/* NSC -- new Scala compiler * Copyright 2005-2013 LAMP/EPFL * @author Martin Odersky */ //todo: allow infix type patterns //todo verify when stableId's should be just plain qualified type ids package scala.tools.nsc package ast.parser import scala.collection.mutable import mutable.ListBuffer import scala.reflect.internal.{ Precedence, ModifierFlags => Flags } import scala.reflect.internal.util.{ SourceFile, Position, FreshNameCreator, ListOfNil } import Tokens._ /** Historical note: JavaParsers started life as a direct copy of Parsers * but at a time when that Parsers had been replaced by a different one. * Later it was dropped and the original Parsers reinstated, leaving us with * massive duplication between Parsers and JavaParsers. * * This trait and the similar one for Scanners/JavaScanners represents * the beginnings of a campaign against this latest incursion by Cutty * McPastington and his army of very similar soldiers. */ trait ParsersCommon extends ScannersCommon { self => val global : Global // the use of currentUnit in the parser should be avoided as it might // cause unexpected behaviour when you work with two units at the // same time; use Parser.unit instead import global.{currentUnit => _, _} def newLiteral(const: Any) = Literal(Constant(const)) def literalUnit = gen.mkSyntheticUnit() /** This is now an abstract class, only to work around the optimizer: * methods in traits are never inlined. */ abstract class ParserCommon { val in: ScannerCommon def deprecationWarning(off: Offset, msg: String, since: String): Unit def accept(token: Token): Int /** Methods inParensOrError and similar take a second argument which, should * the next token not be the expected opener (e.g. LPAREN) will be returned * instead of the contents of the groupers. However in all cases accept(LPAREN) * will be called, so a parse error will still result. If the grouping is * optional, in.token should be tested before calling these methods. */ @inline final def inParens[T](body: => T): T = { accept(LPAREN) val ret = body accept(RPAREN) ret } @inline final def inParensOrError[T](body: => T, alt: T): T = if (in.token == LPAREN) inParens(body) else { accept(LPAREN) ; alt } @inline final def inParensOrUnit[T](body: => Tree): Tree = inParensOrError(body, literalUnit) @inline final def inParensOrNil[T](body: => List[T]): List[T] = inParensOrError(body, Nil) @inline final def inBraces[T](body: => T): T = { accept(LBRACE) val ret = body accept(RBRACE) ret } @inline final def inBracesOrError[T](body: => T, alt: T): T = if (in.token == LBRACE) inBraces(body) else { accept(LBRACE) ; alt } @inline final def inBracesOrNil[T](body: => List[T]): List[T] = inBracesOrError(body, Nil) @inline final def inBracesOrUnit[T](body: => Tree): Tree = inBracesOrError(body, literalUnit) @inline final def dropAnyBraces[T](body: => T): T = if (in.token == LBRACE) inBraces(body) else body @inline final def inBrackets[T](body: => T): T = { accept(LBRACKET) val ret = body accept(RBRACKET) ret } /** Creates an actual Parens node (only used during parsing.) */ @inline final def makeParens(body: => List[Tree]): Parens = Parens(inParens(if (in.token == RPAREN) Nil else body)) } } /** Performs the following context-free rewritings: * *
    *
  1. * Places all pattern variables in Bind nodes. In a pattern, for * identifiers `x`:
     *                 x  => x @ _
     *               x:T  => x @ (_ : T)
    *
  2. *
  3. Removes pattern definitions (PatDef's) as follows: * If pattern is a simple (typed) identifier:
     *        val x = e     ==>  val x = e
     *        val x: T = e  ==>  val x: T = e
    * * if there are no variables in pattern
     *        val p = e  ==>  e match (case p => ())
    * * if there is exactly one variable in pattern
     *        val x_1 = e match (case p => (x_1))
    * * if there is more than one variable in pattern
     *        val p = e  ==>  private synthetic val t$ = e match (case p => (x_1, ..., x_N))
     *                        val x_1 = t$._1
     *                        ...
     *                        val x_N = t$._N
    *
  4. *
  5. * Removes function types as follows:
     *        (argtpes) => restpe   ==>   scala.Function_n[argtpes, restpe]
    *
  6. *
  7. * Wraps naked case definitions in a match as follows:
     *        { cases }   ==>   (x => x.match {cases}), except when already argument to match
    *
  8. *
*/ trait Parsers extends Scanners with MarkupParsers with ParsersCommon { self => val global: Global import global._ case class OpInfo(lhs: Tree, operator: TermName, targs: List[Tree], offset: Offset) { def precedence = Precedence(operator.toString) } class SourceFileParser(val source: SourceFile) extends Parser { /** The parse starting point depends on whether the source file is self-contained: * if not, the AST will be supplemented. */ def parseStartRule = if (source.isSelfContained) () => compilationUnit() else () => scriptBody() def newScanner(): Scanner = new SourceFileScanner(source) val in = newScanner() in.init() def unit = global.currentUnit // suppress warnings; silent abort on errors def warning(offset: Offset, msg: String): Unit = () def deprecationWarning(offset: Offset, msg: String, since: String): Unit = () def syntaxError(offset: Offset, msg: String): Unit = throw new MalformedInput(offset, msg) def incompleteInputError(msg: String): Unit = throw new MalformedInput(source.content.length - 1, msg) object symbXMLBuilder extends SymbolicXMLBuilder(this, preserveWS = true) { // DEBUG choices val global: self.global.type = self.global } /** the markup parser * The first time this lazy val is accessed, we assume we were trying to parse an xml literal. * The current position is recorded for later error reporting if it turns out * that we don't have the xml library on the compilation classpath. */ private[this] lazy val xmlp = { unit.encounteredXml(o2p(in.offset)) new MarkupParser(this, preserveWS = true) } def xmlLiteral() : Tree = xmlp.xLiteral def xmlLiteralPattern() : Tree = xmlp.xLiteralPattern } class OutlineParser(source: SourceFile) extends SourceFileParser(source) { def skipBraces[T](body: T): T = { accept(LBRACE) var openBraces = 1 while (in.token != EOF && openBraces > 0) { if (in.token == XMLSTART) xmlLiteral() else { if (in.token == LBRACE) openBraces += 1 else if (in.token == RBRACE) openBraces -= 1 in.nextToken() } } body } override def blockExpr(): Tree = skipBraces(EmptyTree) override def templateBody(isPre: Boolean) = skipBraces((noSelfType, EmptyTree.asList)) } class UnitParser(override val unit: global.CompilationUnit, patches: List[BracePatch]) extends SourceFileParser(unit.source) { uself => def this(unit: global.CompilationUnit) = this(unit, Nil) override def newScanner() = new UnitScanner(unit, patches) override def warning(offset: Offset, msg: String): Unit = reporter.warning(o2p(offset), msg) override def deprecationWarning(offset: Offset, msg: String, since: String): Unit = currentRun.reporting.deprecationWarning(o2p(offset), msg, since) private var smartParsing = false @inline private def withSmartParsing[T](body: => T): T = { val saved = smartParsing smartParsing = true try body finally smartParsing = saved } def withPatches(patches: List[BracePatch]): UnitParser = new UnitParser(unit, patches) val syntaxErrors = new ListBuffer[(Int, String)] def showSyntaxErrors() = for ((offset, msg) <- syntaxErrors) reporter.error(o2p(offset), msg) override def syntaxError(offset: Offset, msg: String): Unit = { if (smartParsing) syntaxErrors += ((offset, msg)) else reporter.error(o2p(offset), msg) } override def incompleteInputError(msg: String): Unit = { val offset = source.content.length - 1 if (smartParsing) syntaxErrors += ((offset, msg)) else currentRun.parsing.incompleteInputError(o2p(offset), msg) } /** parse unit. If there are inbalanced braces, * try to correct them and reparse. */ def smartParse(): Tree = withSmartParsing { val firstTry = parse() if (syntaxErrors.isEmpty) firstTry else in.healBraces() match { case Nil => showSyntaxErrors() ; firstTry case patches => (this withPatches patches).parse() } } } type Location = Int final val Local: Location = 0 final val InBlock: Location = 1 final val InTemplate: Location = 2 // These symbols may not yet be loaded (e.g. in the ide) so don't go // through definitions to obtain the names. lazy val ScalaValueClassNames = Seq(tpnme.AnyVal, tpnme.Unit, tpnme.Boolean, tpnme.Byte, tpnme.Short, tpnme.Char, tpnme.Int, tpnme.Long, tpnme.Float, tpnme.Double) import nme.raw abstract class Parser extends ParserCommon { parser => val in: Scanner def unit: CompilationUnit def source: SourceFile /** Scoping operator used to temporarily look into the future. * Backs up scanner data before evaluating a block and restores it after. */ @inline final def lookingAhead[T](body: => T): T = { val saved = new ScannerData {} copyFrom in in.nextToken() try body finally in copyFrom saved } /** Perform an operation while peeking ahead. * Pushback if the operation yields an empty tree or blows to pieces. */ @inline def peekingAhead(tree: =>Tree): Tree = { @inline def peekahead() = { in.prev copyFrom in in.nextToken() } @inline def pushback() = { in.next copyFrom in in copyFrom in.prev } peekahead() // try it, in case it is recoverable val res = try tree catch { case e: Exception => pushback() ; throw e } if (res.isEmpty) pushback() res } class ParserTreeBuilder extends TreeBuilder { val global: self.global.type = self.global def unit = parser.unit def source = parser.source } val treeBuilder = new ParserTreeBuilder import treeBuilder.{global => _, unit => _, source => _, fresh => _, _} implicit def fresh: FreshNameCreator = unit.fresh def o2p(offset: Offset): Position = Position.offset(source, offset) def r2p(start: Offset, mid: Offset, end: Offset): Position = rangePos(source, start, mid, end) def r2p(start: Offset, mid: Offset): Position = r2p(start, mid, in.lastOffset max start) def r2p(offset: Offset): Position = r2p(offset, offset) /** whether a non-continuable syntax error has been seen */ private var lastErrorOffset : Int = -1 /** The types of the context bounds of type parameters of the surrounding class */ private var classContextBounds: List[Tree] = Nil @inline private def savingClassContextBounds[T](op: => T): T = { val saved = classContextBounds try op finally classContextBounds = saved } /** Are we inside the Scala package? Set for files that start with package scala */ private var inScalaPackage = false private var currentPackage = "" def resetPackage(): Unit = { inScalaPackage = false currentPackage = "" } private def inScalaRootPackage = inScalaPackage && currentPackage == "scala" def parseStartRule: () => Tree def parseRule[T](rule: this.type => T): T = { val t = rule(this) accept(EOF) t } /** This is the general parse entry point. */ def parse(): Tree = parseRule(_.parseStartRule()) /** These are alternative entry points for repl, script runner, toolbox and parsing in macros. */ def parseStats(): List[Tree] = parseRule(_.templateStats()) def parseStatsOrPackages(): List[Tree] = parseRule(_.templateOrTopStatSeq()) /** This is the parse entry point for code which is not self-contained, e.g. * a script which is a series of template statements. They will be * swaddled in Trees until the AST is equivalent to the one returned * by compilationUnit(). */ def scriptBody(): Tree = { val stmts = parseStats() def mainModuleName = newTermName(settings.script.value) /* If there is only a single object template in the file and it has a * suitable main method, we will use it rather than building another object * around it. Since objects are loaded lazily the whole script would have * been a no-op, so we're not taking much liberty. */ def searchForMain(): Tree = { import PartialFunction.cond /* Have to be fairly liberal about what constitutes a main method since * nothing has been typed yet - for instance we can't assume the parameter * type will look exactly like "Array[String]" as it could have been renamed * via import, etc. */ def isMainMethod(t: Tree) = t match { case DefDef(_, nme.main, Nil, List(_), _, _) => true case _ => false } def isApp(t: Tree) = t match { case Template(parents, _, _) => parents.exists(cond(_) { case Ident(tpnme.App) => true }) case _ => false } /* We allow only one main module. */ var seenModule = false var disallowed = EmptyTree: Tree val newStmts = stmts.map { case md @ ModuleDef(mods, name, template) if !seenModule && (isApp(template) || md.exists(isMainMethod)) => seenModule = true /* This slightly hacky situation arises because we have no way to communicate * back to the scriptrunner what the name of the program is. Even if we were * willing to take the sketchy route of settings.script.value = progName, that * does not work when using fsc. And to find out in advance would impose a * whole additional parse. So instead, if the actual object's name differs from * what the script is expecting, we transform it to match. */ if (name == mainModuleName) md else treeCopy.ModuleDef(md, mods, mainModuleName, template) case md @ ModuleDef(_, _, _) => md case cd @ ClassDef(_, _, _, _) => cd case t @ Import(_, _) => t case t => /* If we see anything but the above, fail. */ if (disallowed.isEmpty) disallowed = t EmptyTree } if (disallowed.isEmpty) makeEmptyPackage(0, newStmts) else { if (seenModule) warning(disallowed.pos.point, "Script has a main object but statement is disallowed") EmptyTree } } def mainModule: Tree = if (mainModuleName == newTermName(ScriptRunner.defaultScriptMain)) searchForMain() else EmptyTree def repackaged: Tree = { /* Here we are building an AST representing the following source fiction, * where `moduleName` is from -Xscript (defaults to "Main") and are * the result of parsing the script file. * * {{{ * object moduleName { * def main(args: Array[String]): Unit = * new AnyRef { * stmts * } * } * }}} */ def emptyInit = DefDef( NoMods, nme.CONSTRUCTOR, Nil, ListOfNil, TypeTree(), Block(List(Apply(gen.mkSuperInitCall, Nil)), literalUnit) ) // def main def mainParamType = AppliedTypeTree(Ident(tpnme.Array), List(Ident(tpnme.String))) def mainParameter = List(ValDef(Modifiers(Flags.PARAM), nme.args, mainParamType, EmptyTree)) def mainDef = DefDef(NoMods, nme.main, Nil, List(mainParameter), scalaDot(tpnme.Unit), gen.mkAnonymousNew(stmts)) // object Main def moduleName = newTermName(ScriptRunner scriptMain settings) def moduleBody = Template(atInPos(scalaAnyRefConstr) :: Nil, noSelfType, List(emptyInit, mainDef)) def moduleDef = ModuleDef(NoMods, moduleName, moduleBody) // package { ... } makeEmptyPackage(0, moduleDef :: Nil) } mainModule orElse repackaged } /* --------------- PLACEHOLDERS ------------------------------------------- */ /** The implicit parameters introduced by `_` in the current expression. * Parameters appear in reverse order. */ var placeholderParams: List[ValDef] = Nil /** The placeholderTypes introduced by `_` in the current type. * Parameters appear in reverse order. */ var placeholderTypes: List[TypeDef] = Nil def checkNoEscapingPlaceholders[T](op: => T): T = { val savedPlaceholderParams = placeholderParams val savedPlaceholderTypes = placeholderTypes placeholderParams = List() placeholderTypes = List() val res = op placeholderParams match { case vd :: _ => syntaxError(vd.pos, "unbound placeholder parameter", skipIt = false) placeholderParams = List() case _ => } placeholderTypes match { case td :: _ => syntaxError(td.pos, "unbound wildcard type", skipIt = false) placeholderTypes = List() case _ => } placeholderParams = savedPlaceholderParams placeholderTypes = savedPlaceholderTypes res } def placeholderTypeBoundary(op: => Tree): Tree = { val savedPlaceholderTypes = placeholderTypes placeholderTypes = List() var t = op if (!placeholderTypes.isEmpty && t.isInstanceOf[AppliedTypeTree]) { val expos = t.pos ensureNonOverlapping(t, placeholderTypes) t = atPos(expos) { ExistentialTypeTree(t, placeholderTypes.reverse) } placeholderTypes = List() } placeholderTypes = placeholderTypes ::: savedPlaceholderTypes t } def isWildcard(t: Tree): Boolean = t match { case Ident(name1) => !placeholderParams.isEmpty && name1 == placeholderParams.head.name case Typed(t1, _) => isWildcard(t1) case Annotated(t1, _) => isWildcard(t1) case _ => false } /* ------------- ERROR HANDLING ------------------------------------------- */ val assumedClosingParens = mutable.Map(RPAREN -> 0, RBRACKET -> 0, RBRACE -> 0) private var inFunReturnType = false @inline private def fromWithinReturnType[T](body: => T): T = { val saved = inFunReturnType inFunReturnType = true try body finally inFunReturnType = saved } protected def skip(targetToken: Token): Unit = { var nparens = 0 var nbraces = 0 while (true) { in.token match { case EOF => return case SEMI => if (nparens == 0 && nbraces == 0) return case NEWLINE => if (nparens == 0 && nbraces == 0) return case NEWLINES => if (nparens == 0 && nbraces == 0) return case RPAREN => nparens -= 1 case RBRACE => if (nbraces == 0) return nbraces -= 1 case LPAREN => nparens += 1 case LBRACE => nbraces += 1 case _ => } if (targetToken == in.token && nparens == 0 && nbraces == 0) return in.nextToken() } } def warning(offset: Offset, msg: String): Unit def incompleteInputError(msg: String): Unit def syntaxError(offset: Offset, msg: String): Unit private def syntaxError(pos: Position, msg: String, skipIt: Boolean): Unit = syntaxError(pos pointOrElse in.offset, msg, skipIt) def syntaxError(msg: String, skipIt: Boolean): Unit = syntaxError(in.offset, msg, skipIt) def syntaxError(offset: Offset, msg: String, skipIt: Boolean): Unit = { if (offset > lastErrorOffset) { syntaxError(offset, msg) lastErrorOffset = in.offset // no more errors on this token. } if (skipIt) skip(UNDEF) } def warning(msg: String): Unit = warning(in.offset, msg) def syntaxErrorOrIncomplete(msg: String, skipIt: Boolean): Unit = { if (in.token == EOF) incompleteInputError(msg) else syntaxError(in.offset, msg, skipIt) } def syntaxErrorOrIncompleteAnd[T](msg: String, skipIt: Boolean)(and: T): T = { syntaxErrorOrIncomplete(msg, skipIt) and } def expectedMsgTemplate(exp: String, fnd: String) = s"$exp expected but $fnd found." def expectedMsg(token: Token): String = expectedMsgTemplate(token2string(token), token2string(in.token)) /** Consume one token of the specified type, or signal an error if it is not there. */ def accept(token: Token): Offset = { val offset = in.offset if (in.token != token) { syntaxErrorOrIncomplete(expectedMsg(token), skipIt = false) if ((token == RPAREN || token == RBRACE || token == RBRACKET)) if (in.parenBalance(token) + assumedClosingParens(token) < 0) assumedClosingParens(token) += 1 else skip(token) else skip(UNDEF) } if (in.token == token) in.nextToken() offset } /** {{{ * semi = nl {nl} | `;` * nl = `\n' // where allowed * }}} */ def acceptStatSep(): Unit = in.token match { case NEWLINE | NEWLINES => in.nextToken() case _ => accept(SEMI) } def acceptStatSepOpt() = if (!isStatSeqEnd) acceptStatSep() def errorTypeTree = setInPos(TypeTree() setType ErrorType) def errorTermTree = setInPos(newLiteral(null)) def errorPatternTree = setInPos(Ident(nme.WILDCARD)) /** Check that type parameter is not by name or repeated. */ def checkNotByNameOrVarargs(tpt: Tree) = { if (treeInfo isByNameParamType tpt) syntaxError(tpt.pos, "no by-name parameter type allowed here", skipIt = false) else if (treeInfo isRepeatedParamType tpt) syntaxError(tpt.pos, "no * parameter type allowed here", skipIt = false) } /* -------------- TOKEN CLASSES ------------------------------------------- */ def isModifier: Boolean = in.token match { case ABSTRACT | FINAL | SEALED | PRIVATE | PROTECTED | OVERRIDE | IMPLICIT | LAZY => true case _ => false } def isAnnotation: Boolean = in.token == AT def isLocalModifier: Boolean = in.token match { case ABSTRACT | FINAL | SEALED | IMPLICIT | LAZY => true case _ => false } def isTemplateIntro: Boolean = in.token match { case OBJECT | CASEOBJECT | CLASS | CASECLASS | TRAIT => true case _ => false } def isDclIntro: Boolean = in.token match { case VAL | VAR | DEF | TYPE => true case _ => false } def isDefIntro = isTemplateIntro || isDclIntro def isNumericLit: Boolean = in.token match { case INTLIT | LONGLIT | FLOATLIT | DOUBLELIT => true case _ => false } def isIdentExcept(except: Name) = isIdent && in.name != except def isIdentOf(name: Name) = isIdent && in.name == name def isUnaryOp = isIdent && raw.isUnary(in.name) def isRawStar = isRawIdent && in.name == raw.STAR def isRawBar = isRawIdent && in.name == raw.BAR def isRawIdent = in.token == IDENTIFIER def isIdent = in.token == IDENTIFIER || in.token == BACKQUOTED_IDENT def isMacro = in.token == IDENTIFIER && in.name == nme.MACROkw def isLiteralToken(token: Token) = token match { case CHARLIT | INTLIT | LONGLIT | FLOATLIT | DOUBLELIT | STRINGLIT | INTERPOLATIONID | SYMBOLLIT | TRUE | FALSE | NULL => true case _ => false } def isLiteral = isLiteralToken(in.token) def isSimpleExprIntroToken(token: Token): Boolean = isLiteralToken(token) || (token match { case IDENTIFIER | BACKQUOTED_IDENT | THIS | SUPER | NEW | USCORE | LPAREN | LBRACE | XMLSTART => true case _ => false }) def isSimpleExprIntro: Boolean = isExprIntroToken(in.token) def isExprIntroToken(token: Token): Boolean = isLiteralToken(token) || (token match { case IDENTIFIER | BACKQUOTED_IDENT | THIS | SUPER | IF | FOR | NEW | USCORE | TRY | WHILE | DO | RETURN | THROW | LPAREN | LBRACE | XMLSTART => true case _ => false }) def isExprIntro: Boolean = isExprIntroToken(in.token) def isTypeIntroToken(token: Token): Boolean = token match { case IDENTIFIER | BACKQUOTED_IDENT | THIS | SUPER | USCORE | LPAREN | AT => true case _ => false } def isStatSeqEnd = in.token == RBRACE || in.token == EOF def isCaseDefEnd = in.token == RBRACE || in.token == CASE || in.token == EOF def isStatSep(token: Token): Boolean = token == NEWLINE || token == NEWLINES || token == SEMI def isStatSep: Boolean = isStatSep(in.token) /* --------- COMMENT AND ATTRIBUTE COLLECTION ----------------------------- */ /** A hook for joining the comment associated with a definition. * Overridden by scaladoc. */ def joinComment(trees: => List[Tree]): List[Tree] = trees /* ---------- TREE CONSTRUCTION ------------------------------------------- */ def atPos[T <: Tree](offset: Offset)(t: T): T = atPos(r2p(offset))(t) def atPos[T <: Tree](start: Offset, point: Offset)(t: T): T = atPos(r2p(start, point))(t) def atPos[T <: Tree](start: Offset, point: Offset, end: Offset)(t: T): T = atPos(r2p(start, point, end))(t) def atPos[T <: Tree](pos: Position)(t: T): T = global.atPos(pos)(t) def atInPos[T <: Tree](t: T): T = atPos(o2p(in.offset))(t) def setInPos[T <: Tree](t: T): T = t setPos o2p(in.offset) /** Convert tree to formal parameter list. */ def convertToParams(tree: Tree): List[ValDef] = tree match { case Parens(ts) => ts map convertToParam case _ => List(convertToParam(tree)) } /** Convert tree to formal parameter. */ def convertToParam(tree: Tree): ValDef = atPos(tree.pos) { def removeAsPlaceholder(name: Name): Unit = { placeholderParams = placeholderParams filter (_.name != name) } def errorParam = makeParam(nme.ERROR, errorTypeTree setPos o2p(tree.pos.end)) tree match { case Ident(name) => removeAsPlaceholder(name) makeParam(name.toTermName, TypeTree() setPos o2p(tree.pos.end)) case Typed(Ident(name), tpe) if tpe.isType => // get the ident! removeAsPlaceholder(name) makeParam(name.toTermName, tpe) case build.SyntacticTuple(as) => val arity = as.length val example = analyzer.exampleTuplePattern(as map { case Ident(name) => name; case _ => nme.EMPTY }) val msg = sm"""|not a legal formal parameter. |Note: Tuples cannot be directly destructured in method or function parameters. | Either create a single parameter accepting the Tuple${arity}, | or consider a pattern matching anonymous function: `{ case $example => ... }""" syntaxError(tree.pos, msg, skipIt = false) errorParam case _ => syntaxError(tree.pos, "not a legal formal parameter", skipIt = false) errorParam } } /** Convert (qual)ident to type identifier. */ def convertToTypeId(tree: Tree): Tree = atPos(tree.pos) { convertToTypeName(tree) getOrElse { syntaxError(tree.pos, "identifier expected", skipIt = false) errorTypeTree } } /** {{{ part { `sep` part } }}},or if sepFirst is true, {{{ { `sep` part } }}}. */ final def tokenSeparated[T](separator: Token, sepFirst: Boolean, part: => T): List[T] = { val ts = new ListBuffer[T] if (!sepFirst) ts += part while (in.token == separator) { in.nextToken() ts += part } ts.toList } @inline final def commaSeparated[T](part: => T): List[T] = tokenSeparated(COMMA, sepFirst = false, part) @inline final def caseSeparated[T](part: => T): List[T] = tokenSeparated(CASE, sepFirst = true, part) def readAnnots(part: => Tree): List[Tree] = tokenSeparated(AT, sepFirst = true, part) /** Create a tuple type Tree. If the arity is not supported, a syntax error is emitted. */ def makeSafeTupleType(elems: List[Tree], offset: Offset) = { if (checkTupleSize(elems, offset)) makeTupleType(elems) else makeTupleType(Nil) // create a dummy node; makeTupleType(elems) would fail } /** Create a tuple term Tree. If the arity is not supported, a syntax error is emitted. */ def makeSafeTupleTerm(elems: List[Tree], offset: Offset) = { checkTupleSize(elems, offset) makeTupleTerm(elems) } private[this] def checkTupleSize(elems: List[Tree], offset: Offset): Boolean = if (elems.lengthCompare(definitions.MaxTupleArity) > 0) { syntaxError(offset, "too many elements for tuple: "+elems.length+", allowed: "+definitions.MaxTupleArity, skipIt = false) false } else true /** Strip the artifitial `Parens` node to create a tuple term Tree. */ def stripParens(t: Tree) = t match { case Parens(ts) => atPos(t.pos) { makeSafeTupleTerm(ts, t.pos.point) } case _ => t } /** Create tree representing (unencoded) binary operation expression or pattern. */ def makeBinop(isExpr: Boolean, left: Tree, op: TermName, right: Tree, opPos: Position, targs: List[Tree] = Nil): Tree = { require(isExpr || targs.isEmpty || targs.exists(_.isErroneous), s"Incompatible args to makeBinop: !isExpr but targs=$targs") def mkSelection(t: Tree) = { def sel = atPos(opPos union t.pos)(Select(stripParens(t), op.encode)) if (targs.isEmpty) sel else atPos(left.pos)(TypeApply(sel, targs)) } def mkNamed(args: List[Tree]) = if (isExpr) args map treeInfo.assignmentToMaybeNamedArg else args val arguments = right match { case Parens(args) => mkNamed(args) case _ => List(right) } if (isExpr) { if (treeInfo.isLeftAssoc(op)) { Apply(mkSelection(left), arguments) } else { val x = freshTermName() Block( List(ValDef(Modifiers(symtab.Flags.SYNTHETIC | symtab.Flags.ARTIFACT), x, TypeTree(), stripParens(left))), Apply(mkSelection(right), List(Ident(x)))) } } else { Apply(Ident(op.encode), stripParens(left) :: arguments) } } /* --------- OPERAND/OPERATOR STACK --------------------------------------- */ /** Modes for infix types. */ object InfixMode extends Enumeration { val FirstOp, LeftOp, RightOp = Value } var opstack: List[OpInfo] = Nil @deprecated("Use `scala.reflect.internal.Precedence`", "2.11.0") def precedence(operator: Name): Int = Precedence(operator.toString).level private def opHead = opstack.head private def headPrecedence = opHead.precedence private def popOpInfo(): OpInfo = try opHead finally opstack = opstack.tail private def pushOpInfo(top: Tree): Unit = { val name = in.name val offset = in.offset ident() val targs = if (in.token == LBRACKET) exprTypeArgs() else Nil val opinfo = OpInfo(top, name, targs, offset) opstack ::= opinfo } def checkHeadAssoc(leftAssoc: Boolean) = checkAssoc(opHead.offset, opHead.operator, leftAssoc) def checkAssoc(offset: Offset, op: Name, leftAssoc: Boolean) = ( if (treeInfo.isLeftAssoc(op) != leftAssoc) syntaxError(offset, "left- and right-associative operators with same precedence may not be mixed", skipIt = false) ) def finishPostfixOp(start: Int, base: List[OpInfo], opinfo: OpInfo): Tree = { if (opinfo.targs.nonEmpty) syntaxError(opinfo.offset, "type application is not allowed for postfix operators") val od = stripParens(reduceExprStack(base, opinfo.lhs)) makePostfixSelect(start, opinfo.offset, od, opinfo.operator) } def finishBinaryOp(isExpr: Boolean, opinfo: OpInfo, rhs: Tree): Tree = { import opinfo._ val operatorPos: Position = Position.range(rhs.pos.source, offset, offset, offset + operator.length) val pos = lhs.pos union rhs.pos union operatorPos withPoint offset atPos(pos)(makeBinop(isExpr, lhs, operator, rhs, operatorPos, opinfo.targs)) } def reduceExprStack(base: List[OpInfo], top: Tree): Tree = reduceStack(isExpr = true, base, top) def reducePatternStack(base: List[OpInfo], top: Tree): Tree = reduceStack(isExpr = false, base, top) def reduceStack(isExpr: Boolean, base: List[OpInfo], top: Tree): Tree = { val opPrecedence = if (isIdent) Precedence(in.name.toString) else Precedence(0) val leftAssoc = !isIdent || (treeInfo isLeftAssoc in.name) reduceStack(isExpr, base, top, opPrecedence, leftAssoc) } def reduceStack(isExpr: Boolean, base: List[OpInfo], top: Tree, opPrecedence: Precedence, leftAssoc: Boolean): Tree = { def isDone = opstack == base def lowerPrecedence = !isDone && (opPrecedence < headPrecedence) def samePrecedence = !isDone && (opPrecedence == headPrecedence) def canReduce = lowerPrecedence || leftAssoc && samePrecedence if (samePrecedence) checkHeadAssoc(leftAssoc) def loop(top: Tree): Tree = if (canReduce) { val info = popOpInfo() if (!isExpr && info.targs.nonEmpty) { syntaxError(info.offset, "type application is not allowed in pattern") info.targs.foreach(_.setType(ErrorType)) } loop(finishBinaryOp(isExpr, info, top)) } else top loop(top) } /* -------- IDENTIFIERS AND LITERALS ------------------------------------------- */ /** Methods which implicitly propagate the context in which they were * called: either in a pattern context or not. Formerly, this was * threaded through numerous methods as boolean isPattern. */ trait PatternContextSensitive { /** {{{ * ArgType ::= Type * }}} */ def argType(): Tree def functionArgType(): Tree private def tupleInfixType(start: Offset) = { in.nextToken() if (in.token == RPAREN) { in.nextToken() atPos(start, accept(ARROW)) { makeFunctionTypeTree(Nil, typ()) } } else { val ts = functionTypes() accept(RPAREN) if (in.token == ARROW) atPos(start, in.skipToken()) { makeFunctionTypeTree(ts, typ()) } else { ts foreach checkNotByNameOrVarargs val tuple = atPos(start) { makeSafeTupleType(ts, start) } infixTypeRest( compoundTypeRest( annotTypeRest( simpleTypeRest( tuple))), InfixMode.FirstOp ) } } } private def makeExistentialTypeTree(t: Tree) = { // EmptyTrees in the result of refinement() stand for parse errors // so it's okay for us to filter them out here ExistentialTypeTree(t, refinement() flatMap { case t @ TypeDef(_, _, _, TypeBoundsTree(_, _)) => Some(t) case t @ ValDef(_, _, _, EmptyTree) => Some(t) case EmptyTree => None case _ => syntaxError(t.pos, "not a legal existential clause", skipIt = false); None }) } /** {{{ * Type ::= InfixType `=>' Type * | `(' [`=>' Type] `)' `=>' Type * | InfixType [ExistentialClause] * ExistentialClause ::= forSome `{' ExistentialDcl {semi ExistentialDcl}} `}' * ExistentialDcl ::= type TypeDcl | val ValDcl * }}} */ def typ(): Tree = placeholderTypeBoundary { val start = in.offset val t = if (in.token == LPAREN) tupleInfixType(start) else infixType(InfixMode.FirstOp) in.token match { case ARROW => atPos(start, in.skipToken()) { makeFunctionTypeTree(List(t), typ()) } case FORSOME => atPos(start, in.skipToken()) { makeExistentialTypeTree(t) } case _ => t } } /** {{{ * TypeArgs ::= `[' ArgType {`,' ArgType} `]' * }}} */ def typeArgs(): List[Tree] = inBrackets(types()) /** {{{ * AnnotType ::= SimpleType {Annotation} * }}} */ def annotType(): Tree = placeholderTypeBoundary { annotTypeRest(simpleType()) } /** {{{ * SimpleType ::= SimpleType TypeArgs * | SimpleType `#' Id * | StableId * | Path `.' type * | `(' Types `)' * | WildcardType * }}} */ def simpleType(): Tree = { val start = in.offset simpleTypeRest(in.token match { case LPAREN => atPos(start)(makeSafeTupleType(inParens(types()), start)) case USCORE => wildcardType(in.skipToken()) case _ => path(thisOK = false, typeOK = true) match { case r @ SingletonTypeTree(_) => r case r => convertToTypeId(r) } }) } private def typeProjection(t: Tree): Tree = { val hashOffset = in.skipToken() val nameOffset = in.offset val name = identForType(skipIt = false) val point = if (name == tpnme.ERROR) hashOffset else nameOffset atPos(t.pos.start, point)(SelectFromTypeTree(t, name)) } def simpleTypeRest(t: Tree): Tree = in.token match { case HASH => simpleTypeRest(typeProjection(t)) case LBRACKET => simpleTypeRest(atPos(t.pos.start, t.pos.point)(AppliedTypeTree(t, typeArgs()))) case _ => t } /** {{{ * CompoundType ::= AnnotType {with AnnotType} [Refinement] * | Refinement * }}} */ def compoundType(): Tree = compoundTypeRest( if (in.token == LBRACE) atInPos(scalaAnyRefConstr) else annotType() ) def compoundTypeRest(t: Tree): Tree = { val ts = new ListBuffer[Tree] += t while (in.token == WITH) { in.nextToken() ts += annotType() } newLineOptWhenFollowedBy(LBRACE) val types = ts.toList val braceOffset = in.offset val hasRefinement = in.token == LBRACE val refinements = if (hasRefinement) refinement() else Nil // Warn if they are attempting to refine Unit; we can't be certain it's // scala.Unit they're refining because at this point all we have is an // identifier, but at a later stage we lose the ability to tell an empty // refinement from no refinement at all. See bug #284. if (hasRefinement) types match { case Ident(name) :: Nil if name endsWith "Unit" => warning(braceOffset, "Detected apparent refinement of Unit; are you missing an '=' sign?") case _ => } // The second case includes an empty refinement - refinements is empty, but // it still gets a CompoundTypeTree. ts.toList match { case tp :: Nil if !hasRefinement => tp // single type, no refinement, already positioned case tps => atPos(t.pos.start)(CompoundTypeTree(Template(tps, noSelfType, refinements))) } } def infixTypeRest(t: Tree, mode: InfixMode.Value): Tree = { // Detect postfix star for repeated args. // Only RPAREN can follow, but accept COMMA and EQUALS for error's sake. // Take RBRACE as a paren typo. def checkRepeatedParam = if (isRawStar) { lookingAhead (in.token match { case RPAREN | COMMA | EQUALS | RBRACE => t case _ => EmptyTree }) } else EmptyTree def asInfix = { val opOffset = in.offset val leftAssoc = treeInfo.isLeftAssoc(in.name) if (mode != InfixMode.FirstOp) checkAssoc(opOffset, in.name, leftAssoc = mode == InfixMode.LeftOp) val tycon = atPos(opOffset) { Ident(identForType()) } newLineOptWhenFollowing(isTypeIntroToken) def mkOp(t1: Tree) = atPos(t.pos.start, opOffset) { AppliedTypeTree(tycon, List(t, t1)) } if (leftAssoc) infixTypeRest(mkOp(compoundType()), InfixMode.LeftOp) else mkOp(infixType(InfixMode.RightOp)) } if (isIdent) checkRepeatedParam orElse asInfix else t } /** {{{ * InfixType ::= CompoundType {id [nl] CompoundType} * }}} */ def infixType(mode: InfixMode.Value): Tree = placeholderTypeBoundary { infixTypeRest(compoundType(), mode) } /** {{{ * Types ::= Type {`,' Type} * }}} */ def types(): List[Tree] = commaSeparated(argType()) def functionTypes(): List[Tree] = commaSeparated(functionArgType()) } /** Assumed (provisionally) to be TermNames. */ def ident(skipIt: Boolean): Name = ( if (isIdent) { val name = in.name.encode in.nextToken() name } else syntaxErrorOrIncompleteAnd(expectedMsg(IDENTIFIER), skipIt)(nme.ERROR) ) def ident(): Name = ident(skipIt = true) def rawIdent(): Name = try in.name finally in.nextToken() /** For when it's known already to be a type name. */ def identForType(): TypeName = ident().toTypeName def identForType(skipIt: Boolean): TypeName = ident(skipIt).toTypeName def identOrMacro(): Name = if (isMacro) rawIdent() else ident() def selector(t: Tree): Tree = { val point = if(isIdent) in.offset else in.lastOffset //SI-8459 //assert(t.pos.isDefined, t) if (t != EmptyTree) Select(t, ident(skipIt = false)) setPos r2p(t.pos.start, point, in.lastOffset) else errorTermTree // has already been reported } /** {{{ * Path ::= StableId * | [Ident `.'] this * AnnotType ::= Path [`.' type] * }}} */ def path(thisOK: Boolean, typeOK: Boolean): Tree = { val start = in.offset var t: Tree = null if (in.token == THIS) { in.nextToken() t = atPos(start) { This(tpnme.EMPTY) } if (!thisOK || in.token == DOT) { t = selectors(t, typeOK, accept(DOT)) } } else if (in.token == SUPER) { in.nextToken() t = atPos(start) { Super(This(tpnme.EMPTY), mixinQualifierOpt()) } accept(DOT) t = selector(t) if (in.token == DOT) t = selectors(t, typeOK, in.skipToken()) } else { val tok = in.token val name = ident() t = atPos(start) { if (tok == BACKQUOTED_IDENT) Ident(name) updateAttachment BackquotedIdentifierAttachment else Ident(name) } if (in.token == DOT) { val dotOffset = in.skipToken() if (in.token == THIS) { in.nextToken() t = atPos(start) { This(name.toTypeName) } if (!thisOK || in.token == DOT) t = selectors(t, typeOK, accept(DOT)) } else if (in.token == SUPER) { in.nextToken() t = atPos(start) { Super(This(name.toTypeName), mixinQualifierOpt()) } accept(DOT) t = selector(t) if (in.token == DOT) t = selectors(t, typeOK, in.skipToken()) } else { t = selectors(t, typeOK, dotOffset) } } } t } def selectors(t: Tree, typeOK: Boolean, dotOffset: Offset): Tree = if (typeOK && in.token == TYPE) { in.nextToken() atPos(t.pos.start, dotOffset) { SingletonTypeTree(t) } } else { val t1 = selector(t) if (in.token == DOT) { selectors(t1, typeOK, in.skipToken()) } else t1 } /** {{{ * MixinQualifier ::= `[' Id `]' * }}} */ def mixinQualifierOpt(): TypeName = if (in.token == LBRACKET) inBrackets(identForType()) else tpnme.EMPTY /** {{{ * StableId ::= Id * | Path `.' Id * | [id `.'] super [`[' id `]']`.' id * }}} */ def stableId(): Tree = path(thisOK = false, typeOK = false) /** {{{ * QualId ::= Id {`.' Id} * }}} */ def qualId(): Tree = { val start = in.offset val id = atPos(start) { Ident(ident()) } if (in.token == DOT) { selectors(id, typeOK = false, in.skipToken()) } else id } /** Calls `qualId()` and manages some package state. */ private def pkgQualId() = { if (in.token == IDENTIFIER && in.name.encode == nme.scala_) inScalaPackage = true val pkg = qualId() newLineOptWhenFollowedBy(LBRACE) if (currentPackage == "") currentPackage = pkg.toString else currentPackage = currentPackage + "." + pkg pkg } /** {{{ * SimpleExpr ::= literal * | symbol * | null * }}} */ def literal(isNegated: Boolean = false, inPattern: Boolean = false, start: Offset = in.offset): Tree = atPos(start) { def finish(value: Any): Tree = try newLiteral(value) finally in.nextToken() if (in.token == SYMBOLLIT) Apply(scalaDot(nme.Symbol), List(finish(in.strVal))) else if (in.token == INTERPOLATIONID) interpolatedString(inPattern = inPattern) else finish(in.token match { case CHARLIT => in.charVal case INTLIT => in.intVal(isNegated).toInt case LONGLIT => in.intVal(isNegated) case FLOATLIT => in.floatVal(isNegated) case DOUBLELIT => in.doubleVal(isNegated) case STRINGLIT | STRINGPART => in.strVal.intern() case TRUE => true case FALSE => false case NULL => null case _ => syntaxErrorOrIncompleteAnd("illegal literal", skipIt = true)(null) }) } /** Handle placeholder syntax. * If evaluating the tree produces placeholders, then make it a function. */ private def withPlaceholders(tree: =>Tree, isAny: Boolean): Tree = { val savedPlaceholderParams = placeholderParams placeholderParams = List() var res = tree if (placeholderParams.nonEmpty && !isWildcard(res)) { res = atPos(res.pos)(Function(placeholderParams.reverse, res)) if (isAny) placeholderParams foreach (_.tpt match { case tpt @ TypeTree() => tpt setType definitions.AnyTpe case _ => // some ascription }) placeholderParams = List() } placeholderParams = placeholderParams ::: savedPlaceholderParams res } /** Consume a USCORE and create a fresh synthetic placeholder param. */ private def freshPlaceholder(): Tree = { val start = in.offset val pname = freshTermName() in.nextToken() val id = atPos(start)(Ident(pname)) val param = atPos(id.pos.focus)(gen.mkSyntheticParam(pname.toTermName)) placeholderParams = param :: placeholderParams id } private def interpolatedString(inPattern: Boolean): Tree = { def errpolation() = syntaxErrorOrIncompleteAnd("error in interpolated string: identifier or block expected", skipIt = true)(EmptyTree) // Like Swiss cheese, with holes def stringCheese: Tree = atPos(in.offset) { val start = in.offset val interpolator = in.name.encoded // ident() for INTERPOLATIONID val partsBuf = new ListBuffer[Tree] val exprsBuf = new ListBuffer[Tree] in.nextToken() while (in.token == STRINGPART) { partsBuf += literal() exprsBuf += ( if (inPattern) dropAnyBraces(pattern()) else in.token match { case IDENTIFIER => atPos(in.offset)(Ident(ident())) //case USCORE => freshPlaceholder() // ifonly etapolation case LBRACE => expr() // dropAnyBraces(expr0(Local)) case THIS => in.nextToken(); atPos(in.offset)(This(tpnme.EMPTY)) case _ => errpolation() } ) } if (in.token == STRINGLIT) partsBuf += literal() // Documenting that it is intentional that the ident is not rooted for purposes of virtualization //val t1 = atPos(o2p(start)) { Select(Select (Ident(nme.ROOTPKG), nme.scala_), nme.StringContext) } val t1 = atPos(o2p(start)) { Ident(nme.StringContext) } val t2 = atPos(start) { Apply(t1, partsBuf.toList) } t2 setPos t2.pos.makeTransparent val t3 = Select(t2, interpolator) setPos t2.pos atPos(start) { Apply(t3, exprsBuf.toList) } } if (inPattern) stringCheese else withPlaceholders(stringCheese, isAny = true) // string interpolator params are Any* by definition } /* ------------- NEW LINES ------------------------------------------------- */ def newLineOpt(): Unit = { if (in.token == NEWLINE) in.nextToken() } def newLinesOpt(): Unit = { if (in.token == NEWLINE || in.token == NEWLINES) in.nextToken() } def newLineOptWhenFollowedBy(token: Offset): Unit = { // note: next is defined here because current == NEWLINE if (in.token == NEWLINE && in.next.token == token) newLineOpt() } def newLineOptWhenFollowing(p: Token => Boolean): Unit = { // note: next is defined here because current == NEWLINE if (in.token == NEWLINE && p(in.next.token)) newLineOpt() } /* ------------- TYPES ---------------------------------------------------- */ /** {{{ * TypedOpt ::= [`:' Type] * }}} */ def typedOpt(): Tree = if (in.token == COLON) { in.nextToken(); typ() } else TypeTree() def typeOrInfixType(location: Location): Tree = if (location == Local) typ() else startInfixType() def annotTypeRest(t: Tree): Tree = (t /: annotations(skipNewLines = false)) (makeAnnotated) /** {{{ * WildcardType ::= `_' TypeBounds * }}} */ def wildcardType(start: Offset) = { val pname = freshTypeName("_$") val t = atPos(start)(Ident(pname)) val bounds = typeBounds() val param = atPos(t.pos union bounds.pos) { makeSyntheticTypeParam(pname, bounds) } placeholderTypes = param :: placeholderTypes t } /* ----------- EXPRESSIONS ------------------------------------------------ */ def condExpr(): Tree = { if (in.token == LPAREN) { in.nextToken() val r = expr() accept(RPAREN) r } else { accept(LPAREN) newLiteral(true) } } /* hook for IDE, unlike expression can be stubbed * don't use for any tree that can be inspected in the parser! */ def statement(location: Location): Tree = expr(location) // !!! still needed? /** {{{ * Expr ::= (Bindings | [`implicit'] Id | `_') `=>' Expr * | Expr1 * ResultExpr ::= (Bindings | Id `:' CompoundType) `=>' Block * | Expr1 * Expr1 ::= if `(' Expr `)' {nl} Expr [[semi] else Expr] * | try (`{' Block `}' | Expr) [catch `{' CaseClauses `}'] [finally Expr] * | while `(' Expr `)' {nl} Expr * | do Expr [semi] while `(' Expr `)' * | for (`(' Enumerators `)' | `{' Enumerators `}') {nl} [yield] Expr * | throw Expr * | return [Expr] * | [SimpleExpr `.'] Id `=' Expr * | SimpleExpr1 ArgumentExprs `=' Expr * | PostfixExpr Ascription * | PostfixExpr match `{' CaseClauses `}' * Bindings ::= `(' [Binding {`,' Binding}] `)' * Binding ::= (Id | `_') [`:' Type] * Ascription ::= `:' CompoundType * | `:' Annotation {Annotation} * | `:' `_' `*' * }}} */ def expr(): Tree = expr(Local) def expr(location: Location): Tree = withPlaceholders(expr0(location), isAny = false) def expr0(location: Location): Tree = (in.token: @scala.annotation.switch) match { case IF => def parseIf = atPos(in.skipToken()) { val cond = condExpr() newLinesOpt() val thenp = expr() val elsep = if (in.token == ELSE) { in.nextToken(); expr() } else literalUnit If(cond, thenp, elsep) } parseIf case TRY => def parseTry = atPos(in.skipToken()) { val body = in.token match { case LBRACE => inBracesOrUnit(block()) case LPAREN => inParensOrUnit(expr()) case _ => expr() } def catchFromExpr() = List(makeCatchFromExpr(expr())) val catches: List[CaseDef] = if (in.token != CATCH) Nil else { in.nextToken() if (in.token != LBRACE) catchFromExpr() else inBracesOrNil { if (in.token == CASE) caseClauses() else catchFromExpr() } } val finalizer = in.token match { case FINALLY => in.nextToken(); expr() case _ => EmptyTree } Try(body, catches, finalizer) } parseTry case WHILE => def parseWhile = { val start = in.offset atPos(in.skipToken()) { val cond = condExpr() newLinesOpt() val body = expr() makeWhile(start, cond, body) } } parseWhile case DO => def parseDo = { atPos(in.skipToken()) { val lname: Name = freshTermName(nme.DO_WHILE_PREFIX) val body = expr() if (isStatSep) in.nextToken() accept(WHILE) val cond = condExpr() makeDoWhile(lname.toTermName, body, cond) } } parseDo case FOR => val start = in.skipToken() def parseFor = atPos(start) { val enums = if (in.token == LBRACE) inBracesOrNil(enumerators()) else inParensOrNil(enumerators()) newLinesOpt() if (in.token == YIELD) { in.nextToken() gen.mkFor(enums, gen.Yield(expr())) } else { gen.mkFor(enums, expr()) } } def adjustStart(tree: Tree) = if (tree.pos.isRange && start < tree.pos.start) tree setPos tree.pos.withStart(start) else tree adjustStart(parseFor) case RETURN => def parseReturn = atPos(in.skipToken()) { Return(if (isExprIntro) expr() else literalUnit) } parseReturn case THROW => def parseThrow = atPos(in.skipToken()) { Throw(expr()) } parseThrow case IMPLICIT => implicitClosure(in.skipToken(), location) case _ => def parseOther = { var t = postfixExpr() if (in.token == EQUALS) { t match { case Ident(_) | Select(_, _) | Apply(_, _) => t = atPos(t.pos.start, in.skipToken()) { gen.mkAssign(t, expr()) } case _ => } } else if (in.token == COLON) { t = stripParens(t) val colonPos = in.skipToken() if (in.token == USCORE) { //todo: need to handle case where USCORE is a wildcard in a type val uscorePos = in.skipToken() if (isIdent && in.name == nme.STAR) { in.nextToken() t = atPos(t.pos.start, colonPos) { Typed(t, atPos(uscorePos) { Ident(tpnme.WILDCARD_STAR) }) } } else { syntaxErrorOrIncomplete("`*' expected", skipIt = true) } } else if (isAnnotation) { t = (t /: annotations(skipNewLines = false))(makeAnnotated) } else { t = atPos(t.pos.start, colonPos) { val tpt = typeOrInfixType(location) if (isWildcard(t)) (placeholderParams: @unchecked) match { case (vd @ ValDef(mods, name, _, _)) :: rest => placeholderParams = treeCopy.ValDef(vd, mods, name, tpt.duplicate, EmptyTree) :: rest } // this does not correspond to syntax, but is necessary to // accept closures. We might restrict closures to be between {...