aboutsummaryrefslogtreecommitdiff
path: root/ruby/ext/google/protobuf_c/encode_decode.c
blob: 0c5a74abd166a5599fce7c1bb526d4ffabc4ffdb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "protobuf.h"

// This function is equivalent to rb_str_cat(), but unlike the real
// rb_str_cat(), it doesn't leak memory in some versions of Ruby.
// For more information, see:
//   https://bugs.ruby-lang.org/issues/11328
VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) {
  char *p;
  size_t oldlen = RSTRING_LEN(rb_str);
  rb_str_modify_expand(rb_str, len);
  p = RSTRING_PTR(rb_str);
  memcpy(p + oldlen, str, len);
  rb_str_set_len(rb_str, oldlen + len);
  return rb_str;
}

// The code below also comes from upb's prototype Ruby binding, developed by
// haberman@.

/* stringsink *****************************************************************/

static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
  stringsink *sink = _sink;
  sink->len = 0;
  return sink;
}

static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
                                size_t len, const upb_bufhandle *handle) {
  stringsink *sink = _sink;
  size_t new_size = sink->size;

  UPB_UNUSED(hd);
  UPB_UNUSED(handle);

  while (sink->len + len > new_size) {
    new_size *= 2;
  }

  if (new_size != sink->size) {
    sink->ptr = realloc(sink->ptr, new_size);
    sink->size = new_size;
  }

  memcpy(sink->ptr + sink->len, ptr, len);
  sink->len += len;

  return len;
}

void stringsink_init(stringsink *sink) {
  upb_byteshandler_init(&sink->handler);
  upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
  upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);

  upb_bytessink_reset(&sink->sink, &sink->handler, sink);

  sink->size = 32;
  sink->ptr = malloc(sink->size);
  sink->len = 0;
}

void stringsink_uninit(stringsink *sink) {
  free(sink->ptr);
}

// -----------------------------------------------------------------------------
// Parsing.
// -----------------------------------------------------------------------------

#define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)

typedef struct {
  size_t ofs;
  int32_t hasbit;
} field_handlerdata_t;

// Creates a handlerdata that contains the offset and the hasbit for the field
static const void* newhandlerdata(upb_handlers* h, uint32_t ofs, int32_t hasbit) {
  field_handlerdata_t *hd = ALLOC(field_handlerdata_t);
  hd->ofs = ofs;
  hd->hasbit = hasbit;
  upb_handlers_addcleanup(h, hd, xfree);
  return hd;
}

typedef struct {
  size_t ofs;
  int32_t hasbit;
  const upb_msgdef *md;
} submsg_handlerdata_t;

// Creates a handlerdata that contains offset and submessage type information.
static const void *newsubmsghandlerdata(upb_handlers* h,
                                        uint32_t ofs,
                                        int32_t hasbit,
                                        const upb_fielddef* f) {
  submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
  hd->ofs = ofs;
  hd->hasbit = hasbit;
  hd->md = upb_fielddef_msgsubdef(f);
  upb_handlers_addcleanup(h, hd, xfree);
  return hd;
}

typedef struct {
  size_t ofs;              // union data slot
  size_t case_ofs;         // oneof_case field
  uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
  const upb_msgdef *md;    // msgdef, for oneof submessage handler
} oneof_handlerdata_t;

static const void *newoneofhandlerdata(upb_handlers *h,
                                       uint32_t ofs,
                                       uint32_t case_ofs,
                                       const upb_fielddef *f) {
  oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
  hd->ofs = ofs;
  hd->case_ofs = case_ofs;
  // We reuse the field tag number as a oneof union discriminant tag. Note that
  // we don't expose these numbers to the user, so the only requirement is that
  // we have some unique ID for each union case/possibility. The field tag
  // numbers are already present and are easy to use so there's no reason to
  // create a separate ID space. In addition, using the field tag number here
  // lets us easily look up the field in the oneof accessor.
  hd->oneof_case_num = upb_fielddef_number(f);
  if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) {
    hd->md = upb_fielddef_msgsubdef(f);
  } else {
    hd->md = NULL;
  }
  upb_handlers_addcleanup(h, hd, xfree);
  return hd;
}

// A handler that starts a repeated field.  Gets the Repeated*Field instance for
// this field (such an instance always exists even in an empty message).
static void *startseq_handler(void* closure, const void* hd) {
  MessageHeader* msg = closure;
  const size_t *ofs = hd;
  return (void*)DEREF(msg, *ofs, VALUE);
}

// Handlers that append primitive values to a repeated field.
#define DEFINE_APPEND_HANDLER(type, ctype)                 \
  static bool append##type##_handler(void *closure, const void *hd, \
                                     ctype val) {                   \
    VALUE ary = (VALUE)closure;                                     \
    RepeatedField_push_native(ary, &val);                           \
    return true;                                                    \
  }

DEFINE_APPEND_HANDLER(bool,   bool)
DEFINE_APPEND_HANDLER(int32,  int32_t)
DEFINE_APPEND_HANDLER(uint32, uint32_t)
DEFINE_APPEND_HANDLER(float,  float)
DEFINE_APPEND_HANDLER(int64,  int64_t)
DEFINE_APPEND_HANDLER(uint64, uint64_t)
DEFINE_APPEND_HANDLER(double, double)

// Appends a string to a repeated field.
static void* appendstr_handler(void *closure,
                               const void *hd,
                               size_t size_hint) {
  VALUE ary = (VALUE)closure;
  VALUE str = rb_str_new2("");
  rb_enc_associate(str, kRubyStringUtf8Encoding);
  RepeatedField_push_native(ary, &str);
  return (void*)str;
}

static void set_hasbit(void *closure, int32_t hasbit) {
  if (hasbit > 0) {
    uint8_t* storage = closure;
    storage[hasbit/8] |= 1 << (hasbit % 8);
  }
}

