aboutsummaryrefslogtreecommitdiff
path: root/ruby/ext/google/protobuf_c/storage.c
blob: 6cf4158b01e6002f19d4dd2add91ceb1a03ecc4e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "protobuf.h"

#include <math.h>

#include <ruby/encoding.h>

// -----------------------------------------------------------------------------
// Ruby <-> native slot management.
// -----------------------------------------------------------------------------

#define CHARPTR_AT(msg, ofs) ((char*)msg + ofs)
#define DEREF_OFFSET(msg, ofs, type) *(type*)CHARPTR_AT(msg, ofs)
#define DEREF(memory, type) *(type*)(memory)

size_t native_slot_size(upb_fieldtype_t type) {
  switch (type) {
    case UPB_TYPE_FLOAT:   return 4;
    case UPB_TYPE_DOUBLE:  return 8;
    case UPB_TYPE_BOOL:    return 1;
    case UPB_TYPE_STRING:  return sizeof(VALUE);
    case UPB_TYPE_BYTES:   return sizeof(VALUE);
    case UPB_TYPE_MESSAGE: return sizeof(VALUE);
    case UPB_TYPE_ENUM:    return 4;
    case UPB_TYPE_INT32:   return 4;
    case UPB_TYPE_INT64:   return 8;
    case UPB_TYPE_UINT32:  return 4;
    case UPB_TYPE_UINT64:  return 8;
    default: return 0;
  }
}

static bool is_ruby_num(VALUE value) {
  return (TYPE(value) == T_FLOAT ||
          TYPE(value) == T_FIXNUM ||
          TYPE(value) == T_BIGNUM);
}

void native_slot_check_int_range_precision(upb_fieldtype_t type, VALUE val) {
  if (!is_ruby_num(val)) {
    rb_raise(cTypeError, "Expected number type for integral field.");
  }

  // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper
  // bound; we just need to do precision checks (i.e., disallow rounding) and
  // check for < 0 on unsigned types.
  if (TYPE(val) == T_FLOAT) {
    double dbl_val = NUM2DBL(val);
    if (floor(dbl_val) != dbl_val) {
      rb_raise(rb_eRangeError,
               "Non-integral floating point value assigned to integer field.");
    }
  }
  if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) {
    if (NUM2DBL(val) < 0) {
      rb_raise(rb_eRangeError,
               "Assigning negative value to unsigned integer field.");
    }
  }
}

VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) {
  rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ?
      kRubyStringUtf8Encoding : kRubyString8bitEncoding;
  VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding);

  // Note: this will not duplicate underlying string data unless necessary.
  value = rb_str_encode(value, desired_encoding_value, 0, Qnil);

  if (type == UPB_TYPE_STRING &&
      rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) {
    rb_raise(rb_eEncodingError, "String is invalid UTF-8");
  }

  // Ensure the data remains valid.  Since we called #encode a moment ago,
  // this does not freeze the string the user assigned.
  rb_obj_freeze(value);

  return value;
}

void native_slot_set(upb_fieldtype_t type, VALUE type_class,
                     void* memory, VALUE value) {
  native_slot_set_value_and_case(type, type_class, memory, value, NULL, 0);
}

void native_slot_set_value_and_case(upb_fieldtype_t type, VALUE type_class,
                                    void* memory, VALUE value,
                                    uint32_t* case_memory,
                                    uint32_t case_number) {
  // Note that in order to atomically change the value in memory and the case
  // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after
  // all Ruby VM calls are complete. The case is then set at the bottom of this
  // function.
  switch (type) {
    case UPB_TYPE_FLOAT:
      if (!is_ruby_num(value)) {
        rb_raise(cTypeError, "Expected number type for float field.");
      }
      DEREF(memory, float) = NUM2DBL(value);
      break;
    case UPB_TYPE_DOUBLE:
      if (!is_ruby_num(value)) {
        rb_raise(cTypeError, "Expected number type for double field.");
      }
      DEREF(memory, double) = NUM2DBL(value);
      break;
    case UPB_TYPE_BOOL: {
      int8_t val = -1;
      if (value == Qtrue) {
        val = 1;
      } else if (value == Qfalse) {
        val = 0;
      } else {
        rb_raise(cTypeError, "Invalid argument for boolean field.");
      }
      DEREF(memory, int8_t) = val;
      break;
    }
    case UPB_TYPE_STRING:
      if (CLASS_OF(value) == rb_cSymbol) {
        value = rb_funcall(value, rb_intern("to_s"), 0);
      } else if (CLASS_OF(value) != rb_cString) {
        rb_raise(cTypeError, "Invalid argument for string field.");
      }

      DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
      break;

    case UPB_TYPE_BYTES: {
      if (CLASS_OF(value) != rb_cString) {
        rb_raise(cTypeError, "Invalid argument for string field.");
      }

      DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value);
      break;
    }
    case UPB_TYPE_MESSAGE: {
      if (CLASS_OF(value) == CLASS_OF(Qnil)) {
        value = Qnil;
      } else if (CLASS_OF(value) != type_class) {
        rb_raise(cTypeError,
                 "Invalid type %s to assign to submessage field.",
                 rb_class2name(CLASS_OF(value)));
      }
      DEREF(memory, VALUE) = value;
      break;
    }
    case UPB_TYPE_ENUM: {
      int32_t int_val = 0;
      if (TYPE(value) == T_STRING) {
        value = rb_funcall(value, rb_intern("to_sym"), 0);
      } else if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) {
        rb_raise(cTypeError,
                 "Expected number or symbol type for enum field.");
      }
      if (TYPE(value) == T_SYMBOL) {
        // Ensure that the given symbol exists in the enum module.
        VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value);
        if (lookup == Qnil) {
          rb_raise(rb_eRangeError, "Unknown symbol value for enum field.");
        } else {
          int_val = NUM2INT(lookup);
        }
      } else {
        native_slot_check_int_range_precision(UPB_TYPE_INT32, value);
        int_val = NUM2INT(value);
      }
      DEREF(memory, int32_t) = int_val;
      break;
    }
    case UPB_TYPE_INT32:
    case UPB_TYPE_INT64:
    case UPB_TYPE_UINT32:
    case UPB_TYPE_UINT64:
      native_slot_check_int_range_precision(type, value);
      switch (type) {
      case UPB_TYPE_INT32:
        DEREF(memory, int32_t) = NUM2INT(value);
        break;
      case UPB_TYPE_INT64:
        DEREF(memory, int64_t) = NUM2LL(value);
        break;
      case UPB_TYPE_UINT32:
        DEREF(memory, uint32_t) = NUM2UINT(value);
        break;
      case UPB_TYPE_UINT64:
        DEREF(memory, uint64_t) = NUM2ULL(value);
        break;
      default:
        break;
      }
      break;
    default:
      break;
  }

  if (case_memory != NULL) {
    *case_memory = case_number;
  }
}

VALUE native_slot_get(upb_fieldtype_t type,
                      VALUE type_class,
                      const void* memory) {
  switch (type) {
    case UPB_TYPE_FLOAT:
      return DBL2NUM(DEREF(memory, float));
    case UPB_TYPE_DOUBLE:
      return DBL2NUM(DEREF(memory, double));
    case UPB_TYPE_BOOL:
      return DEREF(memory, int8_t) ? Qtrue : Qfalse;
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES:
    case UPB_TYPE_MESSAGE:
      return DEREF(memory, VALUE);
    case UPB_TYPE_ENUM: {
      int32_t val = DEREF(memory, int32_t);
      VALUE symbol = enum_lookup(type_class, INT2NUM(val));
      if (symbol == Qnil) {
        return INT2NUM(val);
      } else {
        return symbol;
      }
    }
    case UPB_TYPE_INT32:
      return INT2NUM(DEREF(memory, int32_t));
    case UPB_TYPE_INT64:
      return LL2NUM(DEREF(memory, int64_t));
    case UPB_TYPE_UINT32:
      return UINT2NUM(DEREF(memory, uint32_t));
    case UPB_TYPE_UINT64:
      return ULL2NUM(DEREF(memory, uint64_t));
    default:
      return Qnil;
  }
}

