// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. // http://code.google.com/p/protobuf/ // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Author: kenton@google.com (Kenton Varda) // Based on original Protocol Buffers design by // Sanjay Ghemawat, Jeff Dean, and others. // // DynamicMessage is implemented by constructing a data structure which // has roughly the same memory layout as a generated message would have. // Then, we use GeneratedMessageReflection to implement our reflection // interface. All the other operations we need to implement (e.g. // parsing, copying, etc.) are already implemented in terms of // Message::Reflection, so the rest is easy. // // The up side of this strategy is that it's very efficient. We don't // need to use hash_maps or generic representations of fields. The // down side is that this is a low-level memory management hack which // can be tricky to get right. // // As mentioned in the header, we only expose a DynamicMessageFactory // publicly, not the DynamicMessage class itself. This is because // GenericMessageReflection wants to have a pointer to a "default" // copy of the class, with all fields initialized to their default // values. We only want to construct one of these per message type, // so DynamicMessageFactory stores a cache of default messages for // each type it sees (each unique Descriptor pointer). The code // refers to the "default" copy of the class as the "prototype". // // Note on memory allocation: This module often calls "operator new()" // to allocate untyped memory, rather than calling something like // "new uint8[]". This is because "operator new()" means "Give me some // space which I can use as I please." while "new uint8[]" means "Give // me an array of 8-bit integers.". In practice, the later may return // a pointer that is not aligned correctly for general use. I believe // Item 8 of "More Effective C++" discusses this in more detail, though // I don't have the book on me right now so I'm not sure. #include #include #include #include #include #include #include #include #include #include #include namespace google { namespace protobuf { using internal::WireFormat; using internal::ExtensionSet; using internal::GeneratedMessageReflection; using internal::GenericRepeatedField; // =================================================================== // Some helper tables and functions... namespace { // Compute the byte size of the in-memory representation of the field. int FieldSpaceUsed(const FieldDescriptor* field) { typedef FieldDescriptor FD; // avoid line wrapping if (field->label() == FD::LABEL_REPEATED) { switch (field->cpp_type()) { case FD::CPPTYPE_INT32 : return sizeof(RepeatedField); case FD::CPPTYPE_INT64 : return sizeof(RepeatedField); case FD::CPPTYPE_UINT32 : return sizeof(RepeatedField); case FD::CPPTYPE_UINT64 : return sizeof(RepeatedField); case FD::CPPTYPE_DOUBLE : return sizeof(RepeatedField); case FD::CPPTYPE_FLOAT : return sizeof(RepeatedField); case FD::CPPTYPE_BOOL : return sizeof(RepeatedField); case FD::CPPTYPE_ENUM : return sizeof(RepeatedField); case FD::CPPTYPE_MESSAGE: return sizeof(RepeatedPtrField); case FD::CPPTYPE_STRING: return sizeof(RepeatedPtrField); break; } } else { switch (field->cpp_type()) { case FD::CPPTYPE_INT32 : return sizeof(int32 ); case FD::CPPTYPE_INT64 : return sizeof(int64 ); case FD::CPPTYPE_UINT32 : return sizeof(uint32 ); case FD::CPPTYPE_UINT64 : return sizeof(uint64 ); case FD::CPPTYPE_DOUBLE : return sizeof(double ); case FD::CPPTYPE_FLOAT : return sizeof(float ); case FD::CPPTYPE_BOOL : return sizeof(bool ); case FD::CPPTYPE_ENUM : return sizeof(int ); case FD::CPPTYPE_MESSAGE: return sizeof(Message*); case FD::CPPTYPE_STRING: return sizeof(string*); break; } } GOOGLE_LOG(DFATAL) << "Can't get here."; return 0; } struct DescendingFieldSizeOrder { inline bool operator()(const FieldDescriptor* a, const FieldDescriptor* b) { // All repeated fields come first. if (a->is_repeated()) { if (b->is_repeated()) { // Repeated fields and are not ordered with respect to each other. return false; } else { return true; } } else if (b->is_repeated()) { return false; } else { // Remaining fields in descending order by size. return FieldSpaceUsed(a) > FieldSpaceUsed(b); } } }; inline int DivideRoundingUp(int i, int j) { return (i + (j - 1)) / j; } #define bitsizeof(T) (sizeof(T) * 8) } // namespace // =================================================================== class DynamicMessage : public Message { public: DynamicMessage(const Descriptor* descriptor, uint8* base, const uint8* prototype_base, int size, const int offsets[], const DescriptorPool* pool, DynamicMessageFactory* factory); ~DynamicMessage(); // Called on the prototype after construction to initialize message fields. void