// Appends a 'bytes' string to a repeated field.
static void* appendbytes_handler(void *closure,
                                 const void *hd,
                                 size_t size_hint) {
  VALUE ary = (VALUE)closure;
  VALUE str = rb_str_new2("");
  rb_enc_associate(str, kRubyString8bitEncoding);
  RepeatedField_push_native(ary, &str);
  return (void*)str;
}

// Sets a non-repeated string field in a message.
static void* str_handler(void *closure,
                         const void *hd,
                         size_t size_hint) {
  MessageHeader* msg = closure;
  const field_handlerdata_t *fieldhandler = hd;

  VALUE str = rb_str_new2("");
  rb_enc_associate(str, kRubyStringUtf8Encoding);
  DEREF(msg, fieldhandler->ofs, VALUE) = str;
  set_hasbit(closure, fieldhandler->hasbit);
  return (void*)str;
}

// Sets a non-repeated 'bytes' field in a message.
static void* bytes_handler(void *closure,
                           const void *hd,
                           size_t size_hint) {
  MessageHeader* msg = closure;
  const field_handlerdata_t *fieldhandler = hd;

  VALUE str = rb_str_new2("");
  rb_enc_associate(str, kRubyString8bitEncoding);
  DEREF(msg, fieldhandler->ofs, VALUE) = str;
  set_hasbit(closure, fieldhandler->hasbit);
  return (void*)str;
}

static size_t stringdata_handler(void* closure, const void* hd,
                                 const char* str, size_t len,
                                 const upb_bufhandle* handle) {
  VALUE rb_str = (VALUE)closure;
  noleak_rb_str_cat(rb_str, str, len);
  return len;
}

static bool stringdata_end_handler(void* closure, const void* hd) {
  MessageHeader* msg = closure;
  const size_t *ofs = hd;
  VALUE rb_str = DEREF(msg, *ofs, VALUE);
  rb_obj_freeze(rb_str);
  return true;
}

static bool appendstring_end_handler(void* closure, const void* hd) {
  VALUE ary = (VALUE)closure;
  int size = RepeatedField_size(ary);
  VALUE* last = RepeatedField_index_native(ary, size - 1);
  VALUE rb_str = *last;
  rb_obj_freeze(rb_str);
  return true;
}

// Appends a submessage to a repeated field (a regular Ruby array for now).
static void *appendsubmsg_handler(void *closure, const void *hd) {
  VALUE ary = (VALUE)closure;
  const submsg_handlerdata_t *submsgdata = hd;
  VALUE subdesc =
      get_def_obj((void*)submsgdata->md);
  VALUE subklass = Descriptor_msgclass(subdesc);
  MessageHeader* submsg;

  VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass);
  RepeatedField_push(ary, submsg_rb);

  TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  return submsg;
}

// Sets a non-repeated submessage field in a message.
static void *submsg_handler(void *closure, const void *hd) {
  MessageHeader* msg = closure;
  const submsg_handlerdata_t* submsgdata = hd;
  VALUE subdesc =
      get_def_obj((void*)submsgdata->md);
  VALUE subklass = Descriptor_msgclass(subdesc);
  VALUE submsg_rb;
  MessageHeader* submsg;

  if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
    DEREF(msg, submsgdata->ofs, VALUE) =
        rb_class_new_instance(0, NULL, subklass);
  }

  set_hasbit(closure, submsgdata->hasbit);

  submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
  TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);

  return submsg;
}

// Handler data for startmap/endmap handlers.
typedef struct {
  size_t ofs;
  upb_fieldtype_t key_field_type;
  upb_fieldtype_t value_field_type;

  // We know that we can hold this reference because the handlerdata has the
  // same lifetime as the upb_handlers struct, and the upb_handlers struct holds
  // a reference to the upb_msgdef, which in turn has references to its subdefs.
  const upb_def* value_field_subdef;
} map_handlerdata_t;

// Temporary frame for map parsing: at the beginning of a map entry message, a
// submsg handler allocates a frame to hold (i) a reference to the Map object
// into which this message will be inserted and (ii) storage slots to
// temporarily hold the key and value for this map entry until the end of the
// submessage. When the submessage ends, another handler is called to insert the
// value into the map.
typedef struct {
  VALUE map;
  const map_handlerdata_t* handlerdata;
  char key_storage[NATIVE_SLOT_MAX_SIZE];
  char value_storage[NATIVE_SLOT_MAX_SIZE];
} map_parse_frame_t;

static void MapParseFrame_mark(void* _self) {
  map_parse_frame_t* frame = _self;

  // This shouldn't strictly be necessary since this should be rooted by the
  // message itself, but it can't hurt.
  rb_gc_mark(frame->map);

  native_slot_mark(frame->handlerdata->key_field_type, &frame->key_storage);
  native_slot_mark(frame->handlerdata->value_field_type, &frame->value_storage);
}

void MapParseFrame_free(void* self) {
  xfree(self);
}

rb_data_type_t MapParseFrame_type = {
  "MapParseFrame",
  { MapParseFrame_mark, MapParseFrame_free, NULL },
};

static map_parse_frame_t* map_push_frame(VALUE map,
                                         const map_handlerdata_t* handlerdata) {
  map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
  frame->handlerdata = handlerdata;
  frame->map = map;
  native_slot_init(handlerdata->key_field_type, &frame->key_storage);
  native_slot_init(handlerdata->value_field_type, &frame->value_storage);