void native_slot_init(upb_fieldtype_t type, void* memory) {
  switch (type) {
    case UPB_TYPE_FLOAT:
      DEREF(memory, float) = 0.0;
      break;
    case UPB_TYPE_DOUBLE:
      DEREF(memory, double) = 0.0;
      break;
    case UPB_TYPE_BOOL:
      DEREF(memory, int8_t) = 0;
      break;
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES:
      DEREF(memory, VALUE) = rb_str_new2("");
      rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ?
                       kRubyString8bitEncoding : kRubyStringUtf8Encoding);
      break;
    case UPB_TYPE_MESSAGE:
      DEREF(memory, VALUE) = Qnil;
      break;
    case UPB_TYPE_ENUM:
    case UPB_TYPE_INT32:
      DEREF(memory, int32_t) = 0;
      break;
    case UPB_TYPE_INT64:
      DEREF(memory, int64_t) = 0;
      break;
    case UPB_TYPE_UINT32:
      DEREF(memory, uint32_t) = 0;
      break;
    case UPB_TYPE_UINT64:
      DEREF(memory, uint64_t) = 0;
      break;
    default:
      break;
  }
}

void native_slot_mark(upb_fieldtype_t type, void* memory) {
  switch (type) {
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES:
    case UPB_TYPE_MESSAGE:
      rb_gc_mark(DEREF(memory, VALUE));
      break;
    default:
      break;
  }
}

void native_slot_dup(upb_fieldtype_t type, void* to, void* from) {
  memcpy(to, from, native_slot_size(type));
}

void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) {
  switch (type) {
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES: {
      VALUE from_val = DEREF(from, VALUE);
      DEREF(to, VALUE) = (from_val != Qnil) ?
          rb_funcall(from_val, rb_intern("dup"), 0) : Qnil;
      break;
    }
    case UPB_TYPE_MESSAGE: {
      VALUE from_val = DEREF(from, VALUE);
      DEREF(to, VALUE) = (from_val != Qnil) ?
          Message_deep_copy(from_val) : Qnil;
      break;
    }
    default:
      memcpy(to, from, native_slot_size(type));
  }
}

bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) {
  switch (type) {
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES:
    case UPB_TYPE_MESSAGE: {
      VALUE val1 = DEREF(mem1, VALUE);
      VALUE val2 = DEREF(mem2, VALUE);
      VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2);
      return ret == Qtrue;
    }
    default:
      return !memcmp(mem1, mem2, native_slot_size(type));
  }
}

// -----------------------------------------------------------------------------
// Map field utilities.
// -----------------------------------------------------------------------------

const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) {
  const upb_msgdef* subdef;
  if (upb_fielddef_label(field) != UPB_LABEL_REPEATED ||
      upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
    return NULL;
  }
  subdef = upb_fielddef_msgsubdef(field);
  return upb_msgdef_mapentry(subdef) ? subdef : NULL;
}

const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) {
  const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
  assert(subdef);
  return subdef;
}

bool is_map_field(const upb_fielddef *field) {
  const upb_msgdef* subdef = tryget_map_entry_msgdef(field);
  if (subdef == NULL) return false;

  // Map fields are a proto3 feature.
  // If we're using proto2 syntax we need to fallback to the repeated field.
  return upb_msgdef_syntax(subdef) == UPB_SYNTAX_PROTO3;
}

const upb_fielddef* map_field_key(const upb_fielddef* field) {
  const upb_msgdef* subdef = map_entry_msgdef(field);
  return map_entry_key(subdef);
}

const upb_fielddef* map_field_value(const upb_fielddef* field) {
  const upb_msgdef* subdef = map_entry_msgdef(field);
  return map_entry_value(subdef);
}

const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) {
  const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD);
  assert(key_field != NULL);
  return key_field;
}

const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) {
  const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD);
  assert(value_field != NULL);
  return value_field;
}