} only. Typed(t, tpt) } } } else if (in.token == MATCH) { t = atPos(t.pos.start, in.skipToken())(Match(stripParens(t), inBracesOrNil(caseClauses()))) } // in order to allow anonymous functions as statements (as opposed to expressions) inside // templates, we have to disambiguate them from self type declarations - bug #1565 // The case still missed is unparenthesized single argument, like "x: Int => x + 1", which // may be impossible to distinguish from a self-type and so remains an error. (See #1564) def lhsIsTypedParamList() = t match { case Parens(xs) if xs.forall(isTypedParam) => true case _ => false } if (in.token == ARROW && (location != InTemplate || lhsIsTypedParamList)) { t = atPos(t.pos.start, in.skipToken()) { Function(convertToParams(t), if (location != InBlock) expr() else block()) } } stripParens(t) } parseOther } def isTypedParam(t: Tree) = t.isInstanceOf[Typed] /** {{{ * Expr ::= implicit Id => Expr * }}} */ def implicitClosure(start: Offset, location: Location): Tree = { val param0 = convertToParam { atPos(in.offset) { Ident(ident()) match { case expr if in.token == COLON => in.nextToken() ; Typed(expr, typeOrInfixType(location)) case expr => expr } } } val param = copyValDef(param0)(mods = param0.mods | Flags.IMPLICIT) atPos(start, in.offset) { accept(ARROW) Function(List(param), if (location != InBlock) expr() else block()) } } /** {{{ * PostfixExpr ::= InfixExpr [Id [nl]] * InfixExpr ::= PrefixExpr * | InfixExpr Id [nl] InfixExpr * }}} */ def postfixExpr(): Tree = { val start = in.offset val base = opstack def loop(top: Tree): Tree = if (!isIdent) top else { pushOpInfo(reduceExprStack(base, top)) newLineOptWhenFollowing(isExprIntroToken) if (isExprIntro) prefixExpr() match { case EmptyTree => reduceExprStack(base, top) case next => loop(next) } else finishPostfixOp(start, base, popOpInfo()) } reduceExprStack(base, loop(prefixExpr())) } /** {{{ * PrefixExpr ::= [`-' | `+' | `~' | `!'] SimpleExpr * }}} */ def prefixExpr(): Tree = { if (isUnaryOp) { atPos(in.offset) { if (lookingAhead(isSimpleExprIntro)) { val uname = nme.toUnaryName(rawIdent().toTermName) if (uname == nme.UNARY_- && isNumericLit) simpleExprRest(literal(isNegated = true), canApply = true) else Select(stripParens(simpleExpr()), uname) } else simpleExpr() } } else simpleExpr() } def xmlLiteral(): Tree /** {{{ * SimpleExpr ::= new (ClassTemplate | TemplateBody) * | BlockExpr * | SimpleExpr1 [`_'] * SimpleExpr1 ::= literal * | xLiteral * | Path * | `(' [Exprs] `)' * | SimpleExpr `.' Id * | SimpleExpr TypeArgs * | SimpleExpr1 ArgumentExprs * }}} */ def simpleExpr(): Tree = { var canApply = true val t = if (isLiteral) literal() else in.token match { case XMLSTART => xmlLiteral() case IDENTIFIER | BACKQUOTED_IDENT | THIS | SUPER => path(thisOK = true, typeOK = false) case USCORE => freshPlaceholder() case LPAREN => atPos(in.offset)(makeParens(commaSeparated(expr()))) case LBRACE => canApply = false blockExpr() case NEW => canApply = false val nstart = in.skipToken() val npos = r2p(nstart, nstart, in.lastOffset) val tstart = in.offset val (parents, self, stats) = template() val cpos = r2p(tstart, tstart, in.lastOffset max tstart) gen.mkNew(parents, self, stats, npos, cpos) case _ => syntaxErrorOrIncompleteAnd("illegal start of simple expression", skipIt = true)(errorTermTree) } simpleExprRest(t, canApply = canApply) } def simpleExprRest(t: Tree, canApply: Boolean): Tree = { if (canApply) newLineOptWhenFollowedBy(LBRACE) in.token match { case DOT => in.nextToken() simpleExprRest(selector(stripParens(t)), canApply = true) case LBRACKET => val t1 = stripParens(t) t1 match { case Ident(_) | Select(_, _) | Apply(_, _) => var app: Tree = t1 while (in.token == LBRACKET) app = atPos(app.pos.start, in.offset)(TypeApply(app, exprTypeArgs())) simpleExprRest(app, canApply = true) case _ => t1 } case LPAREN | LBRACE if (canApply) => val app = atPos(t.pos.start, in.offset) { // look for anonymous function application like (f _)(x) and // translate to (f _).apply(x), bug #460 val sel = t match { case Parens(List(Typed(_, _: Function))) => Select(stripParens(t), nme.apply) case _ => stripParens(t) } Apply(sel, argumentExprs()) } simpleExprRest(app, canApply = true) case USCORE => atPos(t.pos.start, in.skipToken()) { makeMethodValue(stripParens(t)) } case _ => t } } /** {{{ * ArgumentExprs ::= `(' [Exprs] `)' * | [nl] BlockExpr * }}} */ def argumentExprs(): List[Tree] = { def args(): List[Tree] = commaSeparated( if (isIdent) treeInfo.assignmentToMaybeNamedArg(expr()) else expr() ) in.token match { case LBRACE => List(blockExpr()) case LPAREN => inParens(if (in.token == RPAREN) Nil else args()) case _ => Nil } } /** A succession of argument lists. */ def multipleArgumentExprs(): List[List[Tree]] = { if (in.token != LPAREN) Nil else argumentExprs() :: multipleArgumentExprs() } /** {{{ * BlockExpr ::= `{' (CaseClauses | Block) `}' * }}} */ def blockExpr(): Tree = atPos(in.offset) { inBraces { if (in.token == CASE) Match(EmptyTree, caseClauses()) else block() } } /** {{{ * Block ::= BlockStatSeq * }}} * @note Return tree does not carry position. */ def block(): Tree = makeBlock(blockStatSeq()) def caseClause(): CaseDef = atPos(in.offset)(makeCaseDef(pattern(), guard(), caseBlock())) /** {{{ * CaseClauses ::= CaseClause {CaseClause} * CaseClause ::= case Pattern [Guard] `=>' Block * }}} */ def caseClauses(): List[CaseDef] = { val cases = caseSeparated { caseClause() } if (cases.isEmpty) // trigger error if there are no cases accept(CASE) cases } // IDE HOOK (so we can memoize case blocks) // needed? def caseBlock(): Tree = atPos(accept(ARROW))(block()) /** {{{ * Guard ::= if PostfixExpr * }}} */ def guard(): Tree = if (in.token == IF) { in.nextToken(); stripParens(postfixExpr()) } else EmptyTree /** {{{ * Enumerators ::= Generator {semi Enumerator} * Enumerator ::= Generator * | Guard * | val Pattern1 `=' Expr * }}} */ def enumerators(): List[Tree] = { val enums = new ListBuffer[Tree] enums ++= enumerator(isFirst = true) while (isStatSep) { in.nextToken() enums ++= enumerator(isFirst = false) } enums.toList } def enumerator(isFirst: Boolean, allowNestedIf: Boolean = true): List[Tree] = if (in.token == IF && !isFirst) makeFilter(in.offset, guard()) :: Nil else generator(!isFirst, allowNestedIf) /** {{{ * Generator ::= Pattern1 (`<-' | `=') Expr [Guard] * }}} */ def generator(eqOK: Boolean, allowNestedIf: Boolean = true): List[Tree] = { val start = in.offset val hasVal = in.token == VAL if (hasVal) in.nextToken() val pat = noSeq.pattern1() val point = in.offset val hasEq = in.token == EQUALS if (hasVal) { if (hasEq) deprecationWarning(in.offset, "val keyword in for comprehension is deprecated", "2.10.0") else syntaxError(in.offset, "val in for comprehension must be followed by assignment") } if (hasEq && eqOK) in.nextToken() else accept(LARROW) val rhs = expr() def loop(): List[Tree] = if (in.token != IF) Nil else makeFilter(in.offset, guard()) :: loop() val tail = if (allowNestedIf) loop() else Nil // why max? IDE stress tests have shown that lastOffset could be less than start, // I guess this happens if instead if a for-expression we sit on a closing paren. val genPos = r2p(start, point, in.lastOffset max start) gen.mkGenerator(genPos, pat, hasEq, rhs) :: tail } def makeFilter(start: Offset, tree: Tree) = gen.Filter(tree).setPos(r2p(start, tree.pos.point, tree.pos.end)) /* -------- PATTERNS ------------------------------------------- */ /** Methods which implicitly propagate whether the initial call took * place in a context where sequences are allowed. Formerly, this * was threaded through methods as boolean seqOK. */ trait SeqContextSensitive extends PatternContextSensitive { // is a sequence pattern _* allowed? def isSequenceOK: Boolean // are we in an XML pattern? def isXML: Boolean = false def functionArgType(): Tree = argType() def argType(): Tree = { val start = in.offset in.token match { case USCORE => in.nextToken() if (in.token == SUBTYPE || in.token == SUPERTYPE) wildcardType(start) else atPos(start) { Bind(tpnme.WILDCARD, EmptyTree) } case _ => typ() match { case Ident(name: TypeName) if nme.isVariableName(name) => atPos(start) { Bind(name, EmptyTree) } case t => t } } } /** {{{ * Patterns ::= Pattern { `,' Pattern } * SeqPatterns ::= SeqPattern { `,' SeqPattern } * }}} */ def patterns(): List[Tree] = commaSeparated(pattern()) /** {{{ * Pattern ::= Pattern1 { `|' Pattern1 } * SeqPattern ::= SeqPattern1 { `|' SeqPattern1 } * }}} */ def pattern(): Tree = { val start = in.offset def loop(): List[Tree] = pattern1() :: { if (isRawBar) { in.nextToken() ; loop() } else Nil } loop() match { case pat :: Nil => pat case xs => atPos(start)(makeAlternative(xs)) } } /** {{{ * Pattern1 ::= boundvarid `:' TypePat * | `_' `:' TypePat * | Pattern2 * SeqPattern1 ::= boundvarid `:' TypePat * | `_' `:' TypePat * | [SeqPattern2] * }}} */ def pattern1(): Tree = pattern2() match { case p @ Ident(name) if in.token == COLON => if (nme.isVariableName(name)) { p.removeAttachment[BackquotedIdentifierAttachment.type] atPos(p.pos.start, in.skipToken())(Typed(p, compoundType())) } else { syntaxError(in.offset, "Pattern variables must start with a lower-case letter. (SLS 8.1.1.)") p } case p => p } /** {{{ * Pattern2 ::= id @ Pattern3 * | `_' @ Pattern3 * | Pattern3 * }}} */ def pattern2(): Tree = (pattern3(), in.token) match { case (Ident(nme.WILDCARD), AT) => in.nextToken() pattern3() case (p @ Ident(name), AT) => in.nextToken() val body = pattern3() atPos(p.pos.start, p.pos.start, body.pos.end) { val t = Bind(name, body) body match { case Ident(nme.WILDCARD) => t updateAttachment AtBoundIdentifierAttachment case _ if !settings.warnUnusedPatVars => t updateAttachment AtBoundIdentifierAttachment case _ => t } } case (p, _) => p } /** {{{ * Pattern3 ::= SimplePattern * | SimplePattern {Id [nl] SimplePattern} * }}} */ def pattern3(): Tree = { val top = simplePattern(badPattern3) val base = opstack // See SI-3189, SI-4832 for motivation. Cf SI-3480 for counter-motivation. def isCloseDelim = in.token match { case RBRACE => isXML case RPAREN => !isXML case _ => false } def checkWildStar: Tree = top match { case Ident(nme.WILDCARD) if isSequenceOK && isRawStar => peekingAhead ( if (isCloseDelim) atPos(top.pos.start, in.prev.offset)(Star(stripParens(top))) else EmptyTree ) case _ => EmptyTree } def loop(top: Tree): Tree = reducePatternStack(base, top) match { case next if isIdent && !isRawBar => pushOpInfo(next) ; loop(simplePattern(badPattern3)) case next => next } checkWildStar orElse stripParens(loop(top)) } def badPattern3(): Tree = { def isComma = in.token == COMMA def isDelimiter = in.token == RPAREN || in.token == RBRACE def isCommaOrDelimiter = isComma || isDelimiter val (isUnderscore, isStar) = opstack match { case OpInfo(Ident(nme.WILDCARD), nme.STAR, _, _) :: _ => (true, true) case OpInfo(_, nme.STAR, _, _) :: _ => (false, true) case _ => (false, false) } def isSeqPatternClose = isUnderscore && isStar && isSequenceOK && isDelimiter val preamble = "bad simple pattern:" val subtext = (isUnderscore, isStar, isSequenceOK) match { case (true, true, true) if isComma => "bad use of _* (a sequence pattern must be the last pattern)" case (true, true, true) if isDelimiter => "bad brace or paren after _*" case (true, true, false) if isDelimiter => "bad use of _* (sequence pattern not allowed)" case (false, true, true) if isDelimiter => "use _* to match a sequence" case (false, true, _) if isCommaOrDelimiter => "trailing * is not a valid pattern" case _ => null } val msg = if (subtext != null) s"$preamble $subtext" else "illegal start of simple pattern" // better recovery if don't skip delims of patterns val skip = !isCommaOrDelimiter || isSeqPatternClose syntaxErrorOrIncompleteAnd(msg, skip)(errorPatternTree) } /** {{{ * SimplePattern ::= varid * | `_' * | literal * | XmlPattern * | StableId /[TypeArgs]/ [`(' [Patterns] `)'] * | StableId [`(' [Patterns] `)'] * | StableId [`(' [Patterns] `,' [varid `@'] `_' `*' `)'] * | `(' [Patterns] `)' * }}} * * XXX: Hook for IDE */ def simplePattern(): Tree = ( // simple diagnostics for this entry point simplePattern(() => syntaxErrorOrIncompleteAnd("illegal start of simple pattern", skipIt = true)(errorPatternTree)) ) def simplePattern(onError: () => Tree): Tree = { val start = in.offset in.token match { case IDENTIFIER | BACKQUOTED_IDENT | THIS => val t = stableId() in.token match { case INTLIT | LONGLIT | FLOATLIT | DOUBLELIT => t match { case Ident(nme.MINUS) => return literal(isNegated = true, inPattern = true, start = start) case _ => } case _ => } val typeAppliedTree = in.token match { case LBRACKET => atPos(start, in.offset)(AppliedTypeTree(convertToTypeId(t), typeArgs())) case _ => t } in.token match { case LPAREN => atPos(start, in.offset)(Apply(typeAppliedTree, argumentPatterns())) case _ => typeAppliedTree } case USCORE => in.nextToken() atPos(start, start) { Ident(nme.WILDCARD) } case