  Map_set_frame(map,
              TypedData_Wrap_Struct(rb_cObject, &MapParseFrame_type, frame));

  return frame;
}

// Handler to begin a map entry: allocates a temporary frame. This is the
// 'startsubmsg' handler on the msgdef that contains the map field.
static void *startmapentry_handler(void *closure, const void *hd) {
  MessageHeader* msg = closure;
  const map_handlerdata_t* mapdata = hd;
  VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);

  return map_push_frame(map_rb, mapdata);
}

// Handler to end a map entry: inserts the value defined during the message into
// the map. This is the 'endmsg' handler on the map entry msgdef.
static bool endmap_handler(void *closure, const void *hd, upb_status* s) {
  map_parse_frame_t* frame = closure;
  const map_handlerdata_t* mapdata = hd;

  VALUE key = native_slot_get(
      mapdata->key_field_type, Qnil,
      &frame->key_storage);

  VALUE value_field_typeclass = Qnil;
  VALUE value;

  if (mapdata->value_field_type == UPB_TYPE_MESSAGE ||
      mapdata->value_field_type == UPB_TYPE_ENUM) {
    value_field_typeclass = get_def_obj(mapdata->value_field_subdef);
  }

  value = native_slot_get(
      mapdata->value_field_type, value_field_typeclass,
      &frame->value_storage);

  Map_index_set(frame->map, key, value);
  Map_set_frame(frame->map, Qnil);

  return true;
}

// Allocates a new map_handlerdata_t given the map entry message definition. If
// the offset of the field within the parent message is also given, that is
// added to the handler data as well. Note that this is called *twice* per map
// field: once in the parent message handler setup when setting the startsubmsg
// handler and once in the map entry message handler setup when setting the
// key/value and endmsg handlers. The reason is that there is no easy way to
// pass the handlerdata down to the sub-message handler setup.
static map_handlerdata_t* new_map_handlerdata(
    size_t ofs,
    const upb_msgdef* mapentry_def,
    Descriptor* desc) {
  const upb_fielddef* key_field;
  const upb_fielddef* value_field;
  map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
  hd->ofs = ofs;
  key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD);
  assert(key_field != NULL);
  hd->key_field_type = upb_fielddef_type(key_field);
  value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD);
  assert(value_field != NULL);
  hd->value_field_type = upb_fielddef_type(value_field);
  hd->value_field_subdef = upb_fielddef_subdef(value_field);

  return hd;
}

// Handlers that set primitive values in oneofs.
#define DEFINE_ONEOF_HANDLER(type, ctype)                           \
  static bool oneof##type##_handler(void *closure, const void *hd,  \
                                     ctype val) {                   \
    const oneof_handlerdata_t *oneofdata = hd;                      \
    DEREF(closure, oneofdata->case_ofs, uint32_t) =                 \
        oneofdata->oneof_case_num;                                  \
    DEREF(closure, oneofdata->ofs, ctype) = val;                    \
    return true;                                                    \
  }

DEFINE_ONEOF_HANDLER(bool,   bool)
DEFINE_ONEOF_HANDLER(int32,  int32_t)
DEFINE_ONEOF_HANDLER(uint32, uint32_t)
DEFINE_ONEOF_HANDLER(float,  float)
DEFINE_ONEOF_HANDLER(int64,  int64_t)
DEFINE_ONEOF_HANDLER(uint64, uint64_t)
DEFINE_ONEOF_HANDLER(double, double)

#undef DEFINE_ONEOF_HANDLER

// Handlers for strings in a oneof.
static void *oneofstr_handler(void *closure,
                              const void *hd,
                              size_t size_hint) {
  MessageHeader* msg = closure;
  const oneof_handlerdata_t *oneofdata = hd;
  VALUE str = rb_str_new2("");
  rb_enc_associate(str, kRubyStringUtf8Encoding);
  DEREF(msg, oneofdata->case_ofs, uint32_t) =
      oneofdata->oneof_case_num;
  DEREF(msg, oneofdata->ofs, VALUE) = str;
  return (void*)str;
}

static void *oneofbytes_handler(void *closure,
                                const void *hd,
                                size_t size_hint) {
  MessageHeader* msg = closure;
  const oneof_handlerdata_t *oneofdata = hd;
  VALUE str = rb_str_new2("");
  rb_enc_associate(str, kRubyString8bitEncoding);
  DEREF(msg, oneofdata->case_ofs, uint32_t) =
      oneofdata->oneof_case_num;
  DEREF(msg, oneofdata->ofs, VALUE) = str;
  return (void*)str;
}

static bool oneofstring_end_handler(void* closure, const void* hd) {
  MessageHeader* msg = closure;
  const oneof_handlerdata_t *oneofdata = hd;
  rb_obj_freeze(DEREF(msg, oneofdata->ofs, VALUE));
  return true;
}

// Handler for a submessage field in a oneof.
static void *oneofsubmsg_handler(void *closure,
                                 const void *hd) {
  MessageHeader* msg = closure;
  const oneof_handlerdata_t *oneofdata = hd;
  uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);

  VALUE subdesc =
      get_def_obj((void*)oneofdata->md);
  VALUE subklass = Descriptor_msgclass(subdesc);
  VALUE submsg_rb;
  MessageHeader* submsg;

  if (oldcase != oneofdata->oneof_case_num ||
      DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
    DEREF(msg, oneofdata->ofs, VALUE) =
        rb_class_new_instance(0, NULL, subklass);
  }
  // Set the oneof case *after* allocating the new class instance -- otherwise,
  // if the Ruby GC is invoked as part of a call into the VM, it might invoke
  // our mark routines, and our mark routines might see the case value
  // indicating a VALUE is present and expect a valid VALUE. See comment in
  // layout_set() for more detail: basically, the change to the value and the
  // case must be atomic w.r.t. the Ruby VM.
  DEREF(msg, oneofdata->case_ofs, uint32_t) =
      oneofdata->oneof_case_num;

  submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
  TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
  return submsg;
}

