From 29541ce3961a797836b232ccc12a60cc09f5de3e Mon Sep 17 00:00:00 2001 From: Rex Kerr Date: Sun, 29 Dec 2013 07:52:08 -0800 Subject: Quasi-comprehensive BigDecimal soundness/correctness fix. This fixes issues SI-6153, SI-6173, SI-6456, SI-6699, and SI-8116, along with a number of other similar possible issues. Relevant changes include * Changes to avoid heap explosion when working with BigInt - to isWhole - to hashCode - to equals - to BigInt's equals * Changes to enable equality matching hashCode - Only for sufficiently small BigInt - For identical values with different precision * Changes to isValidDouble - Takes precision into account now - New methods added to test whether even if the Double is not represented exactly, it's a representation of a certain type - New companion methods added to allow intended expansion of Double (binary/decimal difference) * Changes to constructor - Null arguments are not allowed (these can throw NPEs later at awkward/unexpected times) * New JUnit test to test all these things * Fixed existing tests to expect new behavior * Modified scaladocs to explain the issues * Deprecated problematic methods * Made application of MathContext more consistent (it is where you expect it and not where you don't) These changes are coordinated, for the most part, hence the monolithic commit. --- src/library/scala/math/BigDecimal.scala | 479 +++++++++++++++++++++++++++----- src/library/scala/math/BigInt.scala | 2 +- 2 files changed, 410 insertions(+), 71 deletions(-) (limited to 'src/library') diff --git a/src/library/scala/math/BigDecimal.scala b/src/library/scala/math/BigDecimal.scala index d783dd29f5..bcbed645a7 100644 --- a/src/library/scala/math/BigDecimal.scala +++ b/src/library/scala/math/BigDecimal.scala @@ -16,36 +16,165 @@ import scala.collection.immutable.NumericRange import scala.language.implicitConversions -/** +/** * @author Stephane Micheloud - * @version 1.0 + * @author Rex Kerr + * @version 1.1 * @since 2.7 */ object BigDecimal { + private final val maximumHashScale = 4934 // Quit maintaining hash identity with BigInt beyond this scale + private final val hashCodeNotComputed = 0x5D50690F // Magic value (happens to be "BigDecimal" old MurmurHash3 value) + private final val deci2binary = 3.3219280948873626 // Ratio of log(10) to log(2) private val minCached = -512 private val maxCached = 512 val defaultMathContext = MathContext.DECIMAL128 - /** Cache ony for defaultMathContext using BigDecimals in a small range. */ + /** Cache only for defaultMathContext using BigDecimals in a small range. */ private lazy val cache = new Array[BigDecimal](maxCached - minCached + 1) object RoundingMode extends Enumeration { + // Annoying boilerplate to ensure consistency with java.math.RoundingMode + import java.math.{RoundingMode => RM} type RoundingMode = Value - // These are supposed to be the same as java.math.RoundingMode.values, - // though it seems unwise to rely on the correspondence. - val UP, DOWN, CEILING, FLOOR, HALF_UP, HALF_DOWN, HALF_EVEN, UNNECESSARY = Value + val UP = Value(RM.UP.ordinal) + val DOWN = Value(RM.DOWN.ordinal) + val CEILING = Value(RM.CEILING.ordinal) + val FLOOR = Value(RM.FLOOR.ordinal) + val HALF_UP = Value(RM.HALF_UP.ordinal) + val HALF_DOWN = Value(RM.HALF_DOWN.ordinal) + val HALF_EVEN = Value(RM.HALF_EVEN.ordinal) + val UNNECESSARY = Value(RM.UNNECESSARY.ordinal) + } + + /** Constructs a `BigDecimal` using the decimal text representation of `Double` value `d`, rounding if necessary. */ + def decimal(d: Double, mc: MathContext): BigDecimal = + new BigDecimal(new BigDec(java.lang.Double.toString(d), mc)) + + /** Constructs a `BigDecimal` using the decimal text representation of `Double` value `d`. */ + def decimal(d: Double): BigDecimal = decimal(d, defaultMathContext) + + /** Constructs a `BigDecimal` using the decimal text representation of `Float` value `f`, rounding if necessary. + * Note that `BigDecimal.decimal(0.1f) != 0.1f` since equality agrees with the `Double` representation, and + * `0.1 != 0.1f`. + */ + def decimal(f: Float, mc: MathContext): BigDecimal = + new