// -----------------------------------------------------------------------------
// Memory layout management.
// -----------------------------------------------------------------------------

bool field_contains_hasbit(MessageLayout* layout,
                            const upb_fielddef* field) {
  return layout->fields[upb_fielddef_index(field)].hasbit !=
      MESSAGE_FIELD_NO_HASBIT;
}

static size_t align_up_to(size_t offset, size_t granularity) {
  // Granularity must be a power of two.
  return (offset + granularity - 1) & ~(granularity - 1);
}

MessageLayout* create_layout(const upb_msgdef* msgdef) {
  MessageLayout* layout = ALLOC(MessageLayout);
  int nfields = upb_msgdef_numfields(msgdef);
  upb_msg_field_iter it;
  upb_msg_oneof_iter oit;
  size_t off = 0;

  layout->fields = ALLOC_N(MessageField, nfields);

  size_t hasbit = 0;
  for (upb_msg_field_begin(&it, msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);
    if (upb_fielddef_haspresence(field)) {
      layout->fields[upb_fielddef_index(field)].hasbit = hasbit++;
    } else {
      layout->fields[upb_fielddef_index(field)].hasbit =
	  MESSAGE_FIELD_NO_HASBIT;
    }
  }

  if (hasbit != 0) {
    off += (hasbit + 8 - 1) / 8;
  }

  for (upb_msg_field_begin(&it, msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);
    size_t field_size;

    if (upb_fielddef_containingoneof(field)) {
      // Oneofs are handled separately below.
      continue;
    }

    // Allocate |field_size| bytes for this field in the layout.
    field_size = 0;
    if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
      field_size = sizeof(VALUE);
    } else {
      field_size = native_slot_size(upb_fielddef_type(field));
    }
    // Align current offset up to |size| granularity.
    off = align_up_to(off, field_size);
    layout->fields[upb_fielddef_index(field)].offset = off;
    layout->fields[upb_fielddef_index(field)].case_offset =
        MESSAGE_FIELD_NO_CASE;
    off += field_size;
  }

  // Handle oneofs now -- we iterate over oneofs specifically and allocate only
  // one slot per oneof.
  //
  // We assign all value slots first, then pack the 'case' fields at the end,
  // since in the common case (modern 64-bit platform) these are 8 bytes and 4
  // bytes respectively and we want to avoid alignment overhead.
  //
  // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value
  // space for oneof cases is conceptually as wide as field tag numbers. In
  // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K
  // members (8 or 16 bits respectively), so conceivably we could assign
  // consecutive case numbers and then pick a smaller oneof case slot size, but
  // the complexity to implement this indirection is probably not worthwhile.
  for (upb_msg_oneof_begin(&oit, msgdef);
       !upb_msg_oneof_done(&oit);
       upb_msg_oneof_next(&oit)) {
    const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
    upb_oneof_iter fit;

    // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between
    // all fields.
    size_t field_size = NATIVE_SLOT_MAX_SIZE;
    // Align the offset.
    off = align_up_to(off, field_size);
    // Assign all fields in the oneof this same offset.
    for (upb_oneof_begin(&fit, oneof);
         !upb_oneof_done(&fit);
         upb_oneof_next(&fit)) {
      const upb_fielddef* field = upb_oneof_iter_field(&fit);
      layout->fields[upb_fielddef_index(field)].offset = off;
    }
    off += field_size;
  }

  // Now the case fields.
  for (upb_msg_oneof_begin(&oit, msgdef);
       !upb_msg_oneof_done(&oit);
       upb_msg_oneof_next(&oit)) {
    const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit);
    upb_oneof_iter fit;

    size_t field_size = sizeof(uint32_t);
    // Align the offset.
    off = (off + field_size - 1) & ~(field_size - 1);
    // Assign all fields in the oneof this same offset.
    for (upb_oneof_begin(&fit, oneof);
         !upb_oneof_done(&fit);
         upb_oneof_next(&fit)) {
      const upb_fielddef* field = upb_oneof_iter_field(&fit);
      layout->fields[upb_fielddef_index(field)].case_offset = off;
    }
    off += field_size;
  }

  layout->size = off;

  layout->msgdef = msgdef;
  upb_msgdef_ref(layout->msgdef, &layout->msgdef);

  return layout;
}

void free_layout(MessageLayout* layout) {
  xfree(layout->fields);
  upb_msgdef_unref(layout->msgdef, &layout->msgdef);
  xfree(layout);
}