// Set up handlers for a repeated field.
static void add_handlers_for_repeated_field(upb_handlers *h,
                                            const upb_fielddef *f,
                                            size_t offset) {
  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
  upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset, -1));
  upb_handlers_setstartseq(h, f, startseq_handler, &attr);
  upb_handlerattr_uninit(&attr);

  switch (upb_fielddef_type(f)) {

#define SET_HANDLER(utype, ltype)                                 \
  case utype:                                                     \
    upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
    break;

    SET_HANDLER(UPB_TYPE_BOOL,   bool);
    SET_HANDLER(UPB_TYPE_INT32,  int32);
    SET_HANDLER(UPB_TYPE_UINT32, uint32);
    SET_HANDLER(UPB_TYPE_ENUM,   int32);
    SET_HANDLER(UPB_TYPE_FLOAT,  float);
    SET_HANDLER(UPB_TYPE_INT64,  int64);
    SET_HANDLER(UPB_TYPE_UINT64, uint64);
    SET_HANDLER(UPB_TYPE_DOUBLE, double);

#undef SET_HANDLER

    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES: {
      bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
      upb_handlers_setstartstr(h, f, is_bytes ?
                               appendbytes_handler : appendstr_handler,
                               NULL);
      upb_handlers_setstring(h, f, stringdata_handler, NULL);
      upb_handlers_setendstr(h, f, appendstring_end_handler, NULL);
      break;
    }
    case UPB_TYPE_MESSAGE: {
      upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
      upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, -1, f));
      upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
      upb_handlerattr_uninit(&attr);
      break;
    }
  }
}

// Set up handlers for a singular field.
static void add_handlers_for_singular_field(upb_handlers *h,
                                            const upb_fielddef *f,
                                            size_t offset,
                                            size_t hasbit_off) {
  // The offset we pass to UPB points to the start of the Message,
  // rather than the start of where our data is stored.
  int32_t hasbit = -1;
  if (hasbit_off != MESSAGE_FIELD_NO_HASBIT) {
    hasbit = hasbit_off + sizeof(MessageHeader) * 8;
  }

  switch (upb_fielddef_type(f)) {
    case UPB_TYPE_BOOL:
    case UPB_TYPE_INT32:
    case UPB_TYPE_UINT32:
    case UPB_TYPE_ENUM:
    case UPB_TYPE_FLOAT:
    case UPB_TYPE_INT64:
    case UPB_TYPE_UINT64:
    case UPB_TYPE_DOUBLE:
      upb_msg_setscalarhandler(h, f, offset, hasbit);
      break;
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES: {
      bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
      upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
      upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset, hasbit));
      upb_handlers_setstartstr(h, f,
                               is_bytes ? bytes_handler : str_handler,
                               &attr);
      upb_handlers_setstring(h, f, stringdata_handler, &attr);
      upb_handlers_setendstr(h, f, stringdata_end_handler, &attr);
      upb_handlerattr_uninit(&attr);
      break;
    }
    case UPB_TYPE_MESSAGE: {
      upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
      upb_handlerattr_sethandlerdata(&attr,
				     newsubmsghandlerdata(h, offset,
							  hasbit, f));
      upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
      upb_handlerattr_uninit(&attr);
      break;
    }
  }
}

// Adds handlers to a map field.
static void add_handlers_for_mapfield(upb_handlers* h,
                                      const upb_fielddef* fielddef,
                                      size_t offset,
                                      Descriptor* desc) {
  const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
  map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;

  upb_handlers_addcleanup(h, hd, xfree);
  upb_handlerattr_sethandlerdata(&attr, hd);
  upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
  upb_handlerattr_uninit(&attr);
}

// Adds handlers to a map-entry msgdef.
static void add_handlers_for_mapentry(const upb_msgdef* msgdef,
                                      upb_handlers* h,
                                      Descriptor* desc) {
  const upb_fielddef* key_field = map_entry_key(msgdef);
  const upb_fielddef* value_field = map_entry_value(msgdef);
  map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;

  upb_handlers_addcleanup(h, hd, xfree);
  upb_handlerattr_sethandlerdata(&attr, hd);
  upb_handlers_setendmsg(h, endmap_handler, &attr);

  add_handlers_for_singular_field(
      h, key_field,
      offsetof(map_parse_frame_t, key_storage),
      MESSAGE_FIELD_NO_HASBIT);
  add_handlers_for_singular_field(
      h, value_field,
      offsetof(map_parse_frame_t, value_storage),
      MESSAGE_FIELD_NO_HASBIT);
}

// Set up handlers for a oneof field.
static void add_handlers_for_oneof_field(upb_handlers *h,
                                         const upb_fielddef *f,
                                         size_t offset,
                                         size_t oneof_case_offset) {

  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
  upb_handlerattr_sethandlerdata(
      &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f));

  switch (upb_fielddef_type(f)) {

#define SET_HANDLER(utype, ltype)                                 \
  case utype:                                                     \
    upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
    break;

    SET_HANDLER(UPB_TYPE_BOOL,   bool);
    SET_HANDLER(UPB_TYPE_INT32,  int32);
    SET_HANDLER(UPB_TYPE_UINT32, uint32);
    SET_HANDLER(UPB_TYPE_ENUM,   int32);
    SET_HANDLER(UPB_TYPE_FLOAT,  float);
    SET_HANDLER(UPB_TYPE_INT64,  int64);
    SET_HANDLER(UPB_TYPE_UINT64, uint64);
    SET_HANDLER(UPB_TYPE_DOUBLE, double);

#undef SET_HANDLER

    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES: {
      bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
      upb_handlers_setstartstr(h, f, is_bytes ?
                               oneofbytes_handler : oneofstr_handler,
                               &attr);
      upb_handlers_setstring(h, f, stringdata_handler, NULL);
      upb_handlers_setendstr(h, f, oneofstring_end_handler, &attr);
      break;
    }
    case UPB_TYPE_MESSAGE: {
      upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
      break;
    }
  }

  upb_handlerattr_uninit(&attr);
}

static bool unknown_field_handler(void* closure, const void* hd,
                                  const char* buf, size_t size) {
  UPB_UNUSED(hd);

