce_dependencies_ = false; } // Find*By* methods ================================================== // TODO(kenton): There's a lot of repeated code here, but I'm not sure if // there's any good way to factor it out. Think about this some time when // there's nothing more important to do (read: never). const FileDescriptor* DescriptorPool::FindFileByName(const string& name) const { MutexLockMaybe lock(mutex_); const FileDescriptor* result = tables_->FindFile(name); if (result != NULL) return result; if (underlay_ != NULL) { const FileDescriptor* result = underlay_->FindFileByName(name); if (result != NULL) return result; } if (TryFindFileInFallbackDatabase(name)) { const FileDescriptor* result = tables_->FindFile(name); if (result != NULL) return result; } return NULL; } const FileDescriptor* DescriptorPool::FindFileContainingSymbol( const string& symbol_name) const { MutexLockMaybe lock(mutex_); Symbol result = tables_->FindSymbol(symbol_name); if (!result.IsNull()) return result.GetFile(); if (underlay_ != NULL) { const FileDescriptor* result = underlay_->FindFileContainingSymbol(symbol_name); if (result != NULL) return result; } if (TryFindSymbolInFallbackDatabase(symbol_name)) { Symbol result = tables_->FindSymbol(symbol_name); if (!result.IsNull()) return result.GetFile(); } return NULL; } const Descriptor* DescriptorPool::FindMessageTypeByName( const string& name) const { MutexLockMaybe lock(mutex_); Symbol result = tables_->FindSymbolOfType(name, Symbol::MESSAGE); if (!result.IsNull()) return result.descriptor; if (underlay_ != NULL) { const Descriptor* result = underlay_->FindMessageTypeByName(name); if (result != NULL) return result; } if (TryFindSymbolInFallbackDatabase(name)) { Symbol result = tables_->FindSymbolOfType(name, Symbol::MESSAGE); if (!result.IsNull()) return result.descriptor; } return NULL; } const FieldDescriptor* DescriptorPool::FindFieldByName( const string& name) const { MutexLockMaybe lock(mutex_); Symbol result = tables_->FindSymbolOfType(name, Symbol::FIELD); if (!result.IsNull() && !result.field_descriptor->is_extension()) { return result.field_descriptor; } if (underlay_ != NULL) { const FieldDescriptor* result = underlay_->FindFieldByName(name); if (result != NULL) return result; } if (TryFindSymbolInFallbackDatabase(name)) { Symbol result = tables_->FindSymbolOfType(name, Symbol::FIELD); if (!result.IsNull() && !result.field_descriptor->is_extension()) { return result.field_descriptor; } } return NULL; } const FieldDescriptor* DescriptorPool::FindExtensionByName( const string& name) const { MutexLockMaybe lock(mutex_); Symbol result = tables_->FindSymbolOfType(name, Symbol::FIELD); if (!result.IsNull() && result.field_descriptor->is_extension()) { return result.field_descriptor; } if (underlay_ != NULL) { const FieldDescriptor* result = underlay_->FindExtensionByName(name); if (result != NULL) return result; } if (TryFindSymbolInFallbackDatabase(name)) { Symbol result = tables_->FindSymbolOfType(name, Symbol::FIELD); if (!result.IsNull() && result.field_descriptor->is_extension()) { return result.field_descriptor; } } return NULL; } const EnumDescriptor* DescriptorPool::FindEnumTypeByName( const string& name) const { MutexLockMaybe lock(mutex_); Symbol result = tables_->FindSymbolOfType(name, Symbol::ENUM); if (!result.IsNull()) return result.enum_descriptor; if (underlay_ != NULL) { const EnumDescriptor* result = underlay_->FindEnumTypeByName(name); if (result != NULL) return result; } if (TryFindSymbolInFallbackDatabase(name)) { Symbol result = tables_->FindSymbolOfType(name, Symbol::ENUM); if (!result.IsNull()) return result.enum_descriptor; } return NULL; } const EnumValueDescriptor* DescriptorPool::FindEnumValueByName( const string& name) const { MutexLockMaybe lock(mutex_); Symbol result = tables_->FindSymbolOfType(name, Symbol::ENUM_VALUE); if (!result.IsNull()) return result.enum_value_descriptor; if (underlay_ != NULL) { const EnumValueDescriptor* result = underlay_->FindEnumValueByName(name); if (result != NULL) return result; } if (TryFindSymbolInFallbackDatabase(name)) { Symbol result = tables_->FindSymbolOfType(name, Symbol::ENUM_VALUE); if (!result.IsNull()) return result.enum_value_descriptor; } return NULL; } const ServiceDescriptor* DescriptorPool::FindServiceByName( const string& name) const { MutexLockMaybe lock(mutex_); Symbol result = tables_->FindSymbolOfType(name, Symbol::SERVICE); if (!result.IsNull()) return result.service_descriptor; if (underlay_ != NULL) { const ServiceDescriptor* result = underlay_->FindServiceByName(name); if (result != NULL) return result; } if (TryFindSymbolInFallbackDatabase(name)) { Symbol result = tables_->FindSymbolOfType(name, Symbol::SERVICE); if (!result.IsNull()) return result.service_descriptor; } return NULL; } const MethodDescriptor* DescriptorPool::FindMethodByName( const string& name) const { MutexLockMaybe lock(mutex_); Symbol result = tables_->FindSymbolOfType(name, Symbol::METHOD); if (!result.IsNull()) return result.method_descriptor; if (underlay_ != NULL) { const MethodDescriptor* result = underlay_->FindMethodByName(name); if (result != NULL) return result; } if (TryFindSymbolInFallbackDatabase(name)) { Symbol result = tables_->FindSymbolOfType(name, Symbol::METHOD); if (!result.IsNull()) return result.method_descriptor; } return NULL; } const FieldDescriptor* DescriptorPool::FindExtensionByNumber( const Descriptor* extendee, int number) const { MutexLockMaybe lock(mutex_); const FieldDescriptor* result = tables_->FindFieldByNumber(extendee, number); if (result != NULL && result->is_extension()) { return result; } if (underlay_ != NULL) { const FieldDescriptor* result = underlay_->FindExtensionByNumber(extendee, number); if (result != NULL) return result; } if (TryFindExtensionInFallbackDatabase(extendee, number)) { const FieldDescriptor* result = tables_->FindFieldByNumber(extendee, number); if (result != NULL && result->is_extension()) { return result; } } return NULL; } // ------------------------------------------------------------------- const FieldDescriptor* Descriptor::FindFieldByNumber(int key) const { MutexLockMaybe lock(file()->pool()->mutex_); const FieldDescriptor* result = file()->pool()->tables_->FindFieldByNumber(this, key); if (result == NULL || result->is_extension()) { return NULL; } else { return result; } } const FieldDescriptor* Descriptor::FindFieldByName(const string& key) const { MutexLockMaybe lock(file()->pool()->mutex_); Symbol result = file()->pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD); if (!result.IsNull() && !result.field_descriptor->is_extension()) { return result.field_descriptor; } else { return NULL; } } const FieldDescriptor* Descriptor::FindExtensionByName(const string& key) const { MutexLockMaybe lock(file()->pool()->mutex_); Symbol result = file()->pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD); if (!result.IsNull() && result.field_descriptor->is_extension()) { return result.field_descriptor; } else { return NULL; } } const Descriptor* Descriptor::FindNestedTypeByName(const string& key) const { MutexLockMaybe lock(file()->pool()->mutex_); Symbol result = file()->pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE); if (!result.IsNull()) { return result.descriptor; } else { return NULL; } } const EnumDescriptor* Descriptor::FindEnumTypeByName(const string& key) const { MutexLockMaybe lock(file()->pool()->mutex_); Symbol result = file()->pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM); if (!result.IsNull()) { return result.enum_descriptor; } else { return NULL; } } const EnumValueDescriptor* Descriptor::FindEnumValueByName(const string& key) const { MutexLockMaybe lock(file()->pool()->mutex_); Symbol result = file()->pool()->tables_->FindNestedSymbolOfType( this, key, Symbol::ENUM_VALUE); if (!result.IsNull()) { return result.enum_value_descriptor; } else { return NULL; } } const EnumValueDescriptor* EnumDescriptor::FindValueByName(const string& key) const { MutexLockMaybe lock(file()->pool()->mutex_); Symbol result = file()->pool()->tables_->FindNestedSymbolOfType( this, key, Symbol::ENUM_VALUE); if (!result.IsNull()) { return result.enum_value_descriptor; } else { return NULL; } } const EnumValueDescriptor* EnumDescriptor::FindValueByNumber(int key) const { MutexLockMaybe lock(file()->pool()->mutex_); return file()->pool()->tables_->FindEnumValueByNumber(this, key); } const MethodDescriptor* ServiceDescriptor::FindMethodByName(const string& key) const { MutexLockMaybe lock(file()->pool()->mutex_); Symbol result = file()->pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::METHOD); if (!result.IsNull()) { return result.method_descriptor; } else { return NULL; } } const Descriptor* FileDescriptor::FindMessageTypeByName(const string& key) const { MutexLockMaybe lock(pool()->mutex_); Symbol result = pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::MESSAGE); if (!result.IsNull()) { return result.descriptor; } else { return NULL; } } const EnumDescriptor* FileDescriptor::FindEnumTypeByName(const string& key) const { MutexLockMaybe lock(pool()->mutex_); Symbol result = pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM); if (!result.IsNull()) { return result.enum_descriptor; } else { return NULL; } } const EnumValueDescriptor* FileDescriptor::FindEnumValueByName(const string& key) const { MutexLockMaybe lock(pool()->mutex_); Symbol result = pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::ENUM_VALUE); if (!result.IsNull()) { return result.enum_value_descriptor; } else { return NULL; } } const ServiceDescriptor* FileDescriptor::FindServiceByName(const string& key) const { MutexLockMaybe lock(pool()->mutex_); Symbol result = pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::SERVICE); if (!result.IsNull()) { return result.service_descriptor; } else { return NULL; } } const FieldDescriptor* FileDescriptor::FindExtensionByName(const string& key) const { MutexLockMaybe lock(pool()->mutex_); Symbol result = pool()->tables_->FindNestedSymbolOfType(this, key, Symbol::FIELD); if (!result.IsNull() && result.field_descriptor->is_extension()) { return result.field_descriptor; } else { return NULL; } } bool Descriptor::IsExtensionNumber(int number) const { // Linear search should be fine because we don't expect a message to have // more than a couple extension ranges. for (int i = 0; i < extension_range_count(); i++) { if (number >= extension_range(i)->start && number < extension_range(i)->end) { return true; } } return false; } // ------------------------------------------------------------------- bool DescriptorPool::TryFindFileInFallbackDatabase(const string& name) const { if (fallback_database_ == NULL) return false; if (tables_->known_bad_files_.count(name) > 0) return false; FileDescriptorProto file_proto; if (!fallback_database_->FindFileByName(name, &file_proto) || BuildFileFromDatabase(file_proto) == NULL) { tables_->known_bad_files_.insert(name); return false; } return true; } bool DescriptorPool::TryFindSymbolInFallbackDatabase(const string& name) const { if (fallback_database_ == NULL) return false; FileDescriptorProto file_proto; if (!fallback_database_->FindFileContainingSymbol(name, &file_proto)) { return false; } if (tables_->FindFile(file_proto.name()) != NULL) { // We've already loaded this file, and it apparently doesn't contain the // symbol we're looking for. Some DescriptorDatabases return false // positives. return false; } if (BuildFileFromDatabase(file_proto) == NULL) { return false; } return true; } bool DescriptorPool::TryFindExtensionInFallbackDatabase( const Descriptor* containing_type, int field_number) const { if (fallback_database_ == NULL) return false; FileDescriptorProto file_proto; if (!fallback_database_->FindFileContainingExtension( containing_type->full_name(), field_number, &file_proto)) { return false; } if (tables_->FindFile(file_proto.name()) != NULL) { // We've already loaded this file, and it apparently doesn't contain the // extension we're looking for. Some DescriptorDatabases return false // positives. return false; } if (BuildFileFromDatabase(file_proto) == NULL) { return false; } return true; } // =================================================================== string FieldDescriptor::DefaultValueAsString(bool quote_string_type) const { GOOGLE_CHECK(has_default_value()) << "No default value"; switch (cpp_type()) { case CPPTYPE_INT32: return SimpleItoa(default_value_int32()); break; case CPPTYPE_INT64: return SimpleItoa(default_value_int64()); break; case CPPTYPE_UINT32: return SimpleItoa(default_value_uint32()); break; case CPPTYPE_UINT64: return SimpleItoa(default_value_uint64()); break; case CPPTYPE_FLOAT: return SimpleFtoa(default_value_float()); break; case CPPTYPE_DOUBLE: return SimpleDtoa(default_value_double()); break; case CPPTYPE_BOOL: return default_value_bool() ? "true" : "false"; break; case CPPTYPE_STRING: if (quote_string_type) { return "\"" + CEscape(default_value_string()) + "\""; } else { if (type() == TYPE_BYTES) { return CEscape(default_value_string()); } else { return default_value_string(); } } break; case CPPTYPE_ENUM: return default_value_enum()->name(); break; case CPPTYPE_MESSAGE: GOOGLE_LOG(DFATAL) << "Messages can't have default values!"; break; } GOOGLE_LOG(FATAL) << "Can't get here: failed to get default value as string"; return ""; } // CopyTo methods ==================================================== void FileDescriptor::CopyTo(FileDescriptorProto* proto) const { proto->set_name(name()); if (!package().empty()) proto->set_package(package()); for (int i = 0; i < dependency_count(); i++) { proto->add_dependency(dependency(i)->name()); } for (int i = 0; i < message_type_count(); i++) { message_type(i)->CopyTo(proto->add_message_type()); } for (int i = 0; i < enum_type_count(); i++) { enum_type(i)->CopyTo(proto->add_enum_type()); } for (int i = 0; i < service_count(); i++) { service(i)->CopyTo(proto->add_service()); } for (int i = 0; i < extension_count(); i++) { extension(i)->CopyTo(proto->add_extension()); } if (&options() != &FileOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void Descriptor::CopyTo(DescriptorProto* proto) const { proto->set_name(name()); for (int i = 0; i < field_count(); i++) { field(i)->CopyTo(proto->add_field()); } for (int i = 0; i < nested_type_count(); i++) { nested_type(i)->CopyTo(proto->add_nested_type()); } for (int i = 0; i < enum_type_count(); i++) { enum_type(i)->CopyTo(proto->add_enum_type()); } for (int i = 0; i < extension_range_count(); i++) { DescriptorProto::ExtensionRange* range = proto->add_extension_range(); range->set_start(extension_range(i)->start); range->set_end(extension_range(i)->end); } for (int i = 0; i < extension_count(); i++) { extension(i)->CopyTo(proto->add_extension()); } if (&options() != &MessageOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void FieldDescriptor::CopyTo(FieldDescriptorProto* proto) const { proto->set_name(name()); proto->set_number(number()); proto->set_label(static_cast(label())); proto->set_type(static_cast(type())); if (is_extension()) { proto->set_extendee("."); proto->mutable_extendee()->append(containing_type()->full_name()); } if (cpp_type() == CPPTYPE_MESSAGE) { proto->set_type_name("."); proto->mutable_type_name()->append(message_type()->full_name()); } else if (cpp_type() == CPPTYPE_ENUM) { proto->set_type_name("."); proto->mutable_type_name()->append(enum_type()->full_name()); } if (has_default_value()) { proto->set_default_value(DefaultValueAsString(false)); } if (&options() != &FieldOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void EnumDescriptor::CopyTo(EnumDescriptorProto* proto) const { proto->set_name(name()); for (int i = 0; i < value_count(); i++) { value(i)->CopyTo(proto->add_value()); } if (&options() != &EnumOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void EnumValueDescriptor::CopyTo(EnumValueDescriptorProto* proto) const { proto->set_name(name()); proto->set_number(number()); if (&options() != &EnumValueOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void ServiceDescriptor::CopyTo(ServiceDescriptorProto* proto) const { proto->set_name(name()); for (int i = 0; i < method_count(); i++) { method(i)->CopyTo(proto->add_method()); } if (&options() != &ServiceOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } void MethodDescriptor::CopyTo(MethodDescriptorProto* proto) const { proto->set_name(name()); proto->set_input_type("."); proto->mutable_input_type()->append(input_type()->full_name()); proto->set_output_type("."); proto->mutable_output_type()->append(output_type()->full_name()); if (&options() != &MethodOptions::default_instance()) { proto->mutable_options()->CopyFrom(options()); } } // DebugString methods =============================================== namespace { // Used by each of the option formatters. bool RetrieveOptions(const Message &options, vector *option_entries) { option_entries->clear(); const Reflection* reflection = options.GetReflection(); vector fields; reflection->ListFields(options, &fields); for (int i = 0; i < fields.size(); i++) { // Doesn't make sense to have message type fields here if (fields[i]->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { continue; } int count = 1; bool repeated = false; if (fields[i]->is_repeated()) { count = reflection->FieldSize(options, fields[i]); repeated = true; } for (int j = 0; j < count; j++) { string fieldval; TextFormat::PrintFieldValueToString(options, fields[i], repeated ? count : -1, &fieldval); option_entries->push_back(fields[i]->name() + " = " + fieldval); } } return !option_entries->empty(); } // Formats options that all appear together in brackets. Does not include // brackets. bool FormatBracketedOptions(const Message &options, string *output) { vector all_options; if (RetrieveOptions(options, &all_options)) { output->append(JoinStrings(all_options, ", ")); } return !all_options.empty(); } // Formats options one per line bool FormatLineOptions(int depth, const Message &options, string *output) { string prefix(depth * 2, ' '); vector all_options; if (RetrieveOptions(options, &all_options)) { for (int i = 0; i < all_options.size(); i++) { strings::SubstituteAndAppend(output, "$0option $1;\n", prefix, all_options[i]); } } return !all_options.empty(); } } // anonymous namespace string FileDescriptor::DebugString() const { string contents = "syntax = \"proto2\";\n\n"; for (int i = 0; i < dependency_count(); i++) { strings::SubstituteAndAppend(&contents, "import \"$0\";\n", dependency(i)->name()); } if (!package().empty()) { strings::SubstituteAndAppend(&contents, "package $0;\n\n", package()); } if (FormatLineOptions(0, options(), &contents)) { contents.append("\n"); // add some space if we had options } for (int i = 0; i < enum_type_count(); i++) { enum_type(i)->DebugString(0, &contents); contents.append("\n"); } // Find all the 'group' type extensions; we will not output their nested // definitions (those will be done with their group field descriptor). set groups; for (int i = 0; i < extension_count(); i++) { if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) { groups.insert(extension(i)->message_type()); } } for (int i = 0; i < message_type_count(); i++) { if (groups.count(message_type(i)) == 0) { strings::SubstituteAndAppend(&contents, "message $0", message_type(i)->name()); message_type(i)->DebugString(0, &contents); contents.append("\n"); } } for (int i = 0; i < service_count(); i++) { service(i)->DebugString(&contents); contents.append("\n"); } const Descriptor* containing_type = NULL; for (int i = 0; i < extension_count(); i++) { if (extension(i)->containing_type() != containing_type) { if (i > 0) contents.append("}\n\n"); containing_type = extension(i)->containing_type(); strings::SubstituteAndAppend(&contents, "extend .$0 {\n", containing_type->full_name()); } extension(i)->DebugString(1, &contents); } if (extension_count() > 0) contents.append("}\n\n"); return contents; } string Descriptor::DebugString() const { string contents; strings::SubstituteAndAppend(&contents, "message $0", name()); DebugString(0, &contents); return contents; } void Descriptor::DebugString(int depth, string *contents) const { string prefix(depth * 2, ' '); ++depth; contents->append(" {\n"); FormatLineOptions(depth, options(), contents); // Find all the 'group' types for fields and extensions; we will not output // their nested definitions (those will be done with their group field // descriptor). set groups; for (int i = 0; i < field_count(); i++) { if (field(i)->type() == FieldDescriptor::TYPE_GROUP) { groups.insert(field(i)->message_type()); } } for (int i = 0; i < extension_count(); i++) { if (extension(i)->type() == FieldDescriptor::TYPE_GROUP) { groups.insert(extension(i)->message_type()); } } for (int i = 0; i < nested_type_count(); i++) { if (groups.count(nested_type(i)) == 0) { strings::SubstituteAndAppend(contents, "$0 message $1", prefix, nested_type(i)->name()); nested_type(i)->DebugString(depth, contents); } } for (int i = 0; i < enum_type_count(); i++) { enum_type(i)->DebugString(depth, contents); } for (int i = 0; i < field_count(); i++) { field(i)->DebugString(depth, contents); } for (int i = 0; i < extension_range_count(); i++) { strings::SubstituteAndAppend(contents, "$0 extensions $1 to $2;\n", prefix, extension_range(i)->start, extension_range(i)->end - 1); } // Group extensions by what they extend, so they can be printed out together. const Descriptor* containing_type = NULL; for (int i = 0; i < extension_count(); i++) { if (extension(i)->containing_type() != containing_type) { if (i > 0) strings::SubstituteAndAppend(contents, "$0 }\n", prefix); containing_type = extension(i)->containing_type(); strings::SubstituteAndAppend(contents, "$0 extend .$1 {\n", prefix, containing_type->full_name()); } extension(i)->DebugString(depth + 1, contents); } if (extension_count() > 0) strings::SubstituteAndAppend(contents, "$0 }\n", prefix); strings::SubstituteAndAppend(contents, "$0}\n", prefix); } string FieldDescriptor::DebugString() const { string contents; int depth = 0; if (is_extension()) { strings::SubstituteAndAppend(&contents, "extend .$0 {\n", containing_type()->full_name()); depth = 1; } DebugString(depth, &contents); if (is_extension()) { contents.append("}\n"); } return contents; } void FieldDescriptor::DebugString(int depth, string *contents) const { string prefix(depth * 2, ' '); string field_type; switch (type()) { case TYPE_MESSAGE: field_type = "." + message_type()->full_name(); break; case TYPE_ENUM: field_type = "." + enum_type()->full_name(); break; default: field_type = kTypeToName[type()]; } strings::SubstituteAndAppend(contents, "$0$1 $2 $3 = $4", prefix, kLabelToName[label()], field_type, type() == TYPE_GROUP ? message_type()->name() : name(), number()); bool bracketed = false; if (has_default_value()) { bracketed = true; strings::SubstituteAndAppend(contents, " [default = $0", DefaultValueAsString(true)); } string formatted_options; if (FormatBracketedOptions(options(), &formatted_options)) { contents->append(bracketed ? ", " : " ["); bracketed = true; contents->append(formatted_options); } if (bracketed) { contents->append("]"); } if (type() == TYPE_GROUP) { message_type()->DebugString(depth, contents); } else { contents->append(";\n"); } } string EnumDescriptor::DebugString() const { string contents; DebugString(0, &contents); return contents; } void EnumDescriptor::DebugString(int depth, string *contents) const { string prefix(depth * 2, ' '); ++depth; strings::SubstituteAndAppend(contents, "$0enum $1 {\n", prefix, name()); FormatLineOptions(depth, options(), contents); for (int i = 0; i < value_count(); i++) { value(i)->DebugString(depth, contents); } strings::SubstituteAndAppend(contents, "$0}\n", prefix); } string EnumValueDescriptor::DebugString() const { string contents; DebugString(0, &contents); return contents; } void EnumValueDescriptor::DebugString(int depth, string *contents) const { string prefix(depth * 2, ' '); strings::SubstituteAndAppend(contents, "$0$1 = $2", prefix, name(), number()); string formatted_options; if (FormatBracketedOptions(options(), &formatted_options)) { strings::SubstituteAndAppend(contents, " [$0]", formatted_options); } contents->append(";\n"); } string ServiceDescriptor::DebugString() const { string contents; DebugString(&contents); return contents; } void ServiceDescriptor::DebugString(string *contents) const { strings::SubstituteAndAppend(contents, "service $0 {\n", name()); FormatLineOptions(1, options(), contents); for (int i = 0; i < method_count(); i++) { method(i)->DebugString(1, contents); } contents->append("}\n"); } string MethodDescriptor::DebugString() const { string contents; DebugString(0, &contents); return contents; } void MethodDescriptor::DebugString(int depth, string *contents) const { string prefix(depth * 2, ' '); ++depth; strings::SubstituteAndAppend(contents, "$0rpc $1(.$2) returns (.