CHARLIT | INTLIT | LONGLIT | FLOATLIT | DOUBLELIT | STRINGLIT | INTERPOLATIONID | SYMBOLLIT | TRUE | FALSE | NULL => literal(inPattern = true) case LPAREN => atPos(start)(makeParens(noSeq.patterns())) case XMLSTART => xmlLiteralPattern() case _ => onError() } } } /** The implementation of the context sensitive methods for parsing outside of patterns. */ object outPattern extends PatternContextSensitive { def argType(): Tree = typ() def functionArgType(): Tree = paramType(useStartAsPosition = true) } /** The implementation for parsing inside of patterns at points where sequences are allowed. */ object seqOK extends SeqContextSensitive { val isSequenceOK = true } /** The implementation for parsing inside of patterns at points where sequences are disallowed. */ object noSeq extends SeqContextSensitive { val isSequenceOK = false } /** For use from xml pattern, where sequence is allowed and encouraged. */ object xmlSeqOK extends SeqContextSensitive { val isSequenceOK = true override val isXML = true } /** These are default entry points into the pattern context sensitive methods: * they are all initiated from non-pattern context. */ def typ(): Tree = outPattern.typ() def startInfixType() = outPattern.infixType(InfixMode.FirstOp) def startAnnotType() = outPattern.annotType() def exprTypeArgs() = outPattern.typeArgs() def exprSimpleType() = outPattern.simpleType() /** Default entry points into some pattern contexts. */ def pattern(): Tree = noSeq.pattern() def seqPatterns(): List[Tree] = seqOK.patterns() def xmlSeqPatterns(): List[Tree] = xmlSeqOK.patterns() // Called from xml parser def argumentPatterns(): List[Tree] = inParens { if (in.token == RPAREN) Nil else seqPatterns() } def xmlLiteralPattern(): Tree /* -------- MODIFIERS and ANNOTATIONS ------------------------------------------- */ /** Drop `private` modifier when followed by a qualifier. * Contract `abstract` and `override` to ABSOVERRIDE */ private def normalizeModifiers(mods: Modifiers): Modifiers = if (mods.isPrivate && mods.hasAccessBoundary) normalizeModifiers(mods &~ Flags.PRIVATE) else if (mods hasAllFlags (Flags.ABSTRACT | Flags.OVERRIDE)) normalizeModifiers(mods &~ (Flags.ABSTRACT | Flags.OVERRIDE) | Flags.ABSOVERRIDE) else mods private def addMod(mods: Modifiers, mod: Long, pos: Position): Modifiers = { if (mods hasFlag mod) syntaxError(in.offset, "repeated modifier", skipIt = false) in.nextToken() (mods | mod) withPosition (mod, pos) } private def tokenRange(token: TokenData) = r2p(token.offset, token.offset, token.offset + token.name.length - 1) /** {{{ * AccessQualifier ::= `[' (Id | this) `]' * }}} */ def accessQualifierOpt(mods: Modifiers): Modifiers = { var result = mods if (in.token == LBRACKET) { in.nextToken() if (mods.hasAccessBoundary) syntaxError("duplicate private/protected qualifier", skipIt = false) result = if (in.token == THIS) { in.nextToken(); mods | Flags.LOCAL } else Modifiers(mods.flags, identForType()) accept(RBRACKET) } result } private val flagTokens: Map[Int, Long] = Map( ABSTRACT -> Flags.ABSTRACT, FINAL -> Flags.FINAL, IMPLICIT -> Flags.IMPLICIT, LAZY -> Flags.LAZY, OVERRIDE -> Flags.OVERRIDE, PRIVATE -> Flags.PRIVATE, PROTECTED -> Flags.PROTECTED, SEALED -> Flags.SEALED ) /** {{{ * AccessModifier ::= (private | protected) [AccessQualifier] * }}} */ def accessModifierOpt(): Modifiers = normalizeModifiers { in.token match { case m @ (PRIVATE | PROTECTED) => in.nextToken() ; accessQualifierOpt(Modifiers(flagTokens(m))) case _ => NoMods } } /** {{{ * Modifiers ::= {Modifier} * Modifier ::= LocalModifier * | AccessModifier * | override * }}} */ def modifiers(): Modifiers = normalizeModifiers { def loop(mods: Modifiers): Modifiers = in.token match { case PRIVATE | PROTECTED => loop(accessQualifierOpt(addMod(mods, flagTokens(in.token), tokenRange(in)))) case ABSTRACT | FINAL | SEALED | OVERRIDE | IMPLICIT | LAZY => loop(addMod(mods, flagTokens(in.token), tokenRange(in))) case NEWLINE => in.nextToken() loop(mods) case _ => mods } loop(NoMods) } /** {{{ * LocalModifiers ::= {LocalModifier} * LocalModifier ::= abstract | final | sealed | implicit | lazy * }}} */ def localModifiers(): Modifiers = { def loop(mods: Modifiers): Modifiers = if (isLocalModifier) loop(addMod(mods, flagTokens(in.token), tokenRange(in))) else mods loop(NoMods) } /** {{{ * Annotations ::= {`@' SimpleType {ArgumentExprs}} * ConsrAnnotations ::= {`@' SimpleType ArgumentExprs} * }}} */ def annotations(skipNewLines: Boolean): List[Tree] = readAnnots { val t = annotationExpr() if (skipNewLines) newLineOpt() t } def constructorAnnotations(): List[Tree] = readAnnots { atPos(in.offset)(New(exprSimpleType(), List(argumentExprs()))) } def annotationExpr(): Tree = atPos(in.offset) { val t = exprSimpleType() if (in.token == LPAREN) New(t, multipleArgumentExprs()) else New(t, Nil) } /* -------- PARAMETERS ------------------------------------------- */ /** {{{ * ParamClauses ::= {ParamClause} [[nl] `(' implicit Params `)'] * ParamClause ::= [nl] `(' [Params] `)' * Params ::= Param {`,' Param} * Param ::= {Annotation} Id [`:' ParamType] [`=' Expr] * ClassParamClauses ::= {ClassParamClause} [[nl] `(' implicit ClassParams `)'] * ClassParamClause ::= [nl] `(' [ClassParams] `)' * ClassParams ::= ClassParam {`,' ClassParam} * ClassParam ::= {Annotation} [{Modifier} (`val' | `var')] Id [`:' ParamType] [`=' Expr] * }}} */ def paramClauses(owner: Name, contextBounds: List[Tree], ofCaseClass: Boolean): List[List[ValDef]] = { var implicitSection = -1 var implicitOffset = -1 var warnAt = -1 var caseParam = ofCaseClass val vds = new ListBuffer[List[ValDef]] val start = in.offset def paramClause(): List[ValDef] = if (in.token == RPAREN) Nil else { val implicitmod = if (in.token == IMPLICIT) { if (implicitOffset == -1) { implicitOffset = in.offset ; implicitSection = vds.length } else if (warnAt == -1) warnAt = in.offset in.nextToken() Flags.IMPLICIT } else 0 commaSeparated(param(owner, implicitmod, caseParam)) } newLineOptWhenFollowedBy(LPAREN) while (in.token == LPAREN) { in.nextToken() vds += paramClause() accept(RPAREN) caseParam = false newLineOptWhenFollowedBy(LPAREN) } if (ofCaseClass) { if (vds.isEmpty) syntaxError(start, s"case classes must have a parameter list; try 'case class ${owner.encoded }()' or 'case object ${owner.encoded}'") else if (vds.head.nonEmpty && vds.head.head.mods.isImplicit) { if (settings.isScala213) syntaxError(start, s"case classes must have a non-implicit parameter list; try 'case class ${ owner.encoded}()${ vds.map(vs => "(...)").mkString }'") else { deprecationWarning(start, s"case classes should have a non-implicit parameter list; adapting to 'case class ${ owner.encoded}()${ vds.map(vs => "(...)").mkString }'", "2.12.2") vds.insert(0, List.empty[ValDef]) vds(1) = vds(1).map(vd => copyValDef(vd)(mods = vd.mods & ~Flags.CASEACCESSOR)) if (implicitSection != -1) implicitSection += 1 } } } if (implicitSection != -1 && implicitSection != vds.length - 1) syntaxError(implicitOffset, "an implicit parameter section must be last") if (warnAt != -1) syntaxError(warnAt, "multiple implicit parameter sections are not allowed") else if (settings.warnExtraImplicit) { // guard against anomalous class C(private implicit val x: Int)(implicit s: String) val ttl = vds.count { case ValDef(mods, _, _, _) :: _ => mods.isImplicit ; case _ => false } if (ttl > 1) warning(in.offset, s"$ttl parameter sections are effectively implicit") } val result = vds.toList if (owner == nme.CONSTRUCTOR && (result.isEmpty || (result.head take 1 exists (_.mods.isImplicit)))) { in.token match { case LBRACKET => syntaxError(in.offset, "no type parameters allowed here", skipIt = false) case EOF => incompleteInputError("auxiliary constructor needs non-implicit parameter list") case _ => syntaxError(start, "auxiliary constructor needs non-implicit parameter list", skipIt = false) } } addEvidenceParams(owner, result, contextBounds) } /** {{{ * ParamType ::= Type | `=>' Type | Type `*' * }}} */ def paramType(): Tree = paramType(useStartAsPosition = false) def paramType(useStartAsPosition: Boolean): Tree = { val start = in.offset in.token match { case ARROW => in.nextToken() atPos(start)(byNameApplication(typ())) case _ => val t = typ() if (isRawStar) { in.nextToken() if (useStartAsPosition) atPos(start)(repeatedApplication(t)) else atPos(t.pos.start, t.pos.point)(repeatedApplication(t)) } else t } } def param(owner: Name, implicitmod: Int, caseParam: Boolean): ValDef = { val start = in.offset val annots = annotations(skipNewLines = false) var mods = Modifiers(Flags.PARAM) if (owner.isTypeName) { mods = modifiers() | Flags.PARAMACCESSOR if (mods.isLazy) syntaxError("lazy modifier not allowed here. Use call-by-name parameters instead", skipIt = false) in.token match { case v @ (VAL | VAR) => mods = mods withPosition (in.token.toLong, tokenRange(in)) if (v == VAR) mods |= Flags.MUTABLE in.nextToken() case _ => if (mods.flags != Flags.PARAMACCESSOR) accept(VAL) if (!caseParam) mods |= Flags.PrivateLocal } if (caseParam) mods |= Flags.CASEACCESSOR } val nameOffset = in.offset val name = ident() var bynamemod = 0 val tpt = if ((settings.YmethodInfer && !owner.isTypeName) && in.token != COLON) { TypeTree() } else { // XX-METHOD-INFER accept(COLON) if (in.token == ARROW) { if (owner.isTypeName && !mods.isLocalToThis) syntaxError( in.offset, (if (mods.isMutable) "`var'" else "`val'") + " parameters may not be call-by-name", skipIt = false) else if (implicitmod != 0) syntaxError( in.offset, "implicit parameters may not be call-by-name", skipIt = false) else bynamemod = Flags.BYNAMEPARAM } paramType() } val default = if (in.token == EQUALS) { in.nextToken() mods |= Flags.DEFAULTPARAM expr() } else EmptyTree atPos(start, if (name == nme.ERROR) start else nameOffset) { ValDef((mods | implicitmod.toLong | bynamemod) withAnnotations annots, name.toTermName, tpt, default) } } /** {{{ * TypeParamClauseOpt ::= [TypeParamClause] * TypeParamClause ::= `[' VariantTypeParam {`,' VariantTypeParam} `]'] * VariantTypeParam ::= {Annotation} [`+' | `-'] TypeParam * FunTypeParamClauseOpt ::= [FunTypeParamClause] * FunTypeParamClause ::= `[' TypeParam {`,' TypeParam} `]'] * TypeParam ::= Id TypeParamClauseOpt TypeBounds {<% Type} {":" Type} * }}} */ def typeParamClauseOpt(owner: Name, contextBoundBuf: ListBuffer[Tree]): List[TypeDef] = { def typeParam(ms: Modifiers): TypeDef = { var mods = ms | Flags.PARAM val start = in.offset if (owner.isTypeName && isIdent) { if (in.name == raw.PLUS) { in.nextToken() mods |= Flags.COVARIANT } else if (in.name == raw.MINUS) { in.nextToken() mods |= Flags.CONTRAVARIANT } } val nameOffset = in.offset // TODO AM: freshTermName(o2p(in.skipToken()), "_$$"), will need to update test suite val pname: TypeName = wildcardOrIdent().toTypeName val param = atPos(start, nameOffset) { val tparams = typeParamClauseOpt(pname, null) // @M TODO null --> no higher-order context bounds for now TypeDef(mods, pname, tparams, typeBounds()) } if (contextBoundBuf ne null) { while (in.token == VIEWBOUND) { val msg = "Use an implicit parameter instead.\nExample: Instead of `def f[A <% Int](a: A)` use `def f[A](a: A)(implicit ev: A => Int)`." if (settings.future) deprecationWarning(in.offset, s"View bounds are deprecated. $msg", "2.12.0") contextBoundBuf += atPos(in.skipToken())(makeFunctionTypeTree(List(Ident(pname)), typ())) } while (in.token == COLON) { contextBoundBuf += atPos(in.skipToken()) { AppliedTypeTree(typ(), List(Ident(pname))) } } } param } newLineOptWhenFollowedBy(LBRACKET) if (in.token == LBRACKET) inBrackets(commaSeparated(typeParam(NoMods withAnnotations annotations(skipNewLines = true)))) else Nil } /** {{{ * TypeBounds ::= [`>:' Type] [`<:' Type] * }}} */ def typeBounds(): TypeBoundsTree = { val lo = bound(SUPERTYPE) val hi = bound(SUBTYPE) val t = TypeBoundsTree(lo, hi) val defined = List(t.hi, t.lo) filter (_.pos.isDefined) if (defined.nonEmpty) t setPos wrappingPos(defined) else t setPos o2p(in.offset) } def bound(tok: Token): Tree = if (in.token == tok) { in.nextToken(); typ() } else EmptyTree /* -------- DEFS ------------------------------------------- */ /** {{{ * Import ::= import ImportExpr {`,' ImportExpr} * }}} */ def importClause(): List[Tree] = { val offset = accept(IMPORT) commaSeparated(importExpr()) match { case Nil => Nil case t :: rest => // The first import should start at the position of the keyword. t.setPos(t.pos.withStart(offset)) t :: rest } } /** {{{ * ImportExpr ::= StableId `.' (Id | `_' | ImportSelectors) * }}} */ def importExpr(): Tree = { val start = in.offset def thisDotted(name: TypeName) = { in.nextToken() val t = atPos(start)(This(name)) accept(DOT) val result = selector(t) accept(DOT) result } /* Walks down import `foo.bar.baz.