CrossLinkPrototypes(DynamicMessageFactory* factory); // implements Message ---------------------------------------------- Message* New() const; int GetCachedSize() const; void SetCachedSize(int size) const; const Descriptor* GetDescriptor() const; const Reflection* GetReflection() const; Reflection* GetReflection(); private: GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage); inline bool is_prototype() { return base_ == prototype_base_; } const Descriptor* descriptor_; const DescriptorPool* descriptor_pool_; DynamicMessageFactory* factory_; scoped_ptr extensions_; GeneratedMessageReflection reflection_; uint8* base_; const uint8* prototype_base_; const int* offsets_; int size_; // TODO(kenton): Make this an atomic when C++ supports it. mutable int cached_byte_size_; }; DynamicMessage::DynamicMessage(const Descriptor* descriptor, uint8* base, const uint8* prototype_base, int size, const int offsets[], const DescriptorPool* pool, DynamicMessageFactory* factory) : descriptor_(descriptor), descriptor_pool_((pool == NULL) ? descriptor->file()->pool() : pool), factory_(factory), extensions_(descriptor->extension_range_count() > 0 ? new ExtensionSet(descriptor, descriptor_pool_, factory_) : NULL), reflection_(descriptor, base, prototype_base, offsets, // has_bits reinterpret_cast(base + size) - DivideRoundingUp(descriptor->field_count(), bitsizeof(uint32)), extensions_.get()), base_(base), prototype_base_(prototype_base), offsets_(offsets), size_(size), cached_byte_size_(0) { // We need to call constructors for various fields manually and set // default values where appropriate. We use placement new to call // constructors. If you haven't heard of placement new, I suggest Googling // it now. We use placement new even for primitive types that don't have // constructors for consistency. (In theory, placement new should be used // any time you are trying to convert untyped memory to typed memory, though // in practice that's not strictly necessary for types that don't have a // constructor.) for (int i = 0; i < descriptor->field_count(); i++) { const FieldDescriptor* field = descriptor->field(i); void* field_ptr = base + offsets[i]; switch (field->cpp_type()) { #define HANDLE_TYPE(CPPTYPE, TYPE) \ case FieldDescriptor::CPPTYPE_##CPPTYPE: \ if (!field->is_repeated()) { \ new(field_ptr) TYPE(field->default_value_##TYPE()); \ } else { \ new(field_ptr) RepeatedField(); \ } \ break; HANDLE_TYPE(INT32 , int32 ); HANDLE_TYPE(INT64 , int64 ); HANDLE_TYPE(UINT32, uint32); HANDLE_TYPE(UINT64, uint64); HANDLE_TYPE(DOUBLE, double); HANDLE_TYPE(FLOAT , float ); HANDLE_TYPE(BOOL , bool ); #undef HANDLE_TYPE case FieldDescriptor::CPPTYPE_ENUM: if (!field->is_repeated()) { new(field_ptr) int(field->default_value_enum()->number()); } else { new(field_ptr) RepeatedField(); } break; case FieldDescriptor::CPPTYPE_STRING: if (!field->is_repeated()) { if (is_prototype()) { new(field_ptr) const string*(&field->default_value_string()); } else { string* default_value = *reinterpret_cast( prototype_base + offsets[i]); new(field_ptr) string*(default_value); } } else { new(field_ptr) RepeatedPtrField(); } break; case FieldDescriptor::CPPTYPE_MESSAGE: { // If this object is the prototype, its CPPTYPE_MESSAGE fields // must be initialized later, in CrossLinkPrototypes(), so we don't // initialize them here. if (!is_prototype()) { if (!field->is_repeated()) { new(field_ptr) Message*(NULL); } else { const RepeatedPtrField* prototype_field = reinterpret_cast*>( prototype_base + offsets[i]); new(field_ptr) RepeatedPtrField( prototype_field->prototype()); } } break; } } } } DynamicMessage::~DynamicMessage() { // We need to manually run the destructors for repeated fields and strings, // just as we ran their constructors in the the DynamicMessage constructor. // Additionally, if any singular embedded messages have been allocated, we // need to delete them, UNLESS we are the prototype message of this type, // in which case any embedded messages are other prototypes and shouldn't // be touched. const Descriptor* descriptor = GetDescriptor(); for (int i = 0; i < descriptor->field_count(); i++) { const FieldDescriptor* field = descriptor->field(i); void* field_ptr = base_ + offsets_[i]; if (field->is_repeated()) { GenericRepeatedField* field = reinterpret_cast(field_ptr); field->~GenericRepeatedField(); } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) { string* ptr = *reinterpret_cast(field_ptr); if (ptr != &field->default_value_string()) { delete ptr; } } else if ((field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) && !is_prototype()) { Message* message = *reinterpret_cast(field_ptr); if (message != NULL) { delete message; } } } // OK, now we can delete our base pointer. operator delete(base_); // When the prototype is deleted, we also want to free the offsets