$3)", prefix, name(), input_type()->full_name(), output_type()->full_name()); string formatted_options; if (FormatLineOptions(depth, options(), &formatted_options)) { strings::SubstituteAndAppend(contents, " {\n$0$1}\n", formatted_options, prefix); } else { contents->append(";\n"); } } // =================================================================== class DescriptorBuilder { public: DescriptorBuilder(const DescriptorPool* pool, DescriptorPool::Tables* tables, DescriptorPool::ErrorCollector* error_collector); ~DescriptorBuilder(); const FileDescriptor* BuildFile(const FileDescriptorProto& proto); private: const DescriptorPool* pool_; DescriptorPool::Tables* tables_; // for convenience DescriptorPool::ErrorCollector* error_collector_; bool had_errors_; string filename_; FileDescriptor* file_; // If LookupSymbol() finds a symbol that is in a file which is not a declared // dependency of this file, it will fail, but will set // possible_undeclared_dependency_ to point at that file. This is only used // by AddNotDefinedError() to report a more useful error message. const FileDescriptor* possible_undeclared_dependency_; void AddError(const string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const string& error); // Adds an error indicating that undefined_symbol was not defined. Must // only be called after LookupSymbol() fails. void AddNotDefinedError( const string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const string& undefined_symbol); // Silly helper which determines if the given file is in the given package. // I.e., either file->package() == package_name or file->package() is a // nested package within package_name. bool IsInPackage(const FileDescriptor* file, const string& package_name); // Like tables_->FindSymbol(), but additionally: // - Search the pool's underlay if not found in tables_. // - Insure that the resulting Symbol is from one of the file's declared // dependencies. Symbol FindSymbol(const string& name); // Like FindSymbol(), but looks up the name relative to some other symbol // name. This first searches syblings of relative_to, then siblings of its // parents, etc. For example, LookupSymbol("foo.bar", "baz.qux.corge") makes // the following calls, returning the first non-null result: // FindSymbol("baz.qux.foo.bar"), FindSymbol("baz.foo.bar"), // FindSymbol("foo.bar"). Symbol LookupSymbol(const string& name, const string& relative_to); // Calls tables_->AddSymbol() and records an error if it fails. Returns // true if successful or false if failed, though most callers can ignore // the return value since an error has already been recorded. bool AddSymbol(const string& full_name, const void* parent, const string& name, const Message& proto, Symbol symbol); // Like AddSymbol(), but succeeds if the symbol is already defined as long // as the existing definition is also a package (because it's OK to define // the same package in two different files). Also adds all parents of the // packgae to the symbol table (e.g. AddPackage("foo.bar", ...) will add // "foo.bar" and "foo" to the table). void AddPackage(const string& name, const Message& proto, const FileDescriptor* file); // Checks that the symbol name contains only alphanumeric characters and // underscores. Records an error otherwise. void ValidateSymbolName(const string& name, const string& full_name, const Message& proto); // Used by BUILD_ARRAY macro (below) to avoid having to have the type // specified as a macro parameter. template inline void AllocateArray(int size, Type** output) { *output = tables_->AllocateArray(size); } // These methods all have the same signature for the sake of the BUILD_ARRAY // macro, below. void BuildMessage(const DescriptorProto& proto, const Descriptor* parent, Descriptor* result); void BuildFieldOrExtension(const FieldDescriptorProto& proto, const Descriptor* parent, FieldDescriptor* result, bool is_extension); void BuildField(const FieldDescriptorProto& proto, const Descriptor* parent, FieldDescriptor* result) { BuildFieldOrExtension(proto, parent, result, false); } void BuildExtension(const FieldDescriptorProto& proto, const Descriptor* parent, FieldDescriptor* result) { BuildFieldOrExtension(proto, parent, result, true); } void BuildExtensionRange(const DescriptorProto::ExtensionRange& proto, const Descriptor* parent, Descriptor::ExtensionRange* result); void BuildEnum(const EnumDescriptorProto& proto, const Descriptor* parent, EnumDescriptor* result); void BuildEnumValue(const EnumValueDescriptorProto& proto, const EnumDescriptor* parent, EnumValueDescriptor* result); void BuildService(const ServiceDescriptorProto& proto, const void* dummy, ServiceDescriptor* result); void BuildMethod(const MethodDescriptorProto& proto, const ServiceDescriptor* parent, MethodDescriptor* result); void CrossLinkFile(FileDescriptor* file, const FileDescriptorProto& proto); void CrossLinkMessage(Descriptor* message, const DescriptorProto& proto); void CrossLinkField(FieldDescriptor* field, const FieldDescriptorProto& proto); void CrossLinkService(ServiceDescriptor* service, const ServiceDescriptorProto& proto); void CrossLinkMethod(MethodDescriptor* method, const MethodDescriptorProto& proto); void CrossLinkMapKey(FieldDescriptor* field, const FieldDescriptorProto& proto); }; const FileDescriptor* DescriptorPool::BuildFile( const FileDescriptorProto& proto) { GOOGLE_CHECK(fallback_database_ == NULL) << "Cannot call BuildFile on a DescriptorPool that uses a " "DescriptorDatabase. You must instead find a way to get your file " "into the underlying database."; GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK. return DescriptorBuilder(this, tables_.get(), NULL).BuildFile(proto); } const FileDescriptor* DescriptorPool::BuildFileCollectingErrors( const FileDescriptorProto& proto, ErrorCollector* error_collector) { GOOGLE_CHECK(fallback_database_ == NULL) << "Cannot call BuildFile on a DescriptorPool that uses a " "DescriptorDatabase. You must instead find a way to get your file " "into the underlying database."; GOOGLE_CHECK(mutex_ == NULL); // Implied by the above GOOGLE_CHECK. return DescriptorBuilder(this, tables_.get(), error_collector).BuildFile(proto); } const FileDescriptor* DescriptorPool::BuildFileFromDatabase( const FileDescriptorProto& proto) const { mutex_->AssertHeld(); return DescriptorBuilder(this, tables_.get(), default_error_collector_).BuildFile(proto); } const FileDescriptor* DescriptorPool::InternalBuildGeneratedFile( const void* data, int size) { // So, this function is called in the process of initializing the // descriptors for generated proto classes. Each generated .pb.cc file // has an internal procedure called BuildDescriptors() which is called the // first time one of its descriptors is accessed, and that function calls // this one in order to parse the raw bytes of the FileDescriptorProto // representing the file. // // Note, though, that FileDescriptorProto is itself a generated protocol // message. So, when we attempt to construct one below, it will attempt // to initialize its own descriptors via its own BuildDescriptors() method. // This will in turn cause InternalBuildGeneratedFile() to build // descriptor.proto's descriptors. // // We are saved from an infinite loop by the fact that BuildDescriptors() // only does anything the first time it is called. That is, the first few // lines of any BuildDescriptors() procedure look like this: // void BuildDescriptors() { // static bool already_here = false; // if (already_here) return; // already_here = true; // ... // So, when descriptor.pb.cc's BuildDescriptors() is called recursively, it // will end up just returning without doing anything. The result is that // all of the descriptors for FileDescriptorProto and friends will just be // NULL. // // Luckily, it turns out that our limited use of FileDescriptorProto within // InternalBuildGeneratedFile() does not require that its descriptors be // initialized. So, this ends up working. As soon as // InternalBuildGeneratedFile() returns, the descriptors will be initialized // by the original call to BuildDescriptors(), and everything will be happy // again. // // If this turns out to be too fragile a hack, there are other ways we // can accomplish bootstrapping here (like building the descriptor for // descriptor.proto manually), but if this works then it's a lot easier. // // Note that because this is only triggered at static initialization time, // there are no thread-safety concerns here. FileDescriptorProto proto; GOOGLE_CHECK(proto.ParseFromArray(data, size)); const FileDescriptor* result = BuildFile(proto); GOOGLE_CHECK(result != NULL); return result; } DescriptorBuilder::DescriptorBuilder( const DescriptorPool* pool, DescriptorPool::Tables* tables, DescriptorPool::ErrorCollector* error_collector) : pool_(pool), tables_(tables), error_collector_(error_collector), had_errors_(false), possible_undeclared_dependency_(NULL) {} DescriptorBuilder::~DescriptorBuilder() {} void DescriptorBuilder::AddError( const string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const string& error) { if (error_collector_ == NULL) { if (!had_errors_) { GOOGLE_LOG(ERROR) << "Invalid proto descriptor for file \"" << filename_ << "\":"; } GOOGLE_LOG(ERROR) << " " << element_name << ": " << error; } else { error_collector_->AddError(filename_, element_name, &descriptor, location, error); } had_errors_ = true; } void