  MessageHeader* msg = (MessageHeader*)closure;
  if (msg->unknown_fields == NULL) {
    msg->unknown_fields = malloc(sizeof(stringsink));
    stringsink_init(msg->unknown_fields);
  }

  stringsink_string(msg->unknown_fields, NULL, buf, size, NULL);

  return true;
}

static void add_handlers_for_message(const void *closure, upb_handlers *h) {
  const upb_msgdef* msgdef = upb_handlers_msgdef(h);
  Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef));
  upb_msg_field_iter i;

  // If this is a mapentry message type, set up a special set of handlers and
  // bail out of the normal (user-defined) message type handling.
  if (upb_msgdef_mapentry(msgdef)) {
    add_handlers_for_mapentry(msgdef, h, desc);
    return;
  }

  // Ensure layout exists. We may be invoked to create handlers for a given
  // message if we are included as a submsg of another message type before our
  // class is actually built, so to work around this, we just create the layout
  // (and handlers, in the class-building function) on-demand.
  if (desc->layout == NULL) {
    desc->layout = create_layout(desc->msgdef);
  }

  upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
  upb_handlers_setunknown(h, unknown_field_handler, &attr);

  for (upb_msg_field_begin(&i, desc->msgdef);
       !upb_msg_field_done(&i);
       upb_msg_field_next(&i)) {
    const upb_fielddef *f = upb_msg_iter_field(&i);
    size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
        sizeof(MessageHeader);

    if (upb_fielddef_containingoneof(f)) {
      size_t oneof_case_offset =
          desc->layout->fields[upb_fielddef_index(f)].case_offset +
          sizeof(MessageHeader);
      add_handlers_for_oneof_field(h, f, offset, oneof_case_offset);
    } else if (is_map_field(f)) {
      add_handlers_for_mapfield(h, f, offset, desc);
    } else if (upb_fielddef_isseq(f)) {
      add_handlers_for_repeated_field(h, f, offset);
    } else {
      add_handlers_for_singular_field(
          h, f, offset, desc->layout->fields[upb_fielddef_index(f)].hasbit);
    }
  }
}

// Creates upb handlers for populating a message.
static const upb_handlers *new_fill_handlers(Descriptor* desc,
                                             const void* owner) {
  // TODO(cfallin, haberman): once upb gets a caching/memoization layer for
  // handlers, reuse subdef handlers so that e.g. if we already parse
  // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to
  // parse A-with-field-of-type-B-with-field-of-type-C.
  return upb_handlers_newfrozen(desc->msgdef, owner,
                                add_handlers_for_message, NULL);
}

// Constructs the handlers for filling a message's data into an in-memory
// object.
const upb_handlers* get_fill_handlers(Descriptor* desc) {
  if (!desc->fill_handlers) {
    desc->fill_handlers =
        new_fill_handlers(desc, &desc->fill_handlers);
  }
  return desc->fill_handlers;
}

// Constructs the upb decoder method for parsing messages of this type.
// This is called from the message class creation code.
const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc,
                                                     const void* owner) {
  const upb_handlers* handlers = get_fill_handlers(desc);
  upb_pbdecodermethodopts opts;
  upb_pbdecodermethodopts_init(&opts, handlers);

  return upb_pbdecodermethod_new(&opts, owner);
}

static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
  if (desc->fill_method == NULL) {
    desc->fill_method = new_fillmsg_decodermethod(
        desc, &desc->fill_method);
  }
  return desc->fill_method;
}

static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) {
  if (desc->json_fill_method == NULL) {
    desc->json_fill_method =
        upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method);
  }
  return desc->json_fill_method;
}


// Stack-allocated context during an encode/decode operation. Contains the upb
// environment and its stack-based allocator, an initial buffer for allocations
// to avoid malloc() when possible, and a template for Ruby exception messages
// if any error occurs.
#define STACK_ENV_STACKBYTES 4096
typedef struct {
  upb_env env;
  const char* ruby_error_template;
  char allocbuf[STACK_ENV_STACKBYTES];
} stackenv;

static void stackenv_init(stackenv* se, const char* errmsg);
static void stackenv_uninit(stackenv* se);

// Callback invoked by upb if any error occurs during parsing or serialization.
static bool env_error_func(void* ud, const upb_status* status) {
  stackenv* se = ud;
  // Free the env -- rb_raise will longjmp up the stack past the encode/decode
  // function so it would not otherwise have been freed.
  stackenv_uninit(se);

  // TODO(haberman): have a way to verify that this is actually a parse error,
  // instead of just throwing "parse error" unconditionally.
  rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status));
  // Never reached: rb_raise() always longjmp()s up the stack, past all of our
  // code, back to Ruby.
  return false;
}

static void stackenv_init(stackenv* se, const char* errmsg) {
  se->ruby_error_template = errmsg;
  upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL);
  upb_env_seterrorfunc(&se->env, env_error_func, se);
}

static void stackenv_uninit(stackenv* se) {
  upb_env_uninit(&se->env);
}

/*
 * call-seq:
 *     MessageClass.decode(data) => message
 *
 * Decodes the given data (as a string containing bytes in protocol buffers wire
 * format) under the interpretration given by this message class's definition
 * and returns a message object with the corresponding field values.
 */
VALUE Message_decode(VALUE klass, VALUE data) {
  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  Descriptor* desc = ruby_to_Descriptor(descriptor);
  VALUE msgklass = Descriptor_msgclass(descriptor);
  VALUE msg_rb;
  MessageHeader* msg;

  if (TYPE(data) != T_STRING) {
    rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
  }

  msg_rb = rb_class_new_instance(0, NULL, msgklass);
  TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);