BigDecimal(new BigDec(java.lang.Float.toString(f), mc)) + + /** Constructs a `BigDecimal` using the decimal text representation of `Float` value `f`. + * Note that `BigDecimal.decimal(0.1f) != 0.1f` since equality agrees with the `Double` representation, and + * `0.1 != 0.1f`. + */ + def decimal(f: Float): BigDecimal = decimal(f, defaultMathContext) + + // This exists solely to avoid conversion from Int/Long to Float, screwing everything up. + /** Constructs a `BigDecimal` from a `Long`, rounding if necessary. This is identical to `BigDecimal(l, mc)`. */ + def decimal(l: Long, mc: MathContext): BigDecimal = apply(l, mc) + + // This exists solely to avoid conversion from Int/Long to Float, screwing everything up. + /** Constructs a `BigDecimal` from a `Long`. This is identical to `BigDecimal(l)`. */ + def decimal(l: Long): BigDecimal = apply(l) + + /** Constructs a `BigDecimal` using a `java.math.BigDecimal`, rounding if necessary. */ + def decimal(bd: BigDec, mc: MathContext): BigDecimal = new BigDecimal(bd.round(mc), mc) + + /** Constructs a `BigDecimal` by expanding the binary fraction + * contained by `Double` value `d` into a decimal representation, + * rounding if necessary. When a `Float` is converted to a + * `Double`, the binary fraction is preserved, so this method + * also works for converted `Float`s. + */ + def binary(d: Double, mc: MathContext): BigDecimal = new BigDecimal(new BigDec(d, mc), mc) + + /** Constructs a `BigDecimal` by expanding the binary fraction + * contained by `Double` value `d` into a decimal representation. + * Note: this also works correctly on converted `Float`s. + */ + def binary(d: Double): BigDecimal = binary(d, defaultMathContext) + + /** Constructs a `BigDecimal` from a `java.math.BigDecimal`. The + * precision is the default for `BigDecimal` or enough to represent + * the `java.math.BigDecimal` exactly, whichever is greater. + */ + def exact(repr: BigDec): BigDecimal = { + val mc = + if (repr.precision <= defaultMathContext.getPrecision) defaultMathContext + else new MathContext(repr.precision, java.math.RoundingMode.HALF_EVEN) + new BigDecimal(repr, mc) } + + /** Constructs a `BigDecimal` by fully expanding the binary fraction + * contained by `Double` value `d`, adjusting the precision as + * necessary. Note: this works correctly on converted `Float`s also. + */ + def exact(d: Double): BigDecimal = exact(new BigDec(d)) + + /** Constructs a `BigDecimal` that exactly represents a `BigInt`. + */ + def exact(bi: BigInt): BigDecimal = exact(new BigDec(bi.bigInteger)) + + /** Constructs a `BigDecimal` that exactly represents a `Long`. Note that + * all creation methods for `BigDecimal` that do not take a `MathContext` + * represent a `Long`; this is equivalent to `apply`, `valueOf`, etc.. + */ + def exact(l: Long): BigDecimal = apply(l) + + /** Constructs a `BigDecimal` that exactly represents the number + * specified in a `String`. + */ + def exact(s: String): BigDecimal = exact(new BigDec(s)) + + /** Constructs a 'BigDecimal` that exactly represents the number + * specified in base 10 in a character array. + */ + def exact(cs: Array[Char]): BigDecimal = exact(new BigDec(cs)) + /** Constructs a `BigDecimal` using the java BigDecimal static - * valueOf constructor. + * valueOf constructor. Equivalent to `BigDecimal.decimal`. * * @param d the specified double value * @return the constructed `BigDecimal` */ def valueOf(d: Double): BigDecimal = apply(BigDec valueOf d) + + /** Constructs a `BigDecimal` using the java BigDecimal static + * valueOf constructor, specifying a `MathContext` that is + * used for computations but isn't used for rounding. Use + * `BigDecimal.decimal` to use `MathContext` for rounding, + * or `BigDecimal(java.math.BigDecimal.valueOf(d), mc)` for + * no rounding. + * + * @param d the specified double value + * @param mc the `MathContext` used for future computations + * @return the constructed `BigDecimal` + */ + @deprecated("MathContext is not applied to Doubles in valueOf. Use BigDecimal.decimal to use rounding, or java.math.BigDecimal.valueOf to avoid it.","2.11") def valueOf(d: Double, mc: MathContext): BigDecimal = apply(BigDec valueOf d, mc) - def valueOf(x: Long): BigDecimal = apply(x.toDouble) + + /** Constructs a `BigDecimal` using the java BigDecimal static + * valueOf constructor. + * + * @param x the specified `Long` value + * @return the constructed `BigDecimal` + */ + def valueOf(x: Long): BigDecimal = apply(x) + + /** Constructs a `BigDecimal` using the java BigDecimal static + * valueOf constructor. This is unlikely to do what you want; + * use `valueOf(f.toDouble)` or `decimal(f)` instead. + */ + @deprecated("Float arguments to valueOf may not do what you wish. Use decimal or valueOf(f.toDouble).","2.11") + def valueOf(f: Float): BigDecimal = valueOf(f.toDouble) + + /** Constructs a `BigDecimal` using the java BigDecimal static + * valueOf constructor. This is unlikely to do what you want; + * use `valueOf(f.toDouble)` or `decimal(f)` instead. + */ + @deprecated("Float arguments to valueOf may not do what you wish. Use decimal or valueOf(f.toDouble).","2.11") + def valueOf(f: Float, mc: MathContext): BigDecimal = valueOf(f.toDouble, mc) + /** Constructs a `BigDecimal` whose value is equal to that of the * specified `Integer` value. * @@ -53,6 +182,14 @@ object BigDecimal { * @return the constructed `BigDecimal` */ def apply(i: Int): BigDecimal = apply(i, defaultMathContext) + + /** Constructs a `BigDecimal` whose value is equal to that of the + * specified `Integer` value, rounding if necessary. + * + * @param i the specified integer value + * @param mc the precision and rounding mode for creation of this value and future operations on it + * @return the constructed `BigDecimal` + */ def apply(i: Int, mc: MathContext): BigDecimal = if (mc == defaultMathContext && minCached <= i && i <= maxCached) { val offset = i - minCached @@ -60,7 +197,7 @@ object BigDecimal { if (n eq null) { n = new BigDecimal(BigDec.valueOf(i.toLong), mc); cache(offset) = n } n } - else new BigDecimal(BigDec.valueOf(i.toLong), mc) + else apply(i.toLong, mc) /** Constructs a `BigDecimal` whose value is equal to that of the * specified long value. @@ -72,6 +209,13 @@ object BigDecimal { if (minCached <= l && l <= maxCached) apply(l.toInt) else new BigDecimal(BigDec.valueOf(l), defaultMathContext) + /** Constructs a `BigDecimal` whose value is equal to that of the + * specified long value, but rounded if necessary. + * + * @param l the specified long value + * @param mc the precision and rounding mode for creation of this value and future operations on it + * @return the constructed `BigDecimal` + */ def apply(l: Long, mc: MathContext): BigDecimal = new BigDecimal(new BigDec(l, mc), mc) @@ -85,35 +229,62 @@ object BigDecimal { def apply(unscaledVal: Long, scale: Int): BigDecimal = apply(BigInt(unscaledVal), scale) + /** Constructs a `BigDecimal` whose unscaled value is equal to that + * of the specified long value, but rounded if necessary. + * + * @param unscaledVal the value + * @param scale the scale + * @param mc the precision and rounding mode for creation of this value and future operations on it + * @return the constructed `BigDecimal` + */ def apply(unscaledVal: Long, scale: Int, mc: MathContext): BigDecimal = apply(BigInt(unscaledVal), scale, mc) /** Constructs a `BigDecimal` whose value is equal to that of the - * specified double value. + * specified double value. Equivalent to `BigDecimal.decimal`. * * @param d the specified `Double` value * @return the constructed `BigDecimal` */ - def apply(d: Double): BigDecimal = apply(d, defaultMathContext) + def apply(d: Double): BigDecimal = decimal(d, defaultMathContext) + // note we don't use the static valueOf because it doesn't let us supply // a MathContext, but we should be duplicating its logic, modulo caching. - def apply(d: Double, mc: MathContext): BigDecimal = - new BigDecimal(new BigDec(jl.Double.toString(d), mc), mc) + /** Constructs a `BigDecimal` whose value is equal to that of the + * specified double value, but rounded if necessary. Equivalent to + * `BigDecimal.decimal`. + * + * @param d the specified `Double` value + * @param mc the precision and