DescriptorBuilder::AddNotDefinedError( const string& element_name, const Message& descriptor, DescriptorPool::ErrorCollector::ErrorLocation location, const string& undefined_symbol) { if (possible_undeclared_dependency_ == NULL) { AddError(element_name, descriptor, location, "\"" + undefined_symbol + "\" is not defined."); } else { AddError(element_name, descriptor, location, "\"" + undefined_symbol + "\" seems to be defined in \"" + possible_undeclared_dependency_->name() + "\", which is not " "imported by \"" + filename_ + "\". To use it here, please " "add the necessary import."); } } bool DescriptorBuilder::IsInPackage(const FileDescriptor* file, const string& package_name) { return HasPrefixString(file->package(), package_name) && (file->package().size() == package_name.size() || file->package()[package_name.size()] == '.'); } Symbol DescriptorBuilder::FindSymbol(const string& name) { Symbol result; // We need to search our pool and all its underlays. const DescriptorPool* pool = pool_; while (true) { // If we are looking at an underlay, we must lock its mutex_, since we are // accessing the underlay's tables_ dircetly. MutexLockMaybe lock((pool == pool_) ? NULL : pool->mutex_); // Note that we don't have to check fallback_database_ here because the // symbol has to be in one of its file's direct dependencies, and we have // already loaded those by the time we get here. result = pool->tables_->FindSymbol(name); if (!result.IsNull()) break; if (pool->underlay_ == NULL) return kNullSymbol; pool = pool->underlay_; } if (!pool_->enforce_dependencies_) { // Hack for CompilerUpgrader. return result; } // Only find symbols which were defined in this file or one of its // dependencies. const FileDescriptor* file = result.GetFile(); if (file == file_) return result; for (int i = 0; i < file_->dependency_count(); i++) { if (file == file_->dependency(i)) return result; } if (result.type == Symbol::PACKAGE) { // Arg, this is overcomplicated. The symbol is a package name. It could // be that the package was defined in multiple files. result.GetFile() // returns the first file we saw that used this package. We've determined // that that file is not a direct dependency of the file we are currently // building, but it could be that some other file which *is* a direct // dependency also defines the same package. We can't really rule out this // symbol unless none of the dependencies define it. if (IsInPackage(file_, name)) return result; for (int i = 0; i < file_->dependency_count(); i++) { if (IsInPackage(file_->dependency(i), name)) return result; } } possible_undeclared_dependency_ = file; return kNullSymbol; } Symbol DescriptorBuilder::LookupSymbol( const string& name, const string& relative_to) { possible_undeclared_dependency_ = NULL; if (name.size() > 0 && name[0] == '.') { // Fully-qualified name. return FindSymbol(name.substr(1)); } // If name is something like "Foo.Bar.baz", and symbols named "Foo" are // defined in multiple parent scopes, we only want to find "Bar.baz" in the // innermost one. E.g., the following should produce an error: // message Bar { message Baz {} } // message Foo { // message Bar { // } // optional Bar.Baz baz = 1; // } // So, we look for just "Foo" first, then look for "Bar.baz" within it if // found. int name_dot_pos = name.find_first_of('.'); string first_part_of_name; if (name_dot_pos == string::npos) { first_part_of_name = name; } else { first_part_of_name = name.substr(0, name_dot_pos); } string scope_to_try(relative_to); while (true) { // Chop off the last component of the scope. string::size_type dot_pos = scope_to_try.find_last_of('.'); if (dot_pos == string::npos) { return FindSymbol(name); } else { scope_to_try.erase(dot_pos); } // Append ".first_part_of_name" and try to find. string::size_type old_size = scope_to_try.size(); scope_to_try.append(1, '.'); scope_to_try.append(first_part_of_name); Symbol result = FindSymbol(scope_to_try); if (!result.IsNull()) { if (first_part_of_name.size() < name.size()) { // name is a compound symbol, of which we only found the first part. // Now try to look up the rest of it. scope_to_try.append(name, first_part_of_name.size(), name.size() - first_part_of_name.size()); result = FindSymbol(scope_to_try); } return result; } // Not found. Remove the name so we can try again. scope_to_try.erase(old_size); } } bool DescriptorBuilder::AddSymbol( const string& full_name, const void* parent, const string& name, const Message& proto, Symbol symbol) { // If the caller passed NULL for the parent, the symbol is at file scope. // Use its file as the parent instead. if (parent == NULL) parent = file_; if (tables_->AddSymbol(full_name, parent, name, symbol)) { return true; } else { const FileDescriptor* other_file = tables_->FindSymbol(full_name).GetFile(); if (other_file == file_) { string::size_type dot_pos = full_name.find_last_of('.'); if (dot_pos == string::npos) { AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + full_name + "\" is already defined."); } else { AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + full_name.substr(dot_pos + 1) + "\" is already defined in \"" + full_name.substr(0, dot_pos) + "\"."); } } else { // Symbol seems to have been defined in a different file. AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + full_name + "\" is already defined in file \"" + other_file->name() + "\"."); } return false; } } void DescriptorBuilder::AddPackage( const string& name, const Message& proto, const FileDescriptor* file) { if (tables_->AddSymbol(name, NULL, name, Symbol(file))) { // Success. Also add parent package, if any. string::size_type dot_pos = name.find_last_of('.'); if (dot_pos == string::npos) { // No parents. ValidateSymbolName(name, name, proto); } else { // Has parent. string* parent_name = tables_->AllocateString(name.substr(0, dot_pos)); AddPackage(*parent_name, proto, file); ValidateSymbolName(name.substr(dot_pos + 1), name, proto); } } else { Symbol existing_symbol = tables_->FindSymbol(name); // It's OK to redefine a package. if (existing_symbol.type != Symbol::PACKAGE) { // Symbol seems to have been defined in a different file. AddError(name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + name + "\" is already defined (as something other than " "a package) in file \"" + existing_symbol.GetFile()->name() + "\"."); } } } void DescriptorBuilder::ValidateSymbolName( const string& name, const string& full_name, const Message& proto) { if (name.empty()) { AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "Missing name."); } else { for (int i = 0; i < name.size(); i++) { // I don't trust isalnum() due to locales. :( if ((name[i] < 'a' || 'z' < name[i]) && (name[i] < 'A' || 'Z' < name[i]) && (name[i] < '0' || '9' < name[i]) && (name[i] != '_')) { AddError(full_name, proto, DescriptorPool::ErrorCollector::NAME, "\"" + name + "\" is not a valid identifier."); } } } } // ------------------------------------------------------------------- // A common pattern: We want to convert a repeated field in the descriptor // to an array of values, calling some method to build each value. #define BUILD_ARRAY(INPUT, OUTPUT, NAME, METHOD, PARENT) \ OUTPUT->NAME##_count_ = INPUT.NAME##_size(); \ AllocateArray(INPUT.NAME##_size(), &OUTPUT->NAME##s_); \ for (int i = 0; i < INPUT.NAME##_size(); i++) { \ METHOD(INPUT.NAME(i), PARENT, OUTPUT->NAME##s_ + i); \ } const FileDescriptor* DescriptorBuilder::BuildFile( const FileDescriptorProto& proto) { filename_ = proto.name(); // Check to see if this file is already on the pending files list. // TODO(kenton): Allow recursive imports? It may not work with some // (most?) programming languages. E.g., in C++, a forward declaration // of a type is not sufficient to allow it to be used even in a // generated header file due to inlining. This could perhaps be // worked around using tricks involving inserting #include statements // mid-file, but that's pretty ugly, and I'm pretty sure there are // some languages out there that do not allow recursive dependencies // at all. for (int i = 0; i < tables_->pending_files_.size(); i++) { if (tables_->pending_files_[i] == proto.name()) { string error_message("File recursively imports itself: "); for (; i < tables_->pending_files_.size(); i++) { error_message.append(tables_->pending_files_[i]); error_message.append(" -> "); } error_message.append(proto.name()); AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, error_message); return NULL; } } // If we have a fallback_database_, attempt to load all dependencies now, // before checkpointing tables_. This avoids