  {
    const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
    const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
    stackenv se;
    upb_sink sink;
    upb_pbdecoder* decoder;
    stackenv_init(&se, "Error occurred during parsing: %s");

    upb_sink_reset(&sink, h, msg);
    decoder = upb_pbdecoder_create(&se.env, method, &sink);
    upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
                      upb_pbdecoder_input(decoder));

    stackenv_uninit(&se);
  }

  return msg_rb;
}

/*
 * call-seq:
 *     MessageClass.decode_json(data) => message
 *
 * Decodes the given data (as a string containing bytes in protocol buffers wire
 * format) under the interpretration given by this message class's definition
 * and returns a message object with the corresponding field values.
 */
VALUE Message_decode_json(VALUE klass, VALUE data) {
  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  Descriptor* desc = ruby_to_Descriptor(descriptor);
  VALUE msgklass = Descriptor_msgclass(descriptor);
  VALUE msg_rb;
  MessageHeader* msg;

  if (TYPE(data) != T_STRING) {
    rb_raise(rb_eArgError, "Expected string for JSON data.");
  }
  // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
  // convert, because string handlers pass data directly to message string
  // fields.

  msg_rb = rb_class_new_instance(0, NULL, msgklass);
  TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);

  {
    const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc);
    stackenv se;
    upb_sink sink;
    upb_json_parser* parser;
    stackenv_init(&se, "Error occurred during parsing: %s");

    upb_sink_reset(&sink, get_fill_handlers(desc), msg);
    parser = upb_json_parser_create(&se.env, method, &sink);
    upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
                      upb_json_parser_input(parser));

    stackenv_uninit(&se);
  }

  return msg_rb;
}

// -----------------------------------------------------------------------------
// Serializing.
// -----------------------------------------------------------------------------

/* msgvisitor *****************************************************************/

static void putmsg(VALUE msg, const Descriptor* desc,
                   upb_sink *sink, int depth, bool emit_defaults);

static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
  upb_selector_t ret;
  bool ok = upb_handlers_getselector(f, type, &ret);
  UPB_ASSERT(ok);
  return ret;
}

static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) {
  upb_sink subsink;

  if (str == Qnil) return;

  assert(BUILTIN_TYPE(str) == RUBY_T_STRING);

  // We should be guaranteed that the string has the correct encoding because
  // we ensured this at assignment time and then froze the string.
  if (upb_fielddef_type(f) == UPB_TYPE_STRING) {
    assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyStringUtf8Encoding);
  } else {
    assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyString8bitEncoding);
  }

  upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
                    &subsink);
  upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
                     RSTRING_LEN(str), NULL);
  upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
}

static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink,
                      int depth, bool emit_defaults) {
  upb_sink subsink;
  VALUE descriptor;
  Descriptor* subdesc;

  if (submsg == Qnil) return;

  descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
  subdesc = ruby_to_Descriptor(descriptor);

  upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
  putmsg(submsg, subdesc, &subsink, depth + 1, emit_defaults);
  upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
}

static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink,
                   int depth, bool emit_defaults) {
  upb_sink subsink;
  upb_fieldtype_t type = upb_fielddef_type(f);
  upb_selector_t sel = 0;
  int size;

  if (ary == Qnil) return;
  if (!emit_defaults && NUM2INT(RepeatedField_length(ary)) == 0) return;

  size = NUM2INT(RepeatedField_length(ary));
  if (size == 0 && !emit_defaults) return;

  upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);

  if (upb_fielddef_isprimitive(f)) {
    sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  }

  for (int i = 0; i < size; i++) {
    void* memory = RepeatedField_index_native(ary, i);
    switch (type) {
#define T(upbtypeconst, upbtype, ctype)                         \
  case upbtypeconst:                                            \
    upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory));   \
    break;

      T(UPB_TYPE_FLOAT,  float,  float)
      T(UPB_TYPE_DOUBLE, double, double)
      T(UPB_TYPE_BOOL,   bool,   int8_t)
      case UPB_TYPE_ENUM:
      T(UPB_TYPE_INT32,  int32,  int32_t)
      T(UPB_TYPE_UINT32, uint32, uint32_t)
      T(UPB_TYPE_INT64,  int64,  int64_t)
      T(UPB_TYPE_UINT64, uint64, uint64_t)

      case UPB_TYPE_STRING:
      case UPB_TYPE_BYTES:
        putstr(*((VALUE *)memory), f, &subsink);
        break;
      case UPB_TYPE_MESSAGE:
        putsubmsg(*((VALUE *)memory), f, &subsink, depth, emit_defaults);
        break;

#undef T

    }
  }
  upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
}

static void put_ruby_value(VALUE value,
                           const upb_fielddef *f,
                           VALUE type_class,
                           int depth,
                           upb_sink *sink,
                           bool emit_defaults) {
  upb_selector_t sel = 0;
  if (upb_fielddef_isprimitive(f)) {
    sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
  }

  switch (upb_fielddef_type(f)) {
    case UPB_TYPE_INT32:
      upb_sink_putint32(sink, sel, NUM2INT(value));
      break;
    case UPB_TYPE_INT64:
      upb_sink_putint64(sink, sel, NUM2LL(value));
      break;
    case UPB_TYPE_UINT32:
      upb_sink_putuint32(sink, sel, NUM2UINT(value));
      break;
    case UPB_TYPE_UINT64:
      upb_sink_putuint64(sink, sel, NUM2ULL(value));
      break;
    case UPB_TYPE_FLOAT:
      upb_sink_putfloat(sink, sel, NUM2DBL(value));
      break;
    case UPB_TYPE_DOUBLE:
      upb_sink_putdouble(sink, sel, NUM2DBL(value));
      break;
    case UPB_TYPE_ENUM: {
      if (TYPE(value) == T_SYMBOL) {
        value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
      }
      upb_sink_putint32(sink, sel, NUM2INT(value));
      break;
    }
    case UPB_TYPE_BOOL:
      upb_sink_putbool(sink, sel, value == Qtrue);
      break;
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES:
      putstr(value, f, sink);
      break;
    case UPB_TYPE_MESSAGE:
      putsubmsg(value, f, sink, depth, emit_defaults);
  }
}