table. // (The prototype is only deleted when the factory that created it is // deleted.) if (is_prototype()) { delete [] offsets_; } } void DynamicMessage::CrossLinkPrototypes(DynamicMessageFactory* factory) { // This should only be called on the prototype message. GOOGLE_CHECK(is_prototype()); // Cross-link default messages. for (int i = 0; i < descriptor_->field_count(); i++) { const FieldDescriptor* field = descriptor_->field(i); void* field_ptr = base_ + offsets_[i]; if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) { // For fields with message types, we need to cross-link with the // prototype for the field's type. const Message* field_prototype = factory->GetPrototype(field->message_type()); if (field->is_repeated()) { // For repeated fields, we actually construct the RepeatedPtrField // here, but only for fields with message types. All other repeated // fields are constructed in DynamicMessage's constructor. new(field_ptr) RepeatedPtrField(field_prototype); } else { // For singular fields, the field is just a pointer which should // point to the prototype. (OK to const_cast here because the // prototype itself will only be available const to the outside // world.) new(field_ptr) Message*(const_cast(field_prototype)); } } } } Message* DynamicMessage::New() const { uint8* new_base = reinterpret_cast(operator new(size_)); memset(new_base, 0, size_); return new DynamicMessage(GetDescriptor(), new_base, prototype_base_, size_, offsets_, descriptor_pool_, factory_); } int DynamicMessage::GetCachedSize() const { return cached_byte_size_; } void DynamicMessage::SetCachedSize(int size) const { // This is theoretically not thread-compatible, but in practice it works // because if multiple threads write this simultaneously, they will be // writing the exact same value. cached_byte_size_ = size; } const Descriptor* DynamicMessage::GetDescriptor() const { return descriptor_; } const Message::Reflection* DynamicMessage::GetReflection() const { return &reflection_; } Message::Reflection* DynamicMessage::GetReflection() { return &reflection_; } // =================================================================== struct DynamicMessageFactory::PrototypeMap { typedef hash_map Map; Map map_; }; DynamicMessageFactory::DynamicMessageFactory() : pool_(NULL), prototypes_(new PrototypeMap) { } DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool) : pool_(pool), prototypes_(new PrototypeMap) { } DynamicMessageFactory::~DynamicMessageFactory() { for (PrototypeMap::Map::iterator iter = prototypes_->map_.begin(); iter != prototypes_->map_.end(); ++iter) { delete iter->second; } } const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) { const Message** target = &prototypes_->map_[type]; if (*target != NULL) { // Already exists. return *target; } // We need to construct all the structures passed to // GeneratedMessageReflection's constructor. This includes: // - A block of memory that contains space for all the message's fields. // - An array of integers indicating the byte offset of each field within // this block. // - A big bitfield containing a bit for each field indicating whether // or not that field is set. // Compute size and offsets. int* offsets = new int[type->field_count()]; // Sort the fields of this message in descending order by size. We // assume that if we then pack the fields tightly in this order, all fields // will end up properly-aligned, since all field sizes are powers of two or // are multiples of the system word size. scoped_array ordered_fields( new const FieldDescriptor*[type->field_count()]); for (int i = 0; i < type->field_count(); i++) { ordered_fields[i] = type->field(i); } stable_sort(&ordered_fields[0], &ordered_fields[type->field_count()], DescendingFieldSizeOrder()); // Decide all field offsets by packing in order. int current_offset = 0; for (int i = 0; i < type->field_count(); i++) { offsets[ordered_fields[i]->index()] = current_offset; current_offset += FieldSpaceUsed(ordered_fields[i]); } // Allocate space for all fields plus has_bits. We'll stick has_bits on // the end. int size = current_offset + DivideRoundingUp(type->field_count(), bitsizeof(uint32)) * sizeof(uint32); // Round size up to the nearest 64-bit boundary just to make sure no // clever allocators think that alignment is not necessary. This also // insures that has_bits is properly-aligned, since we'll always align // has_bits with the end of the structure. size = DivideRoundingUp(size, sizeof(uint64)) * sizeof(uint64); uint8* base = reinterpret_cast(operator new(size)); memset(base, 0, size); // Construct message. DynamicMessage* result = new DynamicMessage(type, base, base, size, offsets, pool_, this); *target = result; result->CrossLinkPrototypes(this); return result; } } // namespace protobuf } // namespace google