confusion with recursive // checkpoints. if (pool_->fallback_database_ != NULL) { tables_->pending_files_.push_back(proto.name()); for (int i = 0; i < proto.dependency_size(); i++) { if (tables_->FindFile(proto.dependency(i)) == NULL && (pool_->underlay_ == NULL || pool_->underlay_->FindFileByName(proto.dependency(i)) == NULL)) { // We don't care what this returns since we'll find out below anyway. pool_->TryFindFileInFallbackDatabase(proto.dependency(i)); } } tables_->pending_files_.pop_back(); } // Checkpoint the tables so that we can roll back if something goes wrong. tables_->Checkpoint(); FileDescriptor* result = tables_->Allocate(); file_ = result; if (!proto.has_name()) { AddError("", proto, DescriptorPool::ErrorCollector::OTHER, "Missing field: FileDescriptorProto.name."); } result->name_ = tables_->AllocateString(proto.name()); if (proto.has_package()) { result->package_ = tables_->AllocateString(proto.package()); } else { // We cannot rely on proto.package() returning a valid string if // proto.has_package() is false, because we might be running at static // initialization time, in which case default values have not yet been // initialized. result->package_ = tables_->AllocateString(""); } result->pool_ = pool_; // Add to tables. if (!tables_->AddFile(result)) { AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, "A file with this name is already in the pool."); // Bail out early so that if this is actually the exact same file, we // don't end up reporting that every single symbol is already defined. tables_->Rollback(); return NULL; } if (!result->package().empty()) { AddPackage(result->package(), proto, result); } // Make sure all dependencies are loaded. set seen_dependencies; result->dependency_count_ = proto.dependency_size(); result->dependencies_ = tables_->AllocateArray(proto.dependency_size()); for (int i = 0; i < proto.dependency_size(); i++) { if (!seen_dependencies.insert(proto.dependency(i)).second) { AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, "Import \"" + proto.dependency(i) + "\" was listed twice."); } const FileDescriptor* dependency = tables_->FindFile(proto.dependency(i)); if (dependency == NULL && pool_->underlay_ != NULL) { dependency = pool_->underlay_->FindFileByName(proto.dependency(i)); } if (dependency == NULL) { string message; if (pool_->fallback_database_ == NULL) { message = "Import \"" + proto.dependency(i) + "\" has not been loaded."; } else { message = "Import \"" + proto.dependency(i) + "\" was not found or had errors."; } AddError(proto.name(), proto, DescriptorPool::ErrorCollector::OTHER, message); } result->dependencies_[i] = dependency; } // Convert children. BUILD_ARRAY(proto, result, message_type, BuildMessage , NULL); BUILD_ARRAY(proto, result, enum_type , BuildEnum , NULL); BUILD_ARRAY(proto, result, service , BuildService , NULL); BUILD_ARRAY(proto, result, extension , BuildExtension, NULL); // Copy options. if (!proto.has_options()) { result->options_ = &FileOptions::default_instance(); } else { FileOptions* options = tables_->AllocateMessage(); options->CopyFrom(proto.options()); result->options_ = options; } // Cross-link. CrossLinkFile(result, proto); if (had_errors_) { tables_->Rollback(); return NULL; } else { tables_->Checkpoint(); return result; } } void DescriptorBuilder::BuildMessage(const DescriptorProto& proto, const Descriptor* parent, Descriptor* result) { const string& scope = (parent == NULL) ? file_->package() : parent->full_name(); string* full_name = tables_->AllocateString(scope); if (!full_name->empty()) full_name->append(1, '.'); full_name->append(proto.name()); ValidateSymbolName(proto.name(), *full_name, proto); result->name_ = tables_->AllocateString(proto.name()); result->full_name_ = full_name; result->file_ = file_; result->containing_type_ = parent; BUILD_ARRAY(proto, result, field , BuildField , result); BUILD_ARRAY(proto, result, nested_type , BuildMessage , result); BUILD_ARRAY(proto, result, enum_type , BuildEnum , result); BUILD_ARRAY(proto, result, extension_range, BuildExtensionRange, result); BUILD_ARRAY(proto, result, extension , BuildExtension , result); // Copy options. if (!proto.has_options()) { result->options_ = &MessageOptions::default_instance(); } else { MessageOptions* options = tables_->AllocateMessage(); options->CopyFrom(proto.options()); result->options_ = options; } AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result)); // Check that no fields have numbers in extension ranges. for (int i = 0; i < result->field_count(); i++) { const FieldDescriptor* field = result->field(i); for (int j = 0; j < result->extension_range_count(); j++) { const Descriptor::ExtensionRange* range = result->extension_range(j); if (range->start <= field->number() && field->number() < range->end) { AddError(field->full_name(), proto.extension_range(j), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute( "Extension range $0 to $1 includes field \"$2\" ($3).", range->start, range->end - 1, field->name(), field->number())); } } } // Check that extension ranges don't overlap. for (int i = 0; i < result->extension_range_count(); i++) { const Descriptor::ExtensionRange* range1 = result->extension_range(i); for (int j = i + 1; j < result->extension_range_count(); j++) { const Descriptor::ExtensionRange* range2 = result->extension_range(j); if (range1->end > range2->start && range2->end > range1->start) { AddError(result->full_name(), proto.extension_range(j), DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Extension range $0 to $1 overlaps with " "already-defined range $2 to $3.", range2->start, range2->end - 1, range1->start, range1->end - 1)); } } } } void DescriptorBuilder::BuildFieldOrExtension(const FieldDescriptorProto& proto, const Descriptor* parent, FieldDescriptor* result, bool is_extension) { const string& scope = (parent == NULL) ? file_->package() : parent->full_name(); string* full_name = tables_->AllocateString(scope); if (!full_name->empty()) full_name->append(1, '.'); full_name->append(proto.name()); ValidateSymbolName(proto.name(), *full_name, proto); result->name_ = tables_->AllocateString(proto.name()); result->full_name_ = full_name; result->file_ = file_; result->number_ = proto.number(); result->type_ = static_cast(proto.type()); result->label_ = static_cast(proto.label()); result->is_extension_ = is_extension; // Some of these may be filled in when cross-linking. result->containing_type_ = NULL; result->extension_scope_ = NULL; result->experimental_map_key_ = NULL; result->message_type_ = NULL; result->enum_type_ = NULL; result->has_default_value_ = proto.has_default_value(); if (proto.has_type()) { if (proto.has_default_value()) { char* end_pos = NULL; switch (result->cpp_type()) { case FieldDescriptor::CPPTYPE_INT32: result->default_value_int32_ = strtol(proto.default_value().c_str(), &end_pos, 0); break; case FieldDescriptor::CPPTYPE_INT64: result->default_value_int64_ = strto64(proto.default_value().c_str(), &end_pos, 0); break; case FieldDescriptor::CPPTYPE_UINT32: result->default_value_uint32_ = strtoul(proto.default_value().c_str(), &end_pos, 0); break; case FieldDescriptor::CPPTYPE_UINT64: result->default_value_uint64_ = strtou64(proto.default_value().c_str(), &end_pos, 0); break; case FieldDescriptor::CPPTYPE_FLOAT: result->default_value_float_ = NoLocaleStrtod(proto.default_value().c_str(), &end_pos); break; case FieldDescriptor::CPPTYPE_DOUBLE: result->default_value_double_ = NoLocaleStrtod(proto.default_value().c_str(), &end_pos); break; case FieldDescriptor::CPPTYPE_BOOL: if (proto.default_value() == "true") { result->default_value_bool_ = true; } else if (proto.default_value() == "false") { result->default_value_bool_ = false; } else { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Boolean default must be true or false."); } break; case FieldDescriptor::CPPTYPE_ENUM: // This will be filled in when cross-linking. result->default_value_enum_ = NULL; break; case FieldDescriptor::CPPTYPE_STRING: if (result->type() == FieldDescriptor::TYPE_BYTES) { result->default_value_string_ = tables_->AllocateString( UnescapeCEscapeString(proto.default_value())); } else { result->default_value_string_ = tables_->AllocateString(proto.default_value()); } break; case FieldDescriptor::CPPTYPE_MESSAGE: AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Messages can't have default values."); result->has_default_value_ = false; break; } if (end_pos != NULL) { // end_pos is only set non-NULL by the parsers for numeric types, above. // This checks that the default was non-empty and had no extra