{ ... }` until it ends at a * an underscore, a left brace, or an undotted identifier. */ def loop(expr: Tree): Tree = { expr setPos expr.pos.makeTransparent val selectors: List[ImportSelector] = in.token match { case USCORE => List(importSelector()) // import foo.bar._; case LBRACE => importSelectors() // import foo.bar.{ x, y, z } case _ => val nameOffset = in.offset val name = ident() if (in.token == DOT) { // import foo.bar.ident. and so create a select node and recurse. val t = atPos(start, if (name == nme.ERROR) in.offset else nameOffset)(Select(expr, name)) in.nextToken() return loop(t) } // import foo.bar.Baz; else List(makeImportSelector(name, nameOffset)) } // reaching here means we're done walking. atPos(start)(Import(expr, selectors)) } loop(in.token match { case THIS => thisDotted(tpnme.EMPTY) case _ => val id = atPos(start)(Ident(ident())) accept(DOT) if (in.token == THIS) thisDotted(id.name.toTypeName) else id }) } /** {{{ * ImportSelectors ::= `{' {ImportSelector `,'} (ImportSelector | `_') `}' * }}} */ def importSelectors(): List[ImportSelector] = { val selectors = inBracesOrNil(commaSeparated(importSelector())) selectors.init foreach { case ImportSelector(nme.WILDCARD, pos, _, _) => syntaxError(pos, "Wildcard import must be in last position") case _ => () } selectors } def wildcardOrIdent() = { if (in.token == USCORE) { in.nextToken() ; nme.WILDCARD } else ident() } /** {{{ * ImportSelector ::= Id [`=>' Id | `=>' `_'] * }}} */ def importSelector(): ImportSelector = { val start = in.offset val name = wildcardOrIdent() var renameOffset = -1 val rename = in.token match { case ARROW => in.nextToken() renameOffset = in.offset wildcardOrIdent() case _ if name == nme.WILDCARD => null case _ => renameOffset = start name } ImportSelector(name, start, rename, renameOffset) } /** {{{ * Def ::= val PatDef * | var PatDef * | def FunDef * | type [nl] TypeDef * | TmplDef * Dcl ::= val PatDcl * | var PatDcl * | def FunDcl * | type [nl] TypeDcl * }}} */ def defOrDcl(pos: Offset, mods: Modifiers): List[Tree] = { if (mods.isLazy && in.token != VAL) syntaxError("lazy not allowed here. Only vals can be lazy", skipIt = false) in.token match { case VAL => patDefOrDcl(pos, mods withPosition(VAL, tokenRange(in))) case VAR => patDefOrDcl(pos, (mods | Flags.MUTABLE) withPosition (VAR, tokenRange(in))) case DEF => List(funDefOrDcl(pos, mods withPosition(DEF, tokenRange(in)))) case TYPE => List(typeDefOrDcl(pos, mods withPosition(TYPE, tokenRange(in)))) case _ => List(tmplDef(pos, mods)) } } private def caseAwareTokenOffset = if (in.token == CASECLASS || in.token == CASEOBJECT) in.prev.offset else in.offset def nonLocalDefOrDcl : List[Tree] = { val annots = annotations(skipNewLines = true) defOrDcl(caseAwareTokenOffset, modifiers() withAnnotations annots) } /** {{{ * PatDef ::= Pattern2 {`,' Pattern2} [`:' Type] `=' Expr * ValDcl ::= Id {`,' Id} `:' Type * VarDef ::= PatDef | Id {`,' Id} `:' Type `=' `_' * }}} */ def patDefOrDcl(pos : Int, mods: Modifiers): List[Tree] = { var newmods = mods in.nextToken() val lhs = commaSeparated(stripParens(noSeq.pattern2())) val tp = typedOpt() val rhs = if (tp.isEmpty || in.token == EQUALS) { accept(EQUALS) if (!tp.isEmpty && newmods.isMutable && (lhs.toList forall (_.isInstanceOf[Ident])) && in.token == USCORE) { in.nextToken() newmods = newmods | Flags.DEFAULTINIT EmptyTree } else { expr() } } else { newmods = newmods | Flags.DEFERRED EmptyTree } def mkDefs(p: Tree, tp: Tree, rhs: Tree): List[Tree] = { val trees = { val pat = if (tp.isEmpty) p else Typed(p, tp) setPos (p.pos union tp.pos) makePatDef(newmods, pat, rhs) } if (newmods.isDeferred) { trees match { case List(ValDef(_, _, _, EmptyTree)) => if (mods.isLazy) syntaxError(p.pos, "lazy values may not be abstract", skipIt = false) case _ => syntaxError(p.pos, "pattern definition may not be abstract", skipIt = false) } } trees } val trees = (lhs.toList.init flatMap (mkDefs(_, tp.duplicate, rhs.duplicate))) ::: mkDefs(lhs.last, tp, rhs) val hd = trees.head hd setPos hd.pos.withStart(pos) ensureNonOverlapping(hd, trees.tail) trees } /** {{{ * VarDef ::= PatDef * | Id {`,' Id} `:' Type `=' `_' * VarDcl ::= Id {`,' Id} `:' Type * }}} def varDefOrDcl(mods: Modifiers): List[Tree] = { var newmods = mods | Flags.MUTABLE val lhs = new ListBuffer[(Int, Name)] do { in.nextToken() lhs += (in.offset, ident()) } while (in.token == COMMA) val tp = typedOpt() val rhs = if (tp.isEmpty || in.token == EQUALS) { accept(EQUALS) if (!tp.isEmpty && in.token == USCORE) { in.nextToken() EmptyTree } else { expr() } } else { newmods = newmods | Flags.DEFERRED EmptyTree } } */ /** {{{ * FunDef ::= FunSig [`:' Type] `=' [`macro'] Expr * | FunSig [nl] `{' Block `}' * | `this' ParamClause ParamClauses * (`=' ConstrExpr | [nl] ConstrBlock) * FunDcl ::= FunSig [`:' Type] * FunSig ::= id [FunTypeParamClause] ParamClauses * }}} */ def funDefOrDcl(start : Int, mods: Modifiers): Tree = { in.nextToken() if (in.token == THIS) { atPos(start, in.skipToken()) { val vparamss = paramClauses(nme.CONSTRUCTOR, classContextBounds map (_.duplicate), ofCaseClass = false) newLineOptWhenFollowedBy(LBRACE) val rhs = in.token match { case LBRACE => atPos(in.offset) { constrBlock(vparamss) } case _ => accept(EQUALS) ; atPos(in.offset) { constrExpr(vparamss) } } DefDef(mods, nme.CONSTRUCTOR, List(), vparamss, TypeTree(), rhs) } } else { val nameOffset = in.offset val name = identOrMacro() funDefRest(start, nameOffset, mods, name) } } def funDefRest(start: Offset, nameOffset: Offset, mods: Modifiers, name: Name): Tree = { val result = atPos(start, if (name.toTermName == nme.ERROR) start else nameOffset) { var newmods = mods // contextBoundBuf is for context bounded type parameters of the form // [T : B] or [T : => B]; it contains the equivalent implicit parameter type, // i.e. (B[T] or T => B) val contextBoundBuf = new ListBuffer[Tree] val tparams = typeParamClauseOpt(name, contextBoundBuf) val vparamss = paramClauses(name, contextBoundBuf.toList, ofCaseClass = false) newLineOptWhenFollowedBy(LBRACE) var restype = fromWithinReturnType(typedOpt()) val rhs = if (isStatSep || in.token == RBRACE) { if (restype.isEmpty) { if (settings.future) deprecationWarning(in.lastOffset, s"Procedure syntax is deprecated. Convert procedure `$name` to method by adding `: Unit`.", "2.12.0") restype = scalaUnitConstr } newmods |= Flags.DEFERRED EmptyTree } else if (restype.isEmpty && in.token == LBRACE) { if (settings.future) deprecationWarning(in.offset, s"Procedure syntax is deprecated. Convert procedure `$name` to method by adding `: Unit =`.", "2.12.0") restype = scalaUnitConstr blockExpr() } else { if (in.token == EQUALS) { in.nextTokenAllow(nme.MACROkw) if (isMacro) { in.nextToken() newmods |= Flags.MACRO } } else { accept(EQUALS) } expr() } DefDef(newmods, name.toTermName, tparams, vparamss, restype, rhs) } signalParseProgress(result.pos) result } /** {{{ * ConstrExpr ::= SelfInvocation * | ConstrBlock * }}} */ def constrExpr(vparamss: List[List[ValDef]]): Tree = if (in.token == LBRACE) constrBlock(vparamss) else Block(selfInvocation(vparamss) :: Nil, literalUnit) /** {{{ * SelfInvocation ::= this ArgumentExprs {ArgumentExprs} * }}} */ def selfInvocation(vparamss: List[List[ValDef]]): Tree = atPos(accept(THIS)) { newLineOptWhenFollowedBy(LBRACE) var t = Apply(Ident(nme.CONSTRUCTOR), argumentExprs()) newLineOptWhenFollowedBy(LBRACE) while (in.token == LPAREN || in.token == LBRACE) { t = Apply(t, argumentExprs()) newLineOptWhenFollowedBy(LBRACE) } if (classContextBounds.isEmpty) t else Apply(t, vparamss.last.map(vp => Ident(vp.name))) } /** {{{ * ConstrBlock ::= `{' SelfInvocation {semi BlockStat} `}' * }}} */ def constrBlock(vparamss: List[List[ValDef]]): Tree = atPos(in.skipToken()) { val stats = selfInvocation(vparamss) :: { if (isStatSep) { in.nextToken(); blockStatSeq() } else Nil } accept(RBRACE) Block(stats, literalUnit) } /** {{{ * TypeDef ::= type Id [TypeParamClause] `=' Type * | FunSig `=' Expr * TypeDcl ::= type Id [TypeParamClause] TypeBounds * }}} */ def typeDefOrDcl(start: Offset, mods: Modifiers): Tree = { in.nextToken() newLinesOpt() atPos(start, in.offset) { val name = identForType() // @M! a type alias as well as an abstract type may declare type parameters val tparams = typeParamClauseOpt(name, null) in.token match { case EQUALS => in.nextToken() TypeDef(mods, name, tparams, typ()) case t if t == SUPERTYPE || t == SUBTYPE || t == COMMA || t == RBRACE || isStatSep(t) => TypeDef(mods | Flags.DEFERRED, name, tparams, typeBounds()) case _ => syntaxErrorOrIncompleteAnd("`=', `>:', or `<:' expected", skipIt = true)( // assume a dummy type def so as to have somewhere to stash the annotations TypeDef(mods, tpnme.ERROR, Nil, EmptyTree) ) } } } /** Hook for IDE, for top-level classes/objects. */ def topLevelTmplDef: Tree = { val annots = annotations(skipNewLines = true) val pos = caseAwareTokenOffset val mods = modifiers() withAnnotations annots tmplDef(pos, mods) } /** {{{ * TmplDef ::= [case] class ClassDef * | [case] object ObjectDef * | [override] trait TraitDef * }}} */ def tmplDef(pos: Offset, mods: Modifiers): Tree = { if (mods.isLazy) syntaxError("classes cannot be lazy", skipIt = false) in.token match { case TRAIT => classDef(pos, (mods | Flags.TRAIT | Flags.ABSTRACT) withPosition (Flags.TRAIT, tokenRange(in))) case CLASS => classDef(pos, mods) case CASECLASS => classDef(pos, (mods | Flags.CASE) withPosition (Flags.CASE, tokenRange(in.prev /*scanner skips on 'case' to 'class', thus take prev*/))) case OBJECT => objectDef(pos, mods) case CASEOBJECT => objectDef(pos, (mods | Flags.CASE) withPosition (Flags.CASE, tokenRange(in.prev /*scanner skips on 'case' to 'object', thus take prev*/))) case _ => syntaxErrorOrIncompleteAnd("expected start of definition", skipIt = true)( // assume a class definition so as to have somewhere to stash the annotations atPos(pos)(gen.mkClassDef(mods, tpnme.ERROR, Nil, Template(Nil, noSelfType, Nil))) ) } } /** {{{ * ClassDef ::= Id [TypeParamClause] {Annotation} * [AccessModifier] ClassParamClauses RequiresTypeOpt ClassTemplateOpt * TraitDef ::= Id [TypeParamClause] RequiresTypeOpt TraitTemplateOpt * }}} */ def classDef(start: Offset, mods: Modifiers): ClassDef = { in.nextToken() val nameOffset = in.offset val name = identForType() atPos(start, if (name == tpnme.ERROR) start else nameOffset) { savingClassContextBounds { val contextBoundBuf = new ListBuffer[Tree] val tparams = typeParamClauseOpt(name, contextBoundBuf) classContextBounds = contextBoundBuf.toList val tstart = (in.offset :: classContextBounds.map(_.pos.start)).min if (!classContextBounds.isEmpty && mods.isTrait) { val viewBoundsExist = if (settings.future) "" else " nor view bounds `<% ...'" syntaxError(s"traits cannot have type parameters with context bounds `: ...'