VALUE field_type_class(const upb_fielddef* field) {
  VALUE type_class = Qnil;
  if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
    VALUE submsgdesc =
        get_def_obj(upb_fielddef_subdef(field));
    type_class = Descriptor_msgclass(submsgdesc);
  } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) {
    VALUE subenumdesc =
        get_def_obj(upb_fielddef_subdef(field));
    type_class = EnumDescriptor_enummodule(subenumdesc);
  }
  return type_class;
}

static void* slot_memory(MessageLayout* layout,
                         const void* storage,
                         const upb_fielddef* field) {
  return ((uint8_t *)storage) +
      layout->fields[upb_fielddef_index(field)].offset;
}

static uint32_t* slot_oneof_case(MessageLayout* layout,
                                 const void* storage,
                                 const upb_fielddef* field) {
  return (uint32_t *)(((uint8_t *)storage) +
      layout->fields[upb_fielddef_index(field)].case_offset);
}

static void slot_set_hasbit(MessageLayout* layout,
                            const void* storage,
                            const upb_fielddef* field) {
  size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  assert(hasbit != MESSAGE_FIELD_NO_HASBIT);

  ((uint8_t*)storage)[hasbit / 8] |= 1 << (hasbit % 8);
}

static void slot_clear_hasbit(MessageLayout* layout,
                              const void* storage,
                              const upb_fielddef* field) {
  size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  assert(hasbit != MESSAGE_FIELD_NO_HASBIT);
  ((uint8_t*)storage)[hasbit / 8] &= ~(1 << (hasbit % 8));
}

static bool slot_is_hasbit_set(MessageLayout* layout,
                            const void* storage,
                            const upb_fielddef* field) {
  size_t hasbit = layout->fields[upb_fielddef_index(field)].hasbit;
  if (hasbit == MESSAGE_FIELD_NO_HASBIT) {
    return false;
  }

  return DEREF_OFFSET(
      (uint8_t*)storage, hasbit / 8, char) & (1 << (hasbit % 8));
}

VALUE layout_has(MessageLayout* layout,
                 const void* storage,
                 const upb_fielddef* field) {
  assert(field_contains_hasbit(layout, field));
  return slot_is_hasbit_set(layout, storage, field) ? Qtrue : Qfalse;
}

void layout_clear(MessageLayout* layout,
                 const void* storage,
                 const upb_fielddef* field) {
  void* memory = slot_memory(layout, storage, field);
  uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

  if (field_contains_hasbit(layout, field)) {
    slot_clear_hasbit(layout, storage, field);
  }

  if (upb_fielddef_containingoneof(field)) {
    memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
    *oneof_case = ONEOF_CASE_NONE;
  } else if (is_map_field(field)) {
    VALUE map = Qnil;

    const upb_fielddef* key_field = map_field_key(field);
    const upb_fielddef* value_field = map_field_value(field);
    VALUE type_class = field_type_class(value_field);

    if (type_class != Qnil) {
      VALUE args[3] = {
        fieldtype_to_ruby(upb_fielddef_type(key_field)),
        fieldtype_to_ruby(upb_fielddef_type(value_field)),
        type_class,
      };
      map = rb_class_new_instance(3, args, cMap);
    } else {
      VALUE args[2] = {
        fieldtype_to_ruby(upb_fielddef_type(key_field)),
        fieldtype_to_ruby(upb_fielddef_type(value_field)),
      };
      map = rb_class_new_instance(2, args, cMap);
    }

    DEREF(memory, VALUE) = map;
  } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
    VALUE ary = Qnil;