rounding mode for creation of this value and future operations on it + * @return the constructed `BigDecimal` + */ + def apply(d: Double, mc: MathContext): BigDecimal = decimal(d, mc) + @deprecated("The default conversion from Float may not do what you want. Use BigDecimal.decimal for a String representation, or explicitly convert the Float with .toDouble.", "2.11") def apply(x: Float): BigDecimal = apply(x.toDouble) + + @deprecated("The default conversion from Float may not do what you want. Use BigDecimal.decimal for a String representation, or explicitly convert the Float with .toDouble.", "2.11") def apply(x: Float, mc: MathContext): BigDecimal = apply(x.toDouble, mc) /** Translates a character array representation of a `BigDecimal` * into a `BigDecimal`. */ - def apply(x: Array[Char]): BigDecimal = apply(x, defaultMathContext) + def apply(x: Array[Char]): BigDecimal = exact(x) + + /** Translates a character array representation of a `BigDecimal` + * into a `BigDecimal`, rounding if necessary. + */ def apply(x: Array[Char], mc: MathContext): BigDecimal = - new BigDecimal(new BigDec(x.mkString, mc), mc) + new BigDecimal(new BigDec(x, mc), mc) /** Translates the decimal String representation of a `BigDecimal` * into a `BigDecimal`. */ - def apply(x: String): BigDecimal = apply(x, defaultMathContext) + def apply(x: String): BigDecimal = exact(x) + + /** Translates the decimal String representation of a `BigDecimal` + * into a `BigDecimal`, rounding if necessary. + */ def apply(x: String, mc: MathContext): BigDecimal = new BigDecimal(new BigDec(x, mc), mc) @@ -123,7 +294,15 @@ object BigDecimal { * @param x the specified `BigInt` value * @return the constructed `BigDecimal` */ - def apply(x: BigInt): BigDecimal = apply(x, defaultMathContext) + def apply(x: BigInt): BigDecimal = exact(x) + + /** Constructs a `BigDecimal` whose value is equal to that of the + * specified `BigInt` value, rounding if necessary. + * + * @param x the specified `BigInt` value + * @param mc the precision and rounding mode for creation of this value and future operations on it + * @return the constructed `BigDecimal` + */ def apply(x: BigInt, mc: MathContext): BigDecimal = new BigDecimal(new BigDec(x.bigInteger, mc), mc) @@ -134,11 +313,24 @@ object BigDecimal { * @param scale the scale * @return the constructed `BigDecimal` */ - def apply(unscaledVal: BigInt, scale: Int): BigDecimal = apply(unscaledVal, scale, defaultMathContext) + def apply(unscaledVal: BigInt, scale: Int): BigDecimal = + exact(new BigDec(unscaledVal.bigInteger, scale)) + + /** Constructs a `BigDecimal` whose unscaled value is equal to that + * of the specified `BigInt` value. + * + * @param unscaledVal the specified `BigInt` value + * @param scale the scale + * @param mc the precision and rounding mode for creation of this value and future operations on it + * @return the constructed `BigDecimal` + */ def apply(unscaledVal: BigInt, scale: Int, mc: MathContext): BigDecimal = new BigDecimal(new BigDec(unscaledVal.bigInteger, scale, mc), mc) + /** Constructs a `BigDecimal` from a `java.math.BigDecimal`. */ def apply(bd: BigDec): BigDecimal = apply(bd, defaultMathContext) + + @deprecated("This method appears to round a java.math.BigDecimal but actually doesn't. Use new BigDecimal(bd, mc) instead for no rounding, or BigDecimal.decimal(bd, mc) for rounding.", "2.11") def apply(bd: BigDec, mc: MathContext): BigDecimal = new BigDecimal(bd, mc) /** Implicit conversion from `Int` to `BigDecimal`. */ @@ -148,43 +340,123 @@ object BigDecimal { implicit def long2bigDecimal(l: Long): BigDecimal = apply(l) /** Implicit conversion from `Double` to `BigDecimal`. */ - implicit def double2bigDecimal(d: Double): BigDecimal = valueOf(d, defaultMathContext) + implicit def double2bigDecimal(d: Double): BigDecimal = decimal(d) /** Implicit conversion from `java.math.BigDecimal` to `scala.BigDecimal`. */ implicit def javaBigDecimal2bigDecimal(x: BigDec): BigDecimal = apply(x) } /** + * `BigDecimal` represents decimal floating-point numbers of arbitrary precision. + * By default, the precision approximately