$viewBoundsExist", skipIt = false) classContextBounds = List() } val constrAnnots = if (!mods.isTrait) constructorAnnotations() else Nil val (constrMods, vparamss) = if (mods.isTrait) (Modifiers(Flags.TRAIT), List()) else (accessModifierOpt(), paramClauses(name, classContextBounds, ofCaseClass = mods.isCase)) val template = templateOpt(mods, name, constrMods withAnnotations constrAnnots, vparamss, tstart) val result = gen.mkClassDef(mods, name, tparams, template) // Context bounds generate implicit parameters (part of the template) with types // from tparams: we need to ensure these don't overlap if (!classContextBounds.isEmpty) ensureNonOverlapping(template, tparams) result } } } /** {{{ * ObjectDef ::= Id ClassTemplateOpt * }}} */ def objectDef(start: Offset, mods: Modifiers): ModuleDef = { in.nextToken() val nameOffset = in.offset val name = ident() val tstart = in.offset atPos(start, if (name == nme.ERROR) start else nameOffset) { val mods1 = if (in.token == SUBTYPE) mods | Flags.DEFERRED else mods val template = templateOpt(mods1, name, NoMods, Nil, tstart) ModuleDef(mods1, name.toTermName, template) } } /** Create a tree representing a package object, converting * {{{ * package object foo { ... } * }}} * to * {{{ * package foo { * object `package` { ... } * } * }}} */ def packageObjectDef(start: Offset): PackageDef = { val defn = objectDef(in.offset, NoMods) val pidPos = o2p(defn.pos.start) val pkgPos = r2p(start, pidPos.point) gen.mkPackageObject(defn, pidPos, pkgPos) } def packageOrPackageObject(start: Offset): Tree = ( if (in.token == OBJECT) joinComment(packageObjectDef(start) :: Nil).head else { in.flushDoc makePackaging(start, pkgQualId(), inBracesOrNil(topStatSeq())) } ) // TODO - eliminate this and use "def packageObjectDef" (see call site of this // method for small elaboration.) def makePackageObject(start: Offset, objDef: ModuleDef): PackageDef = objDef match { case ModuleDef(mods, name, impl) => makePackaging( start, atPos(o2p(objDef.pos.start)){ Ident(name) }, List(ModuleDef(mods, nme.PACKAGEkw, impl))) } /** {{{ * ClassParents ::= AnnotType {`(' [Exprs] `)'} {with AnnotType} * TraitParents ::= AnnotType {with AnnotType} * }}} */ def templateParents(): List[Tree] = { val parents = new ListBuffer[Tree] def readAppliedParent() = { val start = in.offset val parent = startAnnotType() parents += (in.token match { case LPAREN => atPos(start)((parent /: multipleArgumentExprs())(Apply.apply)) case _ => parent }) } readAppliedParent() while (in.token == WITH) { in.nextToken(); readAppliedParent() } parents.toList } /** {{{ * ClassTemplate ::= [EarlyDefs with] ClassParents [TemplateBody] * TraitTemplate ::= [EarlyDefs with] TraitParents [TemplateBody] * EarlyDefs ::= `{' [EarlyDef {semi EarlyDef}] `}' * EarlyDef ::= Annotations Modifiers PatDef * }}} */ def template(): (List[Tree], ValDef, List[Tree]) = { newLineOptWhenFollowedBy(LBRACE) if (in.token == LBRACE) { // @S: pre template body cannot stub like post body can! val (self, body) = templateBody(isPre = true) if (in.token == WITH && (self eq noSelfType)) { val earlyDefs: List[Tree] = body.map(ensureEarlyDef).filter(_.nonEmpty) in.nextToken() val parents = templateParents() val (self1, body1) = templateBodyOpt(parenMeansSyntaxError = false) (parents, self1, earlyDefs ::: body1) } else { (List(), self, body) } } else { val parents = templateParents() val (self, body) = templateBodyOpt(parenMeansSyntaxError = false) (parents, self, body) } } def ensureEarlyDef(tree: Tree): Tree = tree match { case vdef @ ValDef(mods, _, _, _) if !mods.isDeferred => copyValDef(vdef)(mods = mods | Flags.PRESUPER) case tdef @ TypeDef(mods, name, tparams, rhs) => deprecationWarning(tdef.pos.point, "early type members are deprecated. Move them to the regular body: the semantics are the same.", "2.11.0") treeCopy.TypeDef(tdef, mods | Flags.PRESUPER, name, tparams, rhs) case docdef @ DocDef(comm, rhs) => treeCopy.DocDef(docdef, comm, rhs) case stat if !stat.isEmpty => syntaxError(stat.pos, "only concrete field definitions allowed in early object initialization section", skipIt = false) EmptyTree case _ => EmptyTree } /** {{{ * ClassTemplateOpt ::= `extends' ClassTemplate | [[`extends'] TemplateBody] * TraitTemplateOpt ::= TraitExtends TraitTemplate | [[`extends'] TemplateBody] | `<:' TemplateBody * TraitExtends ::= `extends' | `<:' * }}} */ def templateOpt(mods: Modifiers, name: Name, constrMods: Modifiers, vparamss: List[List[ValDef]], tstart: Offset): Template = { val (parents, self, body) = ( if (in.token == EXTENDS || in.token == SUBTYPE && mods.isTrait) { in.nextToken() template() } else { newLineOptWhenFollowedBy(LBRACE) val (self, body) = templateBodyOpt(parenMeansSyntaxError = mods.isTrait || name.isTermName) (List(), self, body) } ) def anyvalConstructor() = ( // Not a well-formed constructor, has to be finished later - see note // regarding AnyVal constructor in AddInterfaces. DefDef(NoMods, nme.CONSTRUCTOR, Nil, ListOfNil, TypeTree(), Block(Nil, literalUnit)) ) val parentPos = o2p(in.offset) val tstart1 = if (body.isEmpty && in.lastOffset < tstart) in.lastOffset else tstart atPos(tstart1) { // Exclude only the 9 primitives plus AnyVal. if (inScalaRootPackage && ScalaValueClassNames.contains(name)) Template(parents, self, anyvalConstructor :: body) else gen.mkTemplate(gen.mkParents(mods, parents, parentPos), self, constrMods, vparamss, body, o2p(tstart)) } } /* -------- TEMPLATES ------------------------------------------- */ /** {{{ * TemplateBody ::= [nl] `{' TemplateStatSeq `}' * }}} * @param isPre specifies whether in early initializer (true) or not (false) */ def templateBody(isPre: Boolean) = inBraces(templateStatSeq(isPre = isPre)) match { case (self, Nil) => (self, EmptyTree.asList) case result => result } def templateBodyOpt(parenMeansSyntaxError: Boolean): (ValDef, List[Tree]) = { newLineOptWhenFollowedBy(LBRACE) if (in.token == LBRACE) { templateBody(isPre = false) } else { if (in.token == LPAREN) { if (parenMeansSyntaxError) syntaxError(s"traits or objects may not have parameters", skipIt = true) else abort("unexpected opening parenthesis") } (noSelfType, List()) } } /** {{{ * Refinement ::= [nl] `{' RefineStat {semi RefineStat} `}' * }}} */ def refinement(): List[Tree] = inBraces(refineStatSeq()) /* -------- STATSEQS ------------------------------------------- */ /** Create a tree representing a packaging. */ def makePackaging(start: Offset, pkg: Tree, stats: List[Tree]): PackageDef = pkg match { case x: RefTree => atPos(start, pkg.pos.point)(PackageDef(x, stats)) } def makeEmptyPackage(start: Offset, stats: List[Tree]): PackageDef = ( makePackaging(start, atPos(start, start, start)(Ident(nme.EMPTY_PACKAGE_NAME)), stats) ) def statSeq(stat: PartialFunction[Token, List[Tree]], errorMsg: String = "illegal start of definition"): List[Tree] = { val stats = new ListBuffer[Tree] def default(tok: Token) = if (isStatSep) Nil else syntaxErrorOrIncompleteAnd(errorMsg, skipIt = true)(Nil) while (!isStatSeqEnd) { stats ++= stat.applyOrElse(in.token, default) acceptStatSepOpt() } stats.toList } /** {{{ * TopStatSeq ::= TopStat {semi TopStat} * TopStat ::= Annotations Modifiers TmplDef * | Packaging * | package object objectDef * | Import * | * }}} */ def topStatSeq(): List[Tree] = statSeq(topStat, errorMsg = "expected class or object definition") def topStat: PartialFunction[Token, List[Tree]] = { case PACKAGE => packageOrPackageObject(in.skipToken()) :: Nil case IMPORT => in.flushDoc importClause() case _ if isAnnotation || isTemplateIntro || isModifier => joinComment(topLevelTmplDef :: Nil) } /** {{{ * TemplateStatSeq ::= [id [`:' Type] `=>'] TemplateStats * }}} * @param isPre specifies whether in early initializer (true) or not (false) */ def templateStatSeq(isPre : Boolean): (ValDef, List[Tree]) = checkNoEscapingPlaceholders { var self: ValDef = noSelfType var firstOpt: Option[Tree] = None if (isExprIntro) { in.flushDoc val first = expr(InTemplate) // @S: first statement is potentially converted so cannot be stubbed. if (in.token == ARROW) { first match { case Typed(tree @ This(tpnme.EMPTY), tpt) => self = atPos(tree.pos union tpt.pos) { makeSelfDef(nme.WILDCARD, tpt) } case _ => convertToParam(first) match { case tree @ ValDef(_, name, tpt, EmptyTree) if (name != nme.ERROR) => self = atPos(tree.pos union tpt.pos) { makeSelfDef(name, tpt) } case _ => } } in.nextToken() } else { firstOpt = Some(first) acceptStatSepOpt() } } (self, firstOpt ++: templateStats()) } /** {{{ * TemplateStats ::= TemplateStat {semi TemplateStat} * TemplateStat ::= Import * | Annotations Modifiers Def * | Annotations Modifiers Dcl * | Expr1 * | super ArgumentExprs {ArgumentExprs} * | * }}} */ def templateStats(): List[Tree] = statSeq(templateStat) def templateStat: PartialFunction[Token, List[Tree]] = { case IMPORT => in.flushDoc importClause() case _ if isDefIntro || isModifier || isAnnotation => joinComment(nonLocalDefOrDcl) case _ if isExprIntro => in.flushDoc statement(InTemplate) :: Nil } def templateOrTopStatSeq(): List[Tree] = statSeq(templateStat.orElse(topStat)) /** {{{ * RefineStatSeq ::= RefineStat {semi RefineStat} * RefineStat ::= Dcl * | type TypeDef * | * }}} */ def refineStatSeq(): List[Tree] = checkNoEscapingPlaceholders { val stats = new ListBuffer[Tree] while (!isStatSeqEnd) { stats ++= refineStat() if (in.token != RBRACE) acceptStatSep() } stats.toList } def refineStat(): List[Tree] = if (isDclIntro) { // don't IDE hook joinComment(defOrDcl(in.offset, NoMods)) } else if (!isStatSep) { syntaxErrorOrIncomplete( "illegal start of declaration"+ (if (inFunReturnType) " (possible cause: missing `=' in front of current method body)" else ""), skipIt = true) Nil } else Nil /** overridable IDE hook for local definitions of blockStatSeq * Here's an idea how to fill in start and end positions. def localDef : List[Tree] = { atEndPos { atStartPos(in.offset) { val annots = annotations(skipNewLines = true) val mods = localModifiers() withAnnotations annots if (!(mods hasFlag ~(Flags.IMPLICIT | Flags.LAZY))) defOrDcl(mods) else List(tmplDef(mods)) } } (in.offset) } */ def localDef(implicitMod: Int): List[Tree] = { val annots = annotations(skipNewLines = true) val pos = in.offset val mods = (localModifiers() | implicitMod.toLong) withAnnotations annots val defs = if (!(mods hasFlag ~(Flags.IMPLICIT | Flags.LAZY))) defOrDcl(pos, mods) else List(tmplDef(pos, mods)) in.token match { case RBRACE | CASE => defs :+ setInPos(literalUnit) case _ => defs } } /** {{{ * BlockStatSeq ::= { BlockStat semi } [ResultExpr] * BlockStat ::= Import * | Annotations [implicit] [lazy] Def * | Annotations LocalModifiers TmplDef * | Expr1 * | * }}} */ def blockStatSeq(): List[Tree] = checkNoEscapingPlaceholders { val stats = new ListBuffer[Tree] while (!isStatSeqEnd && !isCaseDefEnd) { if (in.token == IMPORT) { stats ++= importClause() acceptStatSepOpt() } else if (isDefIntro || isLocalModifier || isAnnotation) { if (in.token == IMPLICIT) { val start = in.skipToken() if (isIdent) stats += implicitClosure(start, InBlock) else stats ++= localDef(Flags.IMPLICIT) } else { stats ++= localDef(0) } acceptStatSepOpt() } else if (isExprIntro) { stats += statement(InBlock) if (!isCaseDefEnd) acceptStatSep() } else if (isStatSep) { in.nextToken() } else { val addendum = if (isModifier) " (no modifiers allowed here)" else "" syntaxErrorOrIncomplete("illegal start of statement" + addendum, skipIt = true) } } stats.toList } /** {{{ * CompilationUnit ::= {package QualId semi} TopStatSeq * }}} */ def compilationUnit(): PackageDef = checkNoEscapingPlaceholders { def topstats(): List[Tree] = { val ts = new ListBuffer[Tree] while (in.token == SEMI) in.nextToken() val start = in.offset if (in.token == PACKAGE) { in.nextToken() if (in.token == OBJECT) { // TODO - this next line is supposed to be // ts += packageObjectDef(start) // but this broke a scaladoc test (run/diagrams-filtering.scala) somehow. ts ++= joinComment(List(makePackageObject(start, objectDef(in.offset, NoMods)))) if (in.token != EOF) { acceptStatSep() ts ++= topStatSeq() } } else { in.flushDoc val pkg = pkgQualId() if (in.token == EOF) { ts += makePackaging(start, pkg, List()) } else if (isStatSep) { in.nextToken() ts += makePackaging(start, pkg, topstats()) } else { ts += inBraces(makePackaging(start, pkg, topStatSeq())) acceptStatSepOpt() ts ++= topStatSeq() } } } else { ts ++= topStatSeq() } ts.toList } resetPackage() topstats() match { case (stat @ PackageDef(_, _)) :: Nil => stat case stats => val start = if (stats forall (_ == EmptyTree)) 0 else { val wpos = wrappingPos(stats) if (wpos.isDefined) wpos.start else 0 } makeEmptyPackage(start, stats) } } } }