/* NSC -- new Scala compiler * Copyright 2005-2011 LAMP/EPFL * @author Martin Odersky */ package scala.tools.nsc package transform import symtab._ import Flags._ import scala.collection.{ mutable, immutable } abstract class Mixin extends InfoTransform with ast.TreeDSL { import global._ import definitions._ import CODE._ /** The name of the phase: */ val phaseName: String = "mixin" /** The phase might set the following new flags: */ override def phaseNewFlags: Long = lateMODULE | notOVERRIDE /** This map contains a binding (class -> info) if * the class with this info at phase mixinPhase has been treated for mixin composition */ private val treatedClassInfos = perRunCaches.newMap[Symbol, Type]() /** Map a lazy, mixedin field accessor to it's trait member accessor */ private val initializer = perRunCaches.newMap[Symbol, Symbol] /** Deferred bitmaps that will be added during the transformation of a class */ private val deferredBitmaps = perRunCaches.newMap[Symbol, List[Tree]]() withDefaultValue Nil // --------- helper functions ----------------------------------------------- /** A member of a trait is implemented statically if its implementation after the * mixin transform is in the static implementation module. To be statically * implemented, a member must be a method that belonged to the trait's implementation class * before (e.g. it is not abstract). Not statically implemented are * - non-private modules: these are implemented directly in the mixin composition class * (private modules, on the other hand, are implemented statically, but their * module variable is not. all such private modules are lifted, because * non-lifted private modules have been eliminated in ExplicitOuter) * - field accessors and superaccessors, except for lazy value accessors which become initializer * methods in the impl class (because they can have arbitrary initializers) */ private def isImplementedStatically(sym: Symbol) = ( sym.owner.isImplClass && sym.isMethod && (!sym.isModule || sym.hasFlag(PRIVATE | LIFTED)) && (!(sym hasFlag (ACCESSOR | SUPERACCESSOR)) || sym.isLazy) ) /** A member of a trait is static only if it belongs only to the * implementation class, not the interface, and it is implemented * statically. */ private def isStaticOnly(sym: Symbol) = isImplementedStatically(sym) && sym.isImplOnly /** A member of a trait is forwarded if it is implemented statically and it * is also visible in the trait's interface. In that case, a forwarder to * the member's static implementation will be added to the class that * inherits the trait. */ private def isForwarded(sym: Symbol) = isImplementedStatically(sym) && !sym.isImplOnly /** Maps the type of an implementation class to its interface; * maps all other types to themselves. */ private def toInterface(tp: Type): Type = atPhase(currentRun.mixinPhase)(tp.typeSymbol.toInterface).tpe private def isFieldWithBitmap(field: Symbol) = { field.info // ensure that nested objects are transformed // For checkinit consider normal value getters // but for lazy values only take into account lazy getters field.isLazy && field.isMethod && !field.isDeferred } /** Does this field require an initialized bit? * Note: fields of classes inheriting DelayedInit are not checked. * This is because the they are neither initialized in the constructor * nor do they have a setter (not if they are vals anyway). The usual * logic for setting bitmaps does therefor not work for such fields. * That's why they are excluded. */ private def needsInitFlag(sym: Symbol) = ( settings.checkInit.value && sym.isGetter && !sym.isInitializedToDefault && !sym.hasFlag(PARAMACCESSOR | SPECIALIZED | LAZY) && !sym.accessed.hasFlag(PRESUPER) && !sym.isOuterAccessor && !(sym.owner isSubClass DelayedInitClass) ) /** Maps all parts of this type that refer to implementation classes to * their corresponding interfaces. */ private val toInterfaceMap = new TypeMap { def apply(tp: Type): Type = mapOver( tp match { case TypeRef(pre, sym, args) if (sym.isImplClass) => typeRef(pre, atPhase(currentRun.mixinPhase)(sym.toInterface), args) case _ => tp }) } /** The implementation class corresponding to a currently compiled interface. * todo: try to use Symbol.implClass instead? */ private def implClass(iface: Symbol): Symbol = { val impl = iface.implClass if (impl != NoSymbol) impl else erasure.implClass(iface) } /** Returns the symbol that is accessed by a super-accessor in a mixin composition. * * @param base The class in which everything is mixed together * @param member The symbol statically referred to by the superaccessor in the trait * @param mixinClass The mixin class that produced the superaccessor */ private def rebindSuper(base: Symbol, member: Symbol, mixinClass: Symbol): Symbol = atPhase(currentRun.picklerPhase.next) { var bcs = base.info.baseClasses.dropWhile(mixinClass !