matches that of IEEE 128-bit floating + * point numbers (34 decimal digits, `HALF_EVEN` rounding mode). Within the range + * of IEEE binary128 numbers, `BigDecimal` will agree with `BigInt` for both + * equality and hash codes (and will agree with primitive types as well). Beyond + * that range--numbers with more than 4934 digits when written out in full--the + * `hashCode` of `BigInt` and `BigDecimal` is allowed to diverge due to difficulty + * in efficiently computing both the decimal representation in `BigDecimal` and the + * binary representation in `BigInt`. + * + * When creating a `BigDecimal` from a `Double` or `Float`, care must be taken as + * the binary fraction representation of `Double` and `Float` does not easily + * convert into a decimal representation. Three explicit schemes are available + * for conversion. `BigDecimal.decimal` will convert the floating-point number + * to a decimal text representation, and build a `BigDecimal` based on that. + * `BigDecimal.binary` will expand the binary fraction to the requested or default + * precision. `BigDecimal.exact` will expand the binary fraction to the + * full number of digits, thus producing the exact decimal value corrsponding to + * the binary fraction of that floating-point number. `BigDecimal` equality + * matches the decimal expansion of `Double`: `BigDecimal.decimal(0.1) == 0.1`. + * Note that since `0.1f != 0.1`, the same is not true for `Float`. Instead, + * `0.1f == BigDecimal.decimal((0.1f).toDouble)`. + * + * To test whether a `BigDecimal` number can be converted to a `Double` or + * `Float` and then back without loss of information by using one of these + * methods, test with `isDecimalDouble`, `isBinaryDouble`, or `isExactDouble` + * or the corresponding `Float` versions. Note that `BigInt`'s `isValidDouble` + * will agree with `isExactDouble`, not the `isDecimalDouble` used by default. + * + * `BigDecimal` uses the decimal representation of binary floating-point numbers + * to determine equality and hash codes. This yields different answers than + * conversion between `Long` and `Double` values, where the exact form is used. + * As always, since floating-point is a lossy representation, it is advisable to + * take care when assuming identity will be maintained across multiple conversions. + * + * `BigDecimal` maintains a `MathContext` that determines the rounding that + * is applied to certain calculations. In most cases, the value of the + * `BigDecimal` is also rounded to the precision specified by the `MathContext`. + * To create a `BigDecimal` with a different precision than its `MathContext`, + * use `new BigDecimal(new java.math.BigDecimal(...), mc)`. Rounding will + * be applied on those mathematical operations that can dramatically change the + * number of digits in a full representation, namely multiplication, division, + * and powers. The left-hand argument's `MathContext` always determines the + * degree of rounding, if any, and is the one propagated through arithmetic + * operations that do not apply rounding themselves. + * * @author Stephane Micheloud - * @version 1.0 + * @author Rex Kerr + * @version 1.1 */ -final class BigDecimal( - val bigDecimal: BigDec, - val mc: MathContext) +final class BigDecimal(val bigDecimal: BigDec, val mc: MathContext) extends ScalaNumber with ScalaNumericConversions with Serializable { def this(bigDecimal: BigDec) = this(bigDecimal, BigDecimal.defaultMathContext) import BigDecimal.RoundingMode._ - - /** Cuts way down on the wrapper noise. */ - private implicit def bigdec2BigDecimal(x: BigDec): BigDecimal = new BigDecimal(x, mc) - + import BigDecimal.{decimal, binary, exact} + + if (bigDecimal eq null) throw new IllegalArgumentException("null value for BigDecimal") + if (mc eq null) throw new IllegalArgumentException("null MathContext for BigDecimal") + + // There was an implicit to cut down on the wrapper noise for BigDec -> BigDecimal. + // However, this may mask introduction of surprising behavior (e.g. lack of rounding + // where one might expect it). Wrappers should be applied explicitly with an + // eye to correctness. + + // Sane hash code computation (which is surprisingly hard). + // Note--not lazy val because we can't afford the extra space. + private final var computedHashCode: Int = BigDecimal.hashCodeNotComputed + private final def computeHashCode(): Unit = { + computedHashCode = + if (isWhole && (precision - scale) < BigDecimal.maximumHashScale) toBigInt.hashCode + else if (isValidDouble) doubleValue.