    VALUE type_class = field_type_class(field);

    if (type_class != Qnil) {
      VALUE args[2] = {
        fieldtype_to_ruby(upb_fielddef_type(field)),
        type_class,
      };
      ary = rb_class_new_instance(2, args, cRepeatedField);
    } else {
      VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) };
      ary = rb_class_new_instance(1, args, cRepeatedField);
    }

    DEREF(memory, VALUE) = ary;
  } else {
    native_slot_set(upb_fielddef_type(field), field_type_class(field),
                      memory, layout_get_default(field));
  }
}

VALUE layout_get_default(const upb_fielddef *field) {
  switch (upb_fielddef_type(field)) {
    case UPB_TYPE_FLOAT:   return DBL2NUM(upb_fielddef_defaultfloat(field));
    case UPB_TYPE_DOUBLE:  return DBL2NUM(upb_fielddef_defaultdouble(field));
    case UPB_TYPE_BOOL:
      return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse;
    case UPB_TYPE_MESSAGE: return Qnil;
    case UPB_TYPE_ENUM: {
      const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field);
      int32_t num = upb_fielddef_defaultint32(field);
      const char *label = upb_enumdef_iton(enumdef, num);
      if (label) {
        return ID2SYM(rb_intern(label));
      } else {
        return INT2NUM(num);
      }
    }
    case UPB_TYPE_INT32:   return INT2NUM(upb_fielddef_defaultint32(field));
    case UPB_TYPE_INT64:   return LL2NUM(upb_fielddef_defaultint64(field));;
    case UPB_TYPE_UINT32:  return UINT2NUM(upb_fielddef_defaultuint32(field));
    case UPB_TYPE_UINT64:  return ULL2NUM(upb_fielddef_defaultuint64(field));
    case UPB_TYPE_STRING:
    case UPB_TYPE_BYTES: {
      size_t size;
      const char *str = upb_fielddef_defaultstr(field, &size);
      VALUE str_rb = rb_str_new(str, size);

      rb_enc_associate(str_rb, (upb_fielddef_type(field) == UPB_TYPE_BYTES) ?
                 kRubyString8bitEncoding : kRubyStringUtf8Encoding);
      rb_obj_freeze(str_rb);
      return str_rb;
    }
    default: return Qnil;
  }
}

VALUE layout_get(MessageLayout* layout,
                 const void* storage,
                 const upb_fielddef* field) {
  void* memory = slot_memory(layout, storage, field);
  uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

  bool field_set;
  if (field_contains_hasbit(layout, field)) {
    field_set = slot_is_hasbit_set(layout, storage, field);
  } else {
    field_set = true;
  }

  if (upb_fielddef_containingoneof(field)) {
    if (*oneof_case != upb_fielddef_number(field)) {
      return layout_get_default(field);
    }
    return native_slot_get(upb_fielddef_type(field),
                           field_type_class(field),
                           memory);
  } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
    return *((VALUE *)memory);
  } else if (!field_set) {
    return layout_get_default(field);
  } else {
    return native_slot_get(upb_fielddef_type(field),
                           field_type_class(field),
                           memory);
  }
}

static void check_repeated_field_type(VALUE val, const upb_fielddef* field) {
  RepeatedField* self;
  assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED);

  if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
      RTYPEDDATA_TYPE(val) != &RepeatedField_type) {
    rb_raise(cTypeError, "Expected repeated field array");
  }

  self = ruby_to_RepeatedField(val);
  if (self->field_type != upb_fielddef_type(field)) {
    rb_raise(cTypeError, "Repeated field array has wrong element type");
  }

  if (self->field_type == UPB_TYPE_MESSAGE) {
    if (self->field_type_class !=
        Descriptor_msgclass(get_def_obj(upb_fielddef_subdef(field)))) {
      rb_raise(cTypeError,
               "Repeated field array has wrong message class");
    }
  }