junk // after the end of the number. if (proto.default_value().empty() || *end_pos != '\0') { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Couldn't parse default value."); } } } else { // No explicit default value switch (result->cpp_type()) { case FieldDescriptor::CPPTYPE_INT32: result->default_value_int32_ = 0; break; case FieldDescriptor::CPPTYPE_INT64: result->default_value_int64_ = 0; break; case FieldDescriptor::CPPTYPE_UINT32: result->default_value_uint32_ = 0; break; case FieldDescriptor::CPPTYPE_UINT64: result->default_value_uint64_ = 0; break; case FieldDescriptor::CPPTYPE_FLOAT: result->default_value_float_ = 0.0f; break; case FieldDescriptor::CPPTYPE_DOUBLE: result->default_value_double_ = 0.0; break; case FieldDescriptor::CPPTYPE_BOOL: result->default_value_bool_ = false; break; case FieldDescriptor::CPPTYPE_ENUM: // This will be filled in when cross-linking. result->default_value_enum_ = NULL; break; case FieldDescriptor::CPPTYPE_STRING: result->default_value_string_ = &kEmptyString; break; case FieldDescriptor::CPPTYPE_MESSAGE: break; } } } if (result->number() <= 0) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, "Field numbers must be positive integers."); } else if (result->number() > FieldDescriptor::kMaxNumber) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Field numbers cannot be greater than $0.", FieldDescriptor::kMaxNumber)); } else if (result->number() >= FieldDescriptor::kFirstReservedNumber && result->number() <= FieldDescriptor::kLastReservedNumber) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute( "Field numbers $0 through $1 are reserved for the protocol " "buffer library implementation.", FieldDescriptor::kFirstReservedNumber, FieldDescriptor::kLastReservedNumber)); } if (is_extension) { if (!proto.has_extendee()) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, "FieldDescriptorProto.extendee not set for extension field."); } result->extension_scope_ = parent; } else { if (proto.has_extendee()) { AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, "FieldDescriptorProto.extendee set for non-extension field."); } result->containing_type_ = parent; } // Copy options. if (!proto.has_options()) { result->options_ = &FieldOptions::default_instance(); } else { FieldOptions* options = tables_->AllocateMessage(); options->CopyFrom(proto.options()); result->options_ = options; } AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result)); } void DescriptorBuilder::BuildExtensionRange( const DescriptorProto::ExtensionRange& proto, const Descriptor* parent, Descriptor::ExtensionRange* result) { result->start = proto.start(); result->end = proto.end(); if (result->start <= 0) { AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, "Extension numbers must be positive integers."); } if (result->end > FieldDescriptor::kMaxNumber + 1) { AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Extension numbers cannot be greater than $0.", FieldDescriptor::kMaxNumber)); } if (result->start >= result->end) { AddError(parent->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, "Extension range end number must be greater than start number."); } } void DescriptorBuilder::BuildEnum(const EnumDescriptorProto& proto, const Descriptor* parent, EnumDescriptor* result) { const string& scope = (parent == NULL) ? file_->package() : parent->full_name(); string* full_name = tables_->AllocateString(scope); if (!full_name->empty()) full_name->append(1, '.'); full_name->append(proto.name()); ValidateSymbolName(proto.name(), *full_name, proto); result->name_ = tables_->AllocateString(proto.name()); result->full_name_ = full_name; result->file_ = file_; result->containing_type_ = parent; if (proto.value_size() == 0) { // We cannot allow enums with no values because this would mean there // would be no valid default value for fields of this type. AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Enums must contain at least one value."); } BUILD_ARRAY(proto, result, value, BuildEnumValue, result); // Copy options. if (!proto.has_options()) { result->options_ = &EnumOptions::default_instance(); } else { EnumOptions* options = tables_->AllocateMessage(); options->CopyFrom(proto.options()); result->options_ = options; } AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result)); } void DescriptorBuilder::BuildEnumValue(const EnumValueDescriptorProto& proto, const EnumDescriptor* parent, EnumValueDescriptor* result) { result->name_ = tables_->AllocateString(proto.name()); result->number_ = proto.number(); result->type_ = parent; // Note: full_name for enum values is a sibling to the parent's name, not a // child of it. string* full_name = tables_->AllocateString(*parent->full_name_); full_name->resize(full_name->size() - parent->name_->size()); full_name->append(*result->name_); result->full_name_ = full_name; ValidateSymbolName(proto.name(), *full_name, proto); // Copy options. if (!proto.has_options()) { result->options_ = &EnumValueOptions::default_instance(); } else { EnumValueOptions* options = tables_->AllocateMessage(); options->CopyFrom(proto.options()); result->options_ = options; } // Again, enum values are weird because we makes them appear as siblings // of the enum type instead of children of it. So, we use // parent->containing_type() as the value's parent. bool added_to_outer_scope = AddSymbol(result->full_name(), parent->containing_type(), result->name(), proto, Symbol(result)); // However, we also want to be able to search for values within a single // enum type, so we add it as a child of the enum type itself, too. // Note: This could fail, but if it does, the error has already been // reported by the above AddSymbol() call, so we ignore the return code. bool added_to_inner_scope = tables_->AddAliasUnderParent(parent, result->name(), Symbol(result)); if (added_to_inner_scope && !added_to_outer_scope) { // This value did not conflict with any values defined in the same enum, // but it did conflict with some other symbol defined in the enum type's // scope. Let's print an additional error to explain this. string outer_scope; if (parent->containing_type() == NULL) { outer_scope = file_->package(); } else { outer_scope = parent->containing_type()->full_name(); } if (outer_scope.empty()) { outer_scope = "the global scope"; } else { outer_scope = "\"" + outer_scope + "\""; } AddError(result->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "Note that enum values use C++ scoping rules, meaning that " "enum values are siblings of their type, not children of it. " "Therefore, \"" + result->name() + "\" must be unique within " + outer_scope + ", not just within \"" + parent->name() + "\"."); } // An enum is allowed to define two numbers that refer to the same value. // FindValueByNumber() should return the first such value, so we simply // ignore AddEnumValueByNumber()'s return code. tables_->AddEnumValueByNumber(result); } void DescriptorBuilder::BuildService(const ServiceDescriptorProto& proto, const void* dummy, ServiceDescriptor* result) { string* full_name = tables_->AllocateString(file_->package()); if (!full_name->empty()) full_name->append(1, '.'); full_name->append(proto.name()); ValidateSymbolName(proto.name(), *full_name, proto); result->name_ = tables_->AllocateString(proto.name()); result->full_name_ = full_name; result->file_ = file_; BUILD_ARRAY(proto, result, method, BuildMethod, result); // Copy options. if (!proto.has_options()) { result->options_ = &ServiceOptions::default_instance(); } else { ServiceOptions* options = tables_->AllocateMessage(); options->CopyFrom(proto.options()); result->options_ = options; } AddSymbol(result->full_name(), NULL, result->name(), proto, Symbol(result)); } void DescriptorBuilder::BuildMethod(const MethodDescriptorProto& proto, const ServiceDescriptor* parent, MethodDescriptor* result) { result->name_ = tables_->AllocateString(proto.name()); result->service_ = parent; string* full_name = tables_->AllocateString(parent->full_name()); full_name->append(1, '.'); full_name->append(*result->name_); result->full_name_ = full_name; ValidateSymbolName(proto.name(), *full_name, proto); // These will be filled in when cross-linking. result->input_type_ = NULL; result->output_type_ = NULL; // Copy options. if (!proto.has_options()) { result->options_ = &MethodOptions::default_instance(); } else { MethodOptions* options = tables_->AllocateMessage(); options->CopyFrom(proto.options()); result->options_ = options; } AddSymbol(result->full_name(), parent, result->name(), proto, Symbol(result)); } #undef BUILD_ARRAY // ------------------------------------------------------------------- void DescriptorBuilder::CrossLinkFile( FileDescriptor* file, const FileDescriptorProto& proto) { for (int i = 0; i < file->message_type_count(); i++) { CrossLinkMessage(&file->message_types_[i], proto.message_type(i)); } for (int i = 0; i < file->extension_count(); i++) { CrossLinkField(&file->extensions_[i], proto.extension(i)); } for (int i = 0; i < file->service_count(); i++) { CrossLinkService(&file->services_[i], proto.service(i)); } } void DescriptorBuilder::CrossLinkMessage( Descriptor* message, const DescriptorProto& proto) { for (int i = 0; i < message->nested_type_count(); i++) { CrossLinkMessage(&message->nested_types_[i], proto.nested_type(i)); } for (int i = 0; i < message->field_count(); i++) { CrossLinkField(&message->fields_[i], proto.field(i)); } for (int i = 0; i < message->extension_count(); i++) { CrossLinkField(&message->extensions_[i], proto.extension(i)); } } void DescriptorBuilder::CrossLinkField( FieldDescriptor* field, const FieldDescriptorProto& proto) { if (proto.has_extendee()) { Symbol extendee = LookupSymbol(proto.extendee(), field->full_name()); if (extendee.IsNull()) { AddNotDefinedError(field->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, proto.extendee()); return; } else if (extendee.type != Symbol::MESSAGE) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::EXTENDEE, "\"" + proto.extendee() + "\" is not a message type."); return; } field->containing_type_ = extendee.descriptor; if (!field->containing_type()->IsExtensionNumber(field->number())) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("\"$0\" does not declare $1 as an " "extension number.", field->containing_type()->full_name(), field->number())); } } if (proto.has_type_name()) { Symbol type = LookupSymbol(proto.type_name(), field->full_name()); if (type.IsNull()) { AddNotDefinedError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, proto.type_name()); return; } if (!proto.has_type()) { // Choose field type based on symbol. if (type.type == Symbol::MESSAGE) { field->type_ = FieldDescriptor::TYPE_MESSAGE; } else if (type.type == Symbol::ENUM) { field->type_ = FieldDescriptor::TYPE_ENUM; } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "\"" + proto.type_name() + "\" is not a type."); return; } } if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { if (type.type != Symbol::MESSAGE) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "\"" + proto.type_name() + "\" is not a message type."); return; } field->message_type_ = type.descriptor; if (field->has_default_value()) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Messages can't have default values."); } } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) { if (type.type != Symbol::ENUM) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "\"" + proto.type_name() + "\" is not an enum type."); return; } field->enum_type_ = type.enum_descriptor; if (field->has_default_value()) { // We can't just use field->enum_type()->FindValueByName() here // because that locks the pool's mutex, which we have already locked // at this point. Symbol default_value = LookupSymbol(proto.default_value(), field->enum_type()->full_name()); if (default_value.type == Symbol::ENUM_VALUE && default_value.enum_value_descriptor->type() == field->enum_type()) { field->default_value_enum_ = default_value.enum_value_descriptor; } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::DEFAULT_VALUE, "Enum type \"" + field->enum_type()->full_name() + "\" has no value named \"" + proto.default_value() + "\"."); } } else if (field->enum_type()->value_count() > 0) { // All enums must have at least one value, or we would have reported // an error elsewhere. We use the first defined value as the default // if a default is not explicitly defined. field->default_value_enum_ = field->enum_type()->value(0); } } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Field with primitive type has type_name."); } } else { if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE || field->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Field with message or enum type missing type_name."); } } if (proto.has_options() && proto.options().has_experimental_map_key()) { CrossLinkMapKey(field, proto); } // Add the field to the fields-by-number table. // Note: We have to do this *after* cross-linking because extensions do not // know their containing type until now. if (!tables_->AddFieldByNumber(field)) { const FieldDescriptor* conflicting_field = tables_->FindFieldByNumber(field->containing_type(), field->number()); if (field->is_extension()) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Extension number $0 has already been used " "in \"$1\" by extension \"$2\".", field->number(), field->containing_type()->full_name(), conflicting_field->full_name())); } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NUMBER, strings::Substitute("Field number $0 has already been used in " "\"$1\" by field \"$2\".", field->number(), field->containing_type()->full_name(), conflicting_field->name())); } } // Note: Default instance may not yet be initialized here, so we have to // avoid reading from it. if (field->containing_type_ != NULL && &field->containing_type()->options() != &MessageOptions::default_instance() && field->containing_type()->options().message_set_wire_format()) { if (field->is_extension()) { if (!field->is_optional() || field->type() != FieldDescriptor::TYPE_MESSAGE) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Extensions of MessageSets must be optional messages."); } } else { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::NAME, "MessageSets cannot have fields, only extensions."); } } } void DescriptorBuilder::CrossLinkService( ServiceDescriptor* service, const ServiceDescriptorProto& proto) { for (int i = 0; i < service->method_count(); i++) { CrossLinkMethod(&service->methods_[i], proto.method(i)); } } void DescriptorBuilder::CrossLinkMethod( MethodDescriptor* method, const MethodDescriptorProto& proto) { Symbol input_type = LookupSymbol(proto.input_type(), method->full_name()); if (input_type.IsNull()) { AddNotDefinedError(method->full_name(), proto, DescriptorPool::ErrorCollector::INPUT_TYPE, proto.input_type()); } else if (input_type.type != Symbol::MESSAGE) { AddError(method->full_name(), proto, DescriptorPool::ErrorCollector::INPUT_TYPE, "\"" + proto.input_type() + "\" is not a message type."); } else { method->input_type_ = input_type.descriptor; } Symbol output_type = LookupSymbol(proto.output_type(), method->full_name()); if (output_type.IsNull()) { AddNotDefinedError(method->full_name(), proto, DescriptorPool::ErrorCollector::OUTPUT_TYPE, proto.output_type()); } else if (output_type.type != Symbol::MESSAGE) { AddError(method->full_name(), proto, DescriptorPool::ErrorCollector::OUTPUT_TYPE, "\"" + proto.output_type() + "\" is not a message type."); } else { method->output_type_ = output_type.descriptor; } } void DescriptorBuilder::CrossLinkMapKey( FieldDescriptor* field, const FieldDescriptorProto& proto) { if (!field->is_repeated()) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "map type is only allowed for repeated fields."); return; } if (field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "map type is only allowed for fields with a message type."); return; } const Descriptor* item_type = field->message_type(); if (item_type == NULL) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Could not find field type."); return; } // Find the field in item_type named by "experimental_map_key" const string& key_name = proto.options().experimental_map_key(); const Symbol key_symbol = LookupSymbol( key_name, // We append ".key_name" to the containing type's name since // LookupSymbol() searches for peers of the supplied name, not // children of the supplied name. item_type->full_name() + "." + key_name); if (key_symbol.IsNull() || key_symbol.field_descriptor->is_extension()) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "Could not find field named \"" + key_name + "\" in type \"" + item_type->full_name() + "\"."); return; } const FieldDescriptor* key_field = key_symbol.field_descriptor; if (key_field->is_repeated()) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "map_key must not name a repeated field."); return; } if (key_field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { AddError(field->full_name(), proto, DescriptorPool::ErrorCollector::TYPE, "map key must name a scalar or string field."); return; } field->experimental_map_key_ = key_field; } } // namespace protobuf } // namespace google