## + else { + val temp = bigDecimal.stripTrailingZeros + scala.util.hashing.MurmurHash3.mixLast( temp.scaleByPowerOfTen(temp.scale).toBigInteger.hashCode, temp.scale ) + } + } + /** Returns the hash code for this BigDecimal. - * Note that this does not use the underlying java object's - * hashCode because we compare BigDecimals with compareTo + * Note that this does not merely use the underlying java object's + * `hashCode` because we compare `BigDecimal`s with `compareTo` * which deems 2 == 2.00, whereas in java these are unequal - * with unequal hashCodes. - */ - override def hashCode(): Int = - if (isWhole()) unifiedPrimitiveHashcode() - else doubleValue.## + * with unequal `hashCode`s. These hash codes agree with `BigInt` + * for whole numbers up ~4934 digits (the range of IEEE 128 bit floating + * point). Beyond this, hash codes will disagree; this prevents the + * explicit represention of the `BigInt` form for `BigDecimal` values + * with large exponents. + */ + override def hashCode(): Int = { + if (computedHashCode == BigDecimal.hashCodeNotComputed) computeHashCode + computedHashCode + } - /** Compares this BigDecimal with the specified value for equality. + /** Compares this BigDecimal with the specified value for equality. Where `Float` and `Double` + * disagree, `BigDecimal` will agree with the `Double` value */ override def equals (that: Any): Boolean = that match { case that: BigDecimal => this equals that - case that: BigInt => this.toBigIntExact exists (that equals _) - case that: Double => isValidDouble && toDouble == that - case that: Float => isValidFloat && toFloat == that + case that: BigInt => + that.bitLength > (precision-scale-2)*BigDecimal.deci2binary && + this.toBigIntExact.exists(that equals _) + case that: Double => + !that.isInfinity && { + val d = toDouble + !d.isInfinity && d == that && equals(decimal(d)) + } + case that: Float => + !that.isInfinity && { + val f = toFloat + !f.isInfinity && f == that && equals(decimal(f.toDouble)) + } case _ => isValidLong && unifiedPrimitiveEquals(that) } override def isValidByte = noArithmeticException(toByteExact) @@ -192,26 +464,71 @@ extends ScalaNumber with ScalaNumericConversions with Serializable { override def isValidChar = isValidInt && toIntExact >= Char.MinValue && toIntExact <= Char.MaxValue override def isValidInt = noArithmeticException(toIntExact) def isValidLong = noArithmeticException(toLongExact) - /** Returns `true` iff this can be represented exactly by [[scala.Float]]; otherwise returns `false`. + /** Tests whether the value is a valid Float. "Valid" has several distinct meanings, however. Use + * `isExactFloat`, `isBinaryFloat`, or `isDecimalFloat`, depending on the intended meaning. + * By default, `decimal` creation is used, so `isDecimalFloat` is probably what you want. */ + @deprecated("What constitutes validity is unclear. Use `isExactFloat`, `isBinaryFloat`, or `isDecimalFloat` instead.", "2.11") def isValidFloat = { val f = toFloat - !f.isInfinity && bigDecimal.compareTo(new java.math.BigDecimal(f.toDouble)) == 0 + !f.isInfinity && bigDecimal.compareTo(new BigDec(f.toDouble)) == 0 } - /** Returns `true` iff this can be represented exactly by [[scala.Double]]; otherwise returns `false`. + /** Tests whether the value is a valid Double. "Valid" has several distinct meanings, however. Use + * `isExactDouble`, `isBinaryDouble`, or `isDecimalDouble`, depending on the intended meaning. + * By default, `decimal` creation is used, so `isDecimalDouble` is probably what you want. */ + @deprecated("Validity has two distinct meanings. Use `isExactBinaryDouble` or `equivalentToDouble` instead.", "2.11") def isValidDouble = { val d = toDouble - !d.isInfinity && bigDecimal.compareTo(new java.math.BigDecimal(d)) == 0 + !d.isInfinity && bigDecimal.compareTo(new BigDec(d)) == 0 + } + + /** Tests whether this `BigDecimal` holds the decimal representation of a `Double`. */ + def isDecimalDouble = { + val d = toDouble + !d.isInfinity && equals(decimal(d)) + } + + /** Tests whether this `BigDecimal` holds the decimal representation of a `Float`. */ + def isDecimalFloat = { + val f = toFloat + !f.isInfinity && equals(decimal(f)) + } + + /** Tests whether this `BigDecimal` holds, to within precision, the binary representation of a `Double`. */ + def isBinaryDouble = { + val d = toDouble + !d.isInfinity && equals(binary(d,mc)) + } + + /** Tests whether this `BigDecimal` holds, to within precision, the binary representation of a `Float`. */ + def isBinaryFloat = { + val f = toFloat + !f.isInfinity && equals(binary(f,mc)) + } + + /** Tests whether this `BigDecimal` holds the exact expansion of a `Double`'s binary fractional form into base 10. */ + def isExactDouble = { + val d = toDouble + !d.isInfinity && equals(exact(d)) + } + + /** Tests whether this `BigDecimal` holds the exact expansion of a `Float`'s binary fractional form into base 10. */ + def isExactFloat = { + val f = toFloat + !f.isInfinity && equals(exact(f.toDouble)) } + private def noArithmeticException(body: => Unit): Boolean = { try { body ; true } catch { case _: ArithmeticException => false } } - def isWhole() = (this remainder 1) == BigDecimal(0) + def isWhole() = scale <= 0 || bigDecimal.stripTrailingZeros.scale <= 0 + def underlying = bigDecimal + /** Compares this BigDecimal with the specified BigDecimal for equality. */ @@ -239,60 +556,66 @@ extends ScalaNumber with ScalaNumericConversions with Serializable { /** Addition of BigDecimals */ - def + (that: BigDecimal): BigDecimal = this.bigDecimal.add(that.bigDecimal) + def + (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal add that.bigDecimal, mc) /** Subtraction of BigDecimals */ - def - (that: BigDecimal): BigDecimal = this.bigDecimal.subtract(that.bigDecimal) + def - (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal subtract that.bigDecimal, mc) /** Multiplication of BigDecimals */ - def * (that: BigDecimal): BigDecimal = this.bigDecimal.multiply(that.bigDecimal, mc) + def * (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal.multiply(that.bigDecimal, mc), mc) /** Division of BigDecimals */ - def / (that: BigDecimal): BigDecimal = this.bigDecimal.divide(that.bigDecimal, mc) + def / (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal.divide(that.bigDecimal, mc), mc) /** Division and Remainder - returns tuple containing the result of - * divideToIntegralValue and the remainder. + * divideToIntegralValue and the remainder. The computation is exact: no rounding is applied. */ def /% (that: BigDecimal): (BigDecimal, BigDecimal) = this.bigDecimal.divideAndRemainder(that.bigDecimal) match { - case Array(q, r) => (q, r) + case Array(q, r) => (new BigDecimal(q, mc), new BigDecimal(r, mc)) } /** Divide to Integral value. */ def quot (that: BigDecimal): BigDecimal = - this.bigDecimal.divideToIntegralValue(that.bigDecimal) + new BigDecimal(this.bigDecimal divideToIntegralValue that.bigDecimal, mc) - /** Returns the minimum of this and that + /** Returns the minimum of this and that, or this if the two are equal */ - def min (that: BigDecimal): BigDecimal = this.bigDecimal min that.bigDecimal - - /** Returns the maximum of this and that + def min (that: BigDecimal): BigDecimal = (this compare that) match { + case x if x <= 0 => this + case _ => that + } + + /** Returns the maximum of this and that, or this if the two are equal */ - def max (that: BigDecimal): BigDecimal = this.bigDecimal max that.bigDecimal - + def max (that: BigDecimal): BigDecimal = (this compare that) match { + case x if x >= 0 => this + case _ => that + } + /** Remainder after dividing this by that. */ - def remainder (that: BigDecimal): BigDecimal = this.bigDecimal.remainder(that.bigDecimal) + def remainder (that: BigDecimal): BigDecimal = new BigDecimal(this.bigDecimal