  if (self->field_type == UPB_TYPE_ENUM) {
    if (self->field_type_class !=
        EnumDescriptor_enummodule(get_def_obj(upb_fielddef_subdef(field)))) {
      rb_raise(cTypeError,
               "Repeated field array has wrong enum class");
    }
  }
}

static void check_map_field_type(VALUE val, const upb_fielddef* field) {
  const upb_fielddef* key_field = map_field_key(field);
  const upb_fielddef* value_field = map_field_value(field);
  Map* self;

  if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) ||
      RTYPEDDATA_TYPE(val) != &Map_type) {
    rb_raise(cTypeError, "Expected Map instance");
  }

  self = ruby_to_Map(val);
  if (self->key_type != upb_fielddef_type(key_field)) {
    rb_raise(cTypeError, "Map key type does not match field's key type");
  }
  if (self->value_type != upb_fielddef_type(value_field)) {
    rb_raise(cTypeError, "Map value type does not match field's value type");
  }
  if (upb_fielddef_type(value_field) == UPB_TYPE_MESSAGE ||
      upb_fielddef_type(value_field) == UPB_TYPE_ENUM) {
    if (self->value_type_class !=
        get_def_obj(upb_fielddef_subdef(value_field))) {
      rb_raise(cTypeError,
               "Map value type has wrong message/enum class");
    }
  }
}


void layout_set(MessageLayout* layout,
                void* storage,
                const upb_fielddef* field,
                VALUE val) {
  void* memory = slot_memory(layout, storage, field);
  uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

  if (upb_fielddef_containingoneof(field)) {
    if (val == Qnil) {
      // Assigning nil to a oneof field clears the oneof completely.
      *oneof_case = ONEOF_CASE_NONE;
      memset(memory, 0, NATIVE_SLOT_MAX_SIZE);
    } else {
      // The transition between field types for a single oneof (union) slot is
      // somewhat complex because we need to ensure that a GC triggered at any
      // point by a call into the Ruby VM sees a valid state for this field and
      // does not either go off into the weeds (following what it thinks is a
      // VALUE but is actually a different field type) or miss an object (seeing
      // what it thinks is a primitive field but is actually a VALUE for the new
      // field type).
      //
      // In order for the transition to be safe, the oneof case slot must be in
      // sync with the value slot whenever the Ruby VM has been called. Thus, we
      // use native_slot_set_value_and_case(), which ensures that both the value
      // and case number are altered atomically (w.r.t. the Ruby VM).
      native_slot_set_value_and_case(
          upb_fielddef_type(field), field_type_class(field),
          memory, val,
          oneof_case, upb_fielddef_number(field));
    }
  } else if (is_map_field(field)) {
    check_map_field_type(val, field);
    DEREF(memory, VALUE) = val;
  } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
    check_repeated_field_type(val, field);
    DEREF(memory, VALUE) = val;
  } else {
    native_slot_set(upb_fielddef_type(field), field_type_class(field), memory,
		    val);
  }

  if (layout->fields[upb_fielddef_index(field)].hasbit !=
      MESSAGE_FIELD_NO_HASBIT) {
    slot_set_hasbit(layout, storage, field);
  }
}

void layout_init(MessageLayout* layout,
                 void* storage) {

  upb_msg_field_iter it;
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    layout_clear(layout, storage, upb_msg_iter_field(&it));
  }
}

void layout_mark(MessageLayout* layout, void* storage) {
  upb_msg_field_iter it;
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);
    void* memory = slot_memory(layout, storage, field);
    uint32_t* oneof_case = slot_oneof_case(layout, storage, field);

    if (upb_fielddef_containingoneof(field)) {
      if (*oneof_case == upb_fielddef_number(field)) {
        native_slot_mark(upb_fielddef_type(field), memory);
      }
    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
      rb_gc_mark(DEREF(memory, VALUE));
    } else {
      native_slot_mark(upb_fielddef_type(field), memory);
    }
  }
}

void layout_dup(MessageLayout* layout, void* to, void* from) {
  upb_msg_field_iter it;
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);

    void* to_memory = slot_memory(layout, to, field);
    uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
    void* from_memory = slot_memory(layout, from, field);
    uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);