=).tail var sym: Symbol = NoSymbol debuglog("starting rebindsuper " + base + " " + member + ":" + member.tpe + " " + mixinClass + " " + base.info.baseClasses + "/" + bcs) while (!bcs.isEmpty && sym == NoSymbol) { if (settings.debug.value) { val other = bcs.head.info.nonPrivateDecl(member.name); log("rebindsuper " + bcs.head + " " + other + " " + other.tpe + " " + other.isDeferred) } sym = member.matchingSymbol(bcs.head, base.thisType).suchThat(sym => !sym.hasFlag(DEFERRED | BRIDGE)) bcs = bcs.tail } assert(sym != NoSymbol, member) sym } // --------- type transformation ----------------------------------------------- def isConcreteAccessor(member: Symbol) = member.hasAccessorFlag && (!member.isDeferred || (member hasFlag lateDEFERRED)) /** Is member overridden (either directly or via a bridge) in base class sequence `bcs`? */ def isOverriddenAccessor(member: Symbol, bcs: List[Symbol]): Boolean = atPhase(ownPhase) { def hasOverridingAccessor(clazz: Symbol) = { clazz.info.nonPrivateDecl(member.name).alternatives.exists( sym => isConcreteAccessor(sym) && !sym.hasFlag(MIXEDIN) && matchesType(sym.tpe, member.tpe, true)) } bcs.head != member.owner && (hasOverridingAccessor(bcs.head) || isOverriddenAccessor(member, bcs.tail)) } /** Add given member to given class, and mark member as mixed-in. */ def addMember(clazz: Symbol, member: Symbol): Symbol = { debuglog("new member of " + clazz + ":" + member.defString) clazz.info.decls enter member setFlag MIXEDIN } def needsExpandedSetterName(field: Symbol) = !field.isLazy && ( if (field.isMethod) field.hasStableFlag else !field.isMutable ) /** Add getters and setters for all non-module fields of an implementation * class to its interface unless they are already present. This is done * only once per class. The mixedin flag is used to remember whether late * members have been added to an interface. * - lazy fields don't get a setter. */ def addLateInterfaceMembers(clazz: Symbol) { if ((treatedClassInfos get clazz) != Some(clazz.info)) { treatedClassInfos(clazz) = clazz.info assert(phase == currentRun.mixinPhase) /** Create a new getter. Getters are never private or local. They are * always accessors and deferred. */ def newGetter(field: Symbol): Symbol = { // println("creating new getter for "+ field +" : "+ field.info +" at "+ field.locationString+(field hasFlag MUTABLE)) val newFlags = field.flags & ~PrivateLocal | ACCESSOR | lateDEFERRED | ( if (field.isMutable) 0 else STABLE ) // TODO preserve pre-erasure info? clazz.newMethod(nme.getterName(field.name), field.pos, newFlags) setInfo MethodType(Nil, field.info) } /** Create a new setter. Setters are never private or local. They are * always accessors and deferred. */ def newSetter(field: Symbol): Symbol = { //println("creating new setter for "+field+field.locationString+(field hasFlag MUTABLE)) val setterName = nme.getterToSetter(nme.getterName(field.name)) val newFlags = field.flags & ~PrivateLocal | ACCESSOR | lateDEFERRED val setter = clazz.newMethod(setterName, field.pos, newFlags) // TODO preserve pre-erasure info? setter setInfo MethodType(setter.newSyntheticValueParams(List(field.info)), UnitClass.tpe) if (needsExpandedSetterName(field)) setter.name = nme.expandedSetterName(setter.name, clazz) setter } clazz.info // make sure info is up to date, so that implClass is set. val impl = implClass(clazz) assert(impl != NoSymbol) for (member <- impl.info.decls) { if (!member.isMethod && !member.isModule && !member.isModuleVar) { assert(member.isTerm && !member.isDeferred, member) if (member.getter(impl).isPrivate) { member.makeNotPrivate(clazz) // this will also make getter&setter not private } val getter = member.getter(clazz) if (getter == NoSymbol) addMember(clazz, newGetter(member)) if (!member.tpe.isInstanceOf[ConstantType] && !member.isLazy) { val setter = member.setter(clazz, needsExpandedSetterName(member)) if (setter == NoSymbol) addMember(clazz, newSetter(member)) } } } debuglog("new defs of " + clazz + " = " + clazz.info.decls); } } /** Add all members to be mixed in into a (non-trait-) class * These are: * for every mixin trait T that is not also inherited by the superclass: * add late interface members to T and then: * - if a member M of T is forwarded to the implementation class, add * a forwarder for M unless one exists already. * The alias of the forwarder is the static member it forwards to. * - for every abstract accessor in T, add a field and an implementation for that accessor * - for every super accessor in T, add an implementation of that accessor * - for every module in T, add a module */ def addMixedinMembers(clazz: Symbol, unit : CompilationUnit) { def cloneBeforeErasure(iface: Symbol, clazz: Symbol, imember: Symbol): Symbol = { val newSym = atPhase(currentRun.erasurePhase) { val res = imember.cloneSymbol(clazz) // since we used the member (imember) from the interface that represents the trait that's being mixed in, // have to instantiate the interface type params (that may occur in imember's info) as they are seen from the class // we can't use the member that we get from the implementation class, as it's a clone that was made after erasure, // and thus it does not know its info at the beginning of erasure anymore // optimize: no need if iface has no typeparams if(iface.typeParams nonEmpty) res.setInfo(clazz.thisType.baseType(iface).memberInfo(imember)) res } // clone before erasure got rid of type info we'll need to generate a javaSig // now we'll have the type info at (the beginning of) erasure in our history, newSym.updateInfo(imember.info.cloneInfo(newSym)) // and now newSym has the info that's been transformed to fit this period (no need for asSeenFrom as phase.erasedTypes) newSym // TODO: verify we need the updateInfo and document why } if (!