remainder that.bigDecimal, mc) /** Remainder after dividing this by that. */ - def % (that: BigDecimal): BigDecimal = this.remainder(that) + def % (that: BigDecimal): BigDecimal = this remainder that /** Returns a BigDecimal whose value is this ** n. */ - def pow (n: Int): BigDecimal = this.bigDecimal.pow(n, mc) + def pow (n: Int): BigDecimal = new BigDecimal(this.bigDecimal.pow(n, mc), mc) /** Returns a BigDecimal whose value is the negation of this BigDecimal */ - def unary_- : BigDecimal = this.bigDecimal.negate() + def unary_- : BigDecimal = new BigDecimal(this.bigDecimal.negate(), mc) /** Returns the absolute value of this BigDecimal */ - def abs: BigDecimal = this.bigDecimal.abs + def abs: BigDecimal = if (signum < 0) unary_- else this /** Returns the sign of this BigDecimal, i.e. * -1 if it is less than 0, @@ -305,9 +628,19 @@ extends ScalaNumber with ScalaNumericConversions with Serializable { */ def precision: Int = this.bigDecimal.precision() - /** Returns a BigDecimal rounded according to the MathContext settings. + /** Returns a BigDecimal rounded according to the supplied MathContext settings, but + * preserving its own MathContext for future operations. */ - def round(mc: MathContext): BigDecimal = this.bigDecimal round mc + def round(mc: MathContext): BigDecimal = { + val r = this.bigDecimal round mc + if (r eq bigDecimal) this else new BigDecimal(r, this.mc) + } + + /** Returns a `BigDecimal` rounded according to its own `MathContext` */ + def rounded: BigDecimal = { + val r = bigDecimal round mc + if (r eq bigDecimal) this else new BigDecimal(r, mc) + } /** Returns the scale of this `BigDecimal`. */ @@ -315,19 +648,22 @@ extends ScalaNumber with ScalaNumericConversions with Serializable { /** Returns the size of an ulp, a unit in the last place, of this BigDecimal. */ - def ulp: BigDecimal = this.bigDecimal.ulp + def ulp: BigDecimal = new BigDecimal(this.bigDecimal.ulp, mc) - /** Returns a new BigDecimal based on the supplied MathContext. + /** Returns a new BigDecimal based on the supplied MathContext, rounded as needed. */ - def apply(mc: MathContext): BigDecimal = BigDecimal(this.bigDecimal.toString, mc) + def apply(mc: MathContext): BigDecimal = new BigDecimal(this.bigDecimal round mc, mc) /** Returns a `BigDecimal` whose scale is the specified value, and whose value is * numerically equal to this BigDecimal's. */ - def setScale(scale: Int): BigDecimal = this.bigDecimal setScale scale + def setScale(scale: Int): BigDecimal = + if (this.scale == scale) this + else new BigDecimal(this.bigDecimal setScale scale, mc) def setScale(scale: Int, mode: RoundingMode): BigDecimal = - this.bigDecimal.setScale(scale, mode.id) + if (this.scale == scale) this + else new BigDecimal(this.bigDecimal.setScale(scale, mode.id), mc) /** Converts this BigDecimal to a Byte. * If the BigDecimal is too big to fit in a Byte, only the low-order 8 bits are returned. @@ -442,8 +778,11 @@ extends ScalaNumber with ScalaNumericConversions with Serializable { * can be done losslessly, returning Some(BigInt) or None. */ def toBigIntExact(): Option[BigInt] = - try Some(new BigInt(this.bigDecimal.toBigIntegerExact())) - catch { case _: ArithmeticException => None } + if (isWhole()) { + try Some(new BigInt(this.bigDecimal.toBigIntegerExact())) + catch { case _: ArithmeticException => None } + } + else None /** Returns the decimal String representation of this BigDecimal. */ diff --git a/src/library/scala/math/BigInt.scala b/src/library/scala/math/BigInt.scala index 5e70bdc2f6..689fc0c3e1 100644 --- a/src/library/scala/math/BigInt.scala +++ b/src/library/scala/math/BigInt.scala @@ -119,7 +119,7 @@ final class BigInt(val bigInteger: BigInteger) extends ScalaNumber with ScalaNum */ override def equals(that: Any): Boolean = that match { case that: BigInt => this equals that - case that: BigDecimal => that.toBigIntExact exists (this equals _) + case that: BigDecimal => that equals this case that: Double => isValidDouble && toDouble == that case that: Float => isValidFloat && toFloat == that case x => isValidLong && unifiedPrimitiveEquals(x) -- cgit v1.2.3