static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink,
                   int depth, bool emit_defaults) {
  Map* self;
  upb_sink subsink;
  const upb_fielddef* key_field;
  const upb_fielddef* value_field;
  Map_iter it;

  if (map == Qnil) return;
  if (!emit_defaults && Map_length(map) == 0) return;

  self = ruby_to_Map(map);

  upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);

  assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
  key_field = map_field_key(f);
  value_field = map_field_value(f);

  for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
    VALUE key = Map_iter_key(&it);
    VALUE value = Map_iter_value(&it);
    upb_status status;

    upb_sink entry_sink;
    upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
                         &entry_sink);
    upb_sink_startmsg(&entry_sink);

    put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink, emit_defaults);
    put_ruby_value(value, value_field, self->value_type_class, depth + 1,
                   &entry_sink, emit_defaults);

    upb_sink_endmsg(&entry_sink, &status);
    upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
  }

  upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
}

static void putmsg(VALUE msg_rb, const Descriptor* desc,
                   upb_sink *sink, int depth, bool emit_defaults) {
  MessageHeader* msg;
  upb_msg_field_iter i;
  upb_status status;

  upb_sink_startmsg(sink);

  // Protect against cycles (possible because users may freely reassign message
  // and repeated fields) by imposing a maximum recursion depth.
  if (depth > ENCODE_MAX_NESTING) {
    rb_raise(rb_eRuntimeError,
             "Maximum recursion depth exceeded during encoding.");
  }

  TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);

  if (desc != msg->descriptor) {
    rb_raise(rb_eArgError,
             "The type of given msg is '%s', expect '%s'.",
             upb_msgdef_fullname(msg->descriptor->msgdef),
             upb_msgdef_fullname(desc->msgdef));
  }

  for (upb_msg_field_begin(&i, desc->msgdef);
       !upb_msg_field_done(&i);
       upb_msg_field_next(&i)) {
    upb_fielddef *f = upb_msg_iter_field(&i);
    bool is_matching_oneof = false;
    uint32_t offset =
        desc->layout->fields[upb_fielddef_index(f)].offset +
        sizeof(MessageHeader);

    if (upb_fielddef_containingoneof(f)) {
      uint32_t oneof_case_offset =
          desc->layout->fields[upb_fielddef_index(f)].case_offset +
          sizeof(MessageHeader);
      // For a oneof, check that this field is actually present -- skip all the
      // below if not.
      if (DEREF(msg, oneof_case_offset, uint32_t) !=
          upb_fielddef_number(f)) {
        continue;
      }
      // Otherwise, fall through to the appropriate singular-field handler
      // below.
      is_matching_oneof = true;
    }

    if (is_map_field(f)) {
      VALUE map = DEREF(msg, offset, VALUE);
      if (map != Qnil || emit_defaults) {
        putmap(map, f, sink, depth, emit_defaults);
      }
    } else if (upb_fielddef_isseq(f)) {
      VALUE ary = DEREF(msg, offset, VALUE);
      if (ary != Qnil) {
        putary(ary, f, sink, depth, emit_defaults);
      }
    } else if (upb_fielddef_isstring(f)) {
      VALUE str = DEREF(msg, offset, VALUE);
      bool is_default = false;

      if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO2) {
        is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse;
      } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) {
        is_default = RSTRING_LEN(str) == 0;
      }

      if (is_matching_oneof || emit_defaults || !is_default) {
        putstr(str, f, sink);
      }
    } else if (upb_fielddef_issubmsg(f)) {
      putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth, emit_defaults);
    } else {
      upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));

#define T(upbtypeconst, upbtype, ctype, default_value)                          \
  case upbtypeconst: {                                                          \
      ctype value = DEREF(msg, offset, ctype);                                  \
      bool is_default = false;                                                  \
      if (upb_fielddef_haspresence(f)) {                                        \
        is_default = layout_has(desc->layout, Message_data(msg), f) == Qfalse;  \
      } else if (upb_msgdef_syntax(desc->msgdef) == UPB_SYNTAX_PROTO3) {        \
        is_default = default_value == value;                                    \
      }                                                                         \
      if (is_matching_oneof || emit_defaults || !is_default) {                  \
        upb_sink_put##upbtype(sink, sel, value);                                \
      }                                                                         \
    }                                                                           \
    break;

      switch (upb_fielddef_type(f)) {
        T(UPB_TYPE_FLOAT,  float,  float, 0.0)
        T(UPB_TYPE_DOUBLE, double, double, 0.0)
        T(UPB_TYPE_BOOL,   bool,   uint8_t, 0)
        case UPB_TYPE_ENUM:
        T(UPB_TYPE_INT32,  int32,  int32_t, 0)
        T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
        T(UPB_TYPE_INT64,  int64,  int64_t, 0)
        T(UPB_TYPE_UINT64, uint64, uint64_t, 0)

        case UPB_TYPE_STRING:
        case UPB_TYPE_BYTES:
        case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
      }

#undef T

    }
  }

  stringsink* unknown = msg->unknown_fields;
  if (unknown != NULL) {
    upb_sink_putunknown(sink, unknown->ptr, unknown->len);
  }

  upb_sink_endmsg(sink, &status);
}

static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
  if (desc->pb_serialize_handlers == NULL) {
    desc->pb_serialize_handlers =
        upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers);
  }
  return desc->pb_serialize_handlers;
}

static const upb_handlers* msgdef_json_serialize_handlers(
    Descriptor* desc, bool preserve_proto_fieldnames) {
  if (preserve_proto_fieldnames) {
    if (desc->json_serialize_handlers == NULL) {
      desc->json_serialize_handlers =
          upb_json_printer_newhandlers(
              desc->msgdef, true, &desc->json_serialize_handlers);
    }
    return desc->json_serialize_handlers;
  } else {
    if (desc->json_serialize_handlers_preserve == NULL) {
      desc->json_serialize_handlers_preserve =
          upb_json_printer_newhandlers(
              desc->msgdef, false, &desc->json_serialize_handlers_preserve);
    }
    return desc->json_serialize_handlers_preserve;
  }
}

/*
 * call-seq:
 *     MessageClass.encode(msg) => bytes
 *
 * Encodes the given message object to its serialized form in protocol buffers
 * wire format.
 */
VALUE Message_encode(VALUE klass, VALUE msg_rb) {
  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  Descriptor* desc = ruby_to_Descriptor(descriptor);

  stringsink sink;
  stringsink_init(&sink);

  {
    const upb_handlers* serialize_handlers =
        msgdef_pb_serialize_handlers(desc);

    stackenv se;
    upb_pb_encoder* encoder;
    VALUE ret;

    stackenv_init(&se, "Error occurred during encoding: %s");
    encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink);

    putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0, false);

    ret = rb_str_new(sink.ptr, sink.len);

    stackenv_uninit(&se);
    stringsink_uninit(&sink);

    return ret;
  }
}

/*
 * call-seq:
 *     MessageClass.encode_json(msg) => json_string
 *
 * Encodes the given message object into its serialized JSON representation.
 */
VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  Descriptor* desc = ruby_to_Descriptor(descriptor);
  VALUE msg_rb;
  VALUE preserve_proto_fieldnames = Qfalse;
  VALUE emit_defaults = Qfalse;
  stringsink sink;

  if (argc < 1 || argc > 2) {
    rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
  }

  msg_rb = argv[0];

  if (argc == 2) {
    VALUE hash_args = argv[1];
    if (TYPE(hash_args) != T_HASH) {
      rb_raise(rb_eArgError, "Expected hash arguments.");
    }
    preserve_proto_fieldnames = rb_hash_lookup2(
        hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse);

    emit_defaults = rb_hash_lookup2(
        hash_args, ID2SYM(rb_intern("emit_defaults")), Qfalse);
  }

  stringsink_init(&sink);

  {
    const upb_handlers* serialize_handlers =
        msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames));
    upb_json_printer* printer;
    stackenv se;
    VALUE ret;

    stackenv_init(&se, "Error occurred during encoding: %s");
    printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink);

    putmsg(msg_rb, desc, upb_json_printer_input(printer), 0, RTEST(emit_defaults));

    ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding());

    stackenv_uninit(&se);
    stringsink_uninit(&sink);

    return ret;
  }
}

static void discard_unknown(VALUE msg_rb, const Descriptor* desc) {
  MessageHeader* msg;
  upb_msg_field_iter it;

  TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);

  stringsink* unknown = msg->unknown_fields;
  if (unknown != NULL) {
    stringsink_uninit(unknown);
    msg->unknown_fields = NULL;
  }

  for (upb_msg_field_begin(&it, desc->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    upb_fielddef *f = upb_msg_iter_field(&it);
    uint32_t offset =
        desc->layout->fields[upb_fielddef_index(f)].offset +
        sizeof(MessageHeader);

    if (upb_fielddef_containingoneof(f)) {
      uint32_t oneof_case_offset =
          desc->layout->fields[upb_fielddef_index(f)].case_offset +
          sizeof(MessageHeader);
      // For a oneof, check that this field is actually present -- skip all the
      // below if not.
      if (DEREF(msg, oneof_case_offset, uint32_t) !=
          upb_fielddef_number(f)) {
        continue;
      }
      // Otherwise, fall through to the appropriate singular-field handler
      // below.
    }

    if (!upb_fielddef_issubmsg(f)) {
      continue;
    }

    if (is_map_field(f)) {
      if (!upb_fielddef_issubmsg(map_field_value(f))) continue;
      VALUE map = DEREF(msg, offset, VALUE);
      if (map == Qnil) continue;
      Map_iter map_it;
      for (Map_begin(map, &map_it); !Map_done(&map_it); Map_next(&map_it)) {
        VALUE submsg = Map_iter_value(&map_it);
        VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
        const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
        discard_unknown(submsg, subdesc);
      }
    } else if (upb_fielddef_isseq(f)) {
      VALUE ary = DEREF(msg, offset, VALUE);
      if (ary == Qnil) continue;
      int size = NUM2INT(RepeatedField_length(ary));
      for (int i = 0; i < size; i++) {
        void* memory = RepeatedField_index_native(ary, i);
        VALUE submsg = *((VALUE *)memory);
        VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
        const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
        discard_unknown(submsg, subdesc);
      }
    } else {
      VALUE submsg = DEREF(msg, offset, VALUE);
      if (submsg == Qnil) continue;
      VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
      const Descriptor* subdesc = ruby_to_Descriptor(descriptor);
      discard_unknown(submsg, subdesc);
    }
  }
}

/*
 * call-seq:
 *     Google::Protobuf.discard_unknown(msg)
 *
 * Discard unknown fields in the given message object and recursively discard
 * unknown fields in submessages.
 */
VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) {
  VALUE klass = CLASS_OF(msg_rb);
  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
  Descriptor* desc = ruby_to_Descriptor(descriptor);
  if (klass == cRepeatedField || klass == cMap) {
    rb_raise(rb_eArgError, "Expected proto msg for discard unknown.");
  } else {
    discard_unknown(msg_rb, desc);
  }
  return Qnil;
}