(clazz hasFlag JAVA) && (treatedClassInfos get clazz) != Some(clazz.info)) { treatedClassInfos(clazz) = clazz.info assert(!clazz.isTrait, clazz) assert(clazz.info.parents.nonEmpty, clazz) // first complete the superclass with mixed in members addMixedinMembers(clazz.superClass, unit) //Console.println("adding members of " + clazz.info.baseClasses.tail.takeWhile(superclazz !=) + " to " + clazz);//DEBUG /** Mix in members of implementation class mixinClass into class clazz */ def mixinImplClassMembers(impl: Symbol, iface: Symbol) { assert( // XXX this should be impl.isImplClass, except that we get impl classes // coming through under -optimise which do not agree that they are (because // the IMPLCLASS flag is unset, I believe.) See ticket #4285. nme.isImplClassName(impl.name) || impl.isImplClass, "%s (%s) is not a an implementation class, it cannot mix in %s".format( impl, impl.defaultFlagString, iface) ) if (!impl.isImplClass) { debugwarn("!!! " + impl + " has an impl class name, but !isImplClass: " + impl.defaultFlagString + ", mixing in " + iface) } for (member <- impl.info.decls) { if (isForwarded(member)) { val imember = member.overriddenSymbol(iface) // atPhase(currentRun.erasurePhase){ // println(""+(clazz, iface, clazz.typeParams, iface.typeParams, imember, clazz.thisType.baseType(iface), clazz.thisType.baseType(iface).memberInfo(imember), imember.info substSym(iface.typeParams, clazz.typeParams) )) // } // Console.println("mixin member "+member+":"+member.tpe+member.locationString+" "+imember+" "+imember.overridingSymbol(clazz)+" to "+clazz+" with scope "+clazz.info.decls)//DEBUG if (imember.overridingSymbol(clazz) == NoSymbol && clazz.info.findMember(member.name, 0, lateDEFERRED, false).alternatives.contains(imember)) { val member1 = addMember( clazz, cloneBeforeErasure(iface, clazz, imember) setPos clazz.pos resetFlag (DEFERRED | lateDEFERRED)) member1.asInstanceOf[TermSymbol] setAlias member; } } } } /** Mix in members of trait mixinClass into class clazz. Also, * for each lazy field in mixinClass, add a link from its mixed in member to its * initializer method inside the implclass. */ def mixinTraitMembers(mixinClass: Symbol) { // For all members of a trait's interface do: for (member <- mixinClass.info.decls) { if (isConcreteAccessor(member)) { if (isOverriddenAccessor(member, clazz.info.baseClasses)) { debugwarn("!!! is overridden val: "+member.fullLocationString) } else { // mixin field accessors val member1 = addMember( clazz, cloneBeforeErasure(mixinClass, clazz, member) //member.cloneSymbol(clazz) setPos clazz.pos resetFlag (DEFERRED | lateDEFERRED)) // println("mixing in: "+ (member, member.info, member1.info)) // atPhase(currentRun.erasurePhase){ // println("before erasure: "+ (member.info, member1.info)) // } if (member.isLazy) { var init = implClass(mixinClass).info.decl(member.name) assert(init != NoSymbol, "Could not find initializer for " + member.name) initializer(member1) = init } if (!member.isSetter) member.tpe match { case MethodType(Nil, ConstantType(_)) => // member is a constant; only getter is needed ; case MethodType(Nil, TypeRef(_, UnitClass, _)) => // member is a value of type unit. No field needed ; case _ => // otherwise mixin a field as well // atPhase: the private field is moved to the implementation class by erasure, // so it can no longer be found in the member's owner (the trait) val accessed = atPhase(currentRun.picklerPhase)(member.accessed) val sym = atPhase(currentRun.erasurePhase){ // #3857, need to retain info before erasure when cloning (since cloning only carries over the current entry in the type history) clazz.newValue(nme.getterToLocal(member.name), member.pos).setInfo(member.tpe.resultType) // so we have a type history entry before erasure } sym.updateInfo(member.tpe.resultType) // info at current phase addMember(clazz, sym setFlag (PrivateLocal | member.getFlag(MUTABLE | LAZY)) setFlag (if (!member.hasStableFlag) MUTABLE else 0) setAnnotations accessed.annotations) } } } else if (member.isSuperAccessor) { // mixin super accessors val member1 = addMember(clazz, member.cloneSymbol(clazz)) setPos clazz.pos assert(member1.alias != NoSymbol, member1) val alias1 = rebindSuper(clazz, member.alias, mixinClass) member1.asInstanceOf[TermSymbol] setAlias alias1 } else if (member.isMethod && member.isModule && member.hasNoFlags(LIