/* NSC -- new Scala compiler * Copyright 2005-2011 LAMP/EPFL * @author Martin Odersky */ package scala.tools.nsc package ast import scala.collection.mutable.ListBuffer import symtab.Flags._ import symtab.SymbolTable /** XXX to resolve: TreeGen only assumes global is a SymbolTable, but * TreeDSL at the moment expects a Global. Can we get by with SymbolTable? */ abstract class TreeGen extends reflect.internal.TreeGen { val global: Global import global._ import definitions._ def mkCheckInit(tree: Tree): Tree = { val tpe = if (tree.tpe != null || !tree.hasSymbol) tree.tpe else tree.symbol.tpe if (!global.phase.erasedTypes && settings.warnSelectNullable.value && tpe <:< NotNullClass.tpe && !tpe.isNotNull) mkRuntimeCall(nme.checkInitialized, List(tree)) else tree } /** Builds a fully attributed wildcard import node. */ def mkWildcardImport(pkg: Symbol): Import = { assert(pkg ne null, this) val qual = gen.mkAttributedStableRef(pkg) val importSym = ( NoSymbol newImport NoPosition setFlag SYNTHETIC setInfo analyzer.ImportType(qual) ) val importTree = ( Import(qual, List(ImportSelector(nme.WILDCARD, -1, null, -1))) setSymbol importSym setType NoType ) importTree } // wrap the given expression in a SoftReference so it can be gc-ed def mkSoftRef(expr: Tree): Tree = atPos(expr.pos) { New(SoftReferenceClass, expr) } // annotate the expression with @unchecked def mkUnchecked(expr: Tree): Tree = atPos(expr.pos) { // This can't be "Annotated(New(UncheckedClass), expr)" because annotations // are very pick about things and it crashes the compiler with "unexpected new". Annotated(New(scalaDot(UncheckedClass.name), List(Nil)), expr) } // if it's a Match, mark the selector unchecked; otherwise nothing. def mkUncheckedMatch(tree: Tree) = tree match { case Match(selector, cases) => atPos(tree.pos)(Match(mkUnchecked(selector), cases)) case _ => tree } def withDefaultCase(matchExpr: Tree, defaultAction: Tree/*scrutinee*/ => Tree): Tree = matchExpr match { case Match(scrutinee, cases) => if (cases exists treeInfo.isDefaultCase) matchExpr else { val defaultCase = CaseDef(Ident(nme.WILDCARD), EmptyTree, defaultAction(scrutinee)) Match(scrutinee, cases :+ defaultCase) } case _ => matchExpr // [Martin] Adriaan: please fill in virtpatmat transformation here } def mkCached(cvar: Symbol, expr: Tree): Tree = { val cvarRef = mkUnattributedRef(cvar) Block( List( If(Apply(Select(cvarRef, nme.eq), List(Literal(Constant(null)))), Assign(cvarRef, expr), EmptyTree)), cvarRef ) } // Builds a tree of the form "{ lhs = rhs ; lhs }" def mkAssignAndReturn(lhs: Symbol, rhs: Tree): Tree = { val lhsRef = mkUnattributedRef(lhs) Block(Assign(lhsRef, rhs) :: Nil, lhsRef) } def mkModuleVarDef(accessor: Symbol) = { val mval = ( accessor.owner.newVariable(accessor.pos.focus, nme.moduleVarName(accessor.name)) setInfo accessor.tpe.finalResultType setFlag (MODULEVAR) ) mval addAnnotation VolatileAttr if (mval.owner.isClass) { mval setFlag (PrivateLocal | SYNTHETIC) mval.owner.info.decls.enter(mval) } ValDef(mval) } // def m: T = { if (m$ eq null) m$ = new m$class(...) m$ } // where (...) are eventual outer accessors def mkCachedModuleAccessDef(accessor: Symbol, mvar: Symbol) = DefDef(accessor, mkCached(mvar, newModule(accessor, mvar.tpe))) def mkModuleAccessDef(accessor: Symbol, msym: Symbol) = DefDef(accessor, Select(This(msym.owner), msym)) def newModule(accessor: Symbol, tpe: Type) = New(TypeTree(tpe), List(for (pt <- tpe.typeSymbol.primaryConstructor.info.paramTypes) yield This(accessor.owner.enclClass))) // def m: T; def mkModuleAccessDcl(accessor: Symbol) = DefDef(accessor setFlag lateDEFERRED, EmptyTree) def mkRuntimeCall(meth: Name, args: List[Tree]): Tree = mkRuntimeCall(meth, Nil, args) def mkRuntimeCall(meth: Name, targs: List[Type], args: List[Tree]): Tree = mkMethodCall(ScalaRunTimeModule, meth, targs, args) def mkSysErrorCall(message: String): Tree = mkMethodCall(Sys_error, List(Literal(Constant(message)))) /** A creator for a call to a scala.reflect.Manifest or ClassManifest factory method. * * @param full full or partial manifest (target will be Manifest or ClassManifest) * @param constructor name of the factory method (e.g. "classType") * @param tparg the type argument * @param args value arguments * @return the tree */ def mkManifestFactoryCall(full: Boolean, constructor: String, tparg: Type, args: List[Tree]): Tree = mkMethodCall( if (full) FullManifestModule else PartialManifestModule, newTermName(constructor), List(tparg), args ) /** Make a synchronized block on 'monitor'. */ def mkSynchronized(monitor: Tree, body: Tree): Tree = Apply(Select(monitor, Object_synchronized), List(body)) def wildcardStar(tree: Tree) = atPos(tree.pos) { Typed(tree, Ident(tpnme.WILDCARD_STAR)) } def paramToArg(vparam: Symbol) = { val arg = Ident(vparam) if (isRepeatedParamType(vparam.tpe)) wildcardStar(arg) else arg } def paramToArg(vparam: ValDef) = { val arg = Ident(vparam.name) if (treeInfo.isRepeatedParamType(vparam.tpt)) wildcardStar(arg) else arg } /** Make forwarder to method `target`, passing all parameters in `params` */ def mkForwarder(target: Tree, vparamss: List[List[Symbol]]) = (target /: vparamss)((fn, vparams) => Apply(fn, vparams map paramToArg)) /** Applies a wrapArray call to an array, making it a WrappedArray. * Don't let a reference type parameter be inferred, in case it's a singleton: * apply the element type directly. */ def mkWrapArray(tree: Tree, elemtp: Type) = { mkMethodCall( PredefModule, wrapArrayMethodName(elemtp), if (isScalaValueType(elemtp)) Nil else List(elemtp), List(tree) ) } /** Generate a cast for tree Tree representing Array with * elem type elemtp to expected type pt. */ def mkCastArray(tree: Tree, elemtp: Type, pt: Type) = if (elemtp.typeSymbol == AnyClass && isScalaValueType(tree.tpe.typeArgs.head)) mkCast(mkRuntimeCall(nme.toObjectArray, List(tree)), pt) else mkCast(tree, pt) /** Translate names in Select/Ident nodes to type names. */ def convertToTypeName(tree: Tree): Option[RefTree] = tree match { case Select(qual, name) => Some(Select(qual, name.toTypeName)) case Ident(name) => Some(Ident(name.toTypeName)) case _ => None } /** Try to convert Select(qual, name) to a SelectFromTypeTree. */ def convertToSelectFromType(qual: Tree, origName: Name) = convertToTypeName(qual) match { case Some(qual1) => SelectFromTypeTree(qual1 setPos qual.pos, origName.toTypeName) case _ => EmptyTree } /** Create a ValDef initialized to the given expression, setting the * symbol to its packed type, and an function for creating Idents * which refer to it. */ private def mkPackedValDef(expr: Tree, owner: Symbol, name: Name): (ValDef, () => Ident) = { val packedType = typer.packedType(expr, owner) val sym = ( owner.newValue(expr.pos.makeTransparent, name) setFlag SYNTHETIC setInfo packedType ) (ValDef(sym, expr), () => Ident(sym) setPos sym.pos.focus setType expr.tpe) } /** Used in situations where you need to access value of an expression several times */ def evalOnce(expr: Tree, owner: Symbol, unit: CompilationUnit)(within: (() => Tree) => Tree): Tree = { var used = false if (treeInfo.isExprSafeToInline(expr)) { within(() => if (used) expr.duplicate else { used = true; expr }) } else { val (valDef, identFn) = mkPackedValDef(expr, owner, unit.freshTermName("ev$")) val containing = within(identFn) ensureNonOverlapping(containing, List(expr)) Block(List(valDef), containing) setPos (containing.pos union expr.pos) } } def evalOnceAll(exprs: List[Tree], owner: Symbol, unit: CompilationUnit)(within: (List[() => Tree]) => Tree): Tree = { val vdefs = new ListBuffer[ValDef] val exprs1 = new ListBuffer[() => Tree] val used = new Array[Boolean](exprs.length) var i = 0 for (expr <- exprs) { if (treeInfo.isExprSafeToInline(expr)) { exprs1 += { val idx = i () => if (used(idx)) expr.duplicate else { used(idx) = true; expr } } } else { val (valDef, identFn) = mkPackedValDef(expr, owner, unit.freshTermName("ev$")) vdefs += valDef exprs1 += identFn } i += 1 } val prefix = vdefs.toList val containing = within(exprs1.toList) ensureNonOverlapping(containing, exprs) if (prefix.isEmpty) containing else Block(prefix, containing) setPos (prefix.head.pos union containing.pos) } /** Return a double-checked locking idiom around the syncBody tree. It guards with `cond` and * synchronizez on `clazz.this`. Additional statements can be included after initialization, * (outside the synchronized block). * * The idiom works only if the condition is using a volatile field. * @see http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html */ def mkDoubleCheckedLocking(clazz: Symbol, cond: Tree, syncBody: List[Tree], stats: List[Tree]): Tree = mkDoubleCheckedLocking(mkAttributedThis(clazz), cond, syncBody, stats) def mkDoubleCheckedLocking(attrThis: Tree, cond: Tree, syncBody: List[Tree], stats: List[Tree]): Tree = { If(cond, Block( mkSynchronized( attrThis, If(cond, Block(syncBody: _*), EmptyTree)) :: stats: _*), EmptyTree) } }