    if (upb_fielddef_containingoneof(field)) {
      if (*from_oneof_case == upb_fielddef_number(field)) {
        *to_oneof_case = *from_oneof_case;
        native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
      }
    } else if (is_map_field(field)) {
      DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE));
    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
      DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE));
    } else {
      if (field_contains_hasbit(layout, field)) {
        if (!slot_is_hasbit_set(layout, from, field)) continue;
        slot_set_hasbit(layout, to, field);
      }

      native_slot_dup(upb_fielddef_type(field), to_memory, from_memory);
    }
  }
}

void layout_deep_copy(MessageLayout* layout, void* to, void* from) {
  upb_msg_field_iter it;
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);

    void* to_memory = slot_memory(layout, to, field);
    uint32_t* to_oneof_case = slot_oneof_case(layout, to, field);
    void* from_memory = slot_memory(layout, from, field);
    uint32_t* from_oneof_case = slot_oneof_case(layout, from, field);

    if (upb_fielddef_containingoneof(field)) {
      if (*from_oneof_case == upb_fielddef_number(field)) {
        *to_oneof_case = *from_oneof_case;
        native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
      }
    } else if (is_map_field(field)) {
      DEREF(to_memory, VALUE) =
          Map_deep_copy(DEREF(from_memory, VALUE));
    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
      DEREF(to_memory, VALUE) =
          RepeatedField_deep_copy(DEREF(from_memory, VALUE));
    } else {
      if (field_contains_hasbit(layout, field)) {
        if (!slot_is_hasbit_set(layout, from, field)) continue;
        slot_set_hasbit(layout, to, field);
      }

      native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory);
    }
  }
}

VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) {
  upb_msg_field_iter it;
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);

    void* msg1_memory = slot_memory(layout, msg1, field);
    uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field);
    void* msg2_memory = slot_memory(layout, msg2, field);
    uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field);

    if (upb_fielddef_containingoneof(field)) {
      if (*msg1_oneof_case != *msg2_oneof_case ||
          (*msg1_oneof_case == upb_fielddef_number(field) &&
           !native_slot_eq(upb_fielddef_type(field),
                           msg1_memory,
                           msg2_memory))) {
        return Qfalse;
      }
    } else if (is_map_field(field)) {
      if (!Map_eq(DEREF(msg1_memory, VALUE),
                  DEREF(msg2_memory, VALUE))) {
        return Qfalse;
      }
    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
      if (!RepeatedField_eq(DEREF(msg1_memory, VALUE),
                            DEREF(msg2_memory, VALUE))) {
        return Qfalse;
      }
    } else {
      if (slot_is_hasbit_set(layout, msg1, field) !=
	  slot_is_hasbit_set(layout, msg2, field) ||
          !native_slot_eq(upb_fielddef_type(field),
			  msg1_memory, msg2_memory)) {
        return Qfalse;
      }
    }
  }
  return Qtrue;
}

VALUE layout_hash(MessageLayout* layout, void* storage) {
  upb_msg_field_iter it;
  st_index_t h = rb_hash_start(0);
  VALUE hash_sym = rb_intern("hash");
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);
    VALUE field_val = layout_get(layout, storage, field);
    h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0)));
  }
  h = rb_hash_end(h);

  return INT2FIX(h);
}

VALUE layout_inspect(MessageLayout* layout, void* storage) {
  VALUE str = rb_str_new2("");

  upb_msg_field_iter it;
  bool first = true;
  for (upb_msg_field_begin(&it, layout->msgdef);
       !upb_msg_field_done(&it);
       upb_msg_field_next(&it)) {
    const upb_fielddef* field = upb_msg_iter_field(&it);
    VALUE field_val = layout_get(layout, storage, field);

    if (!first) {
      str = rb_str_cat2(str, ", ");
    } else {
      first = false;
    }
    str = rb_str_cat2(str, upb_fielddef_name(field));
    str = rb_str_cat2(str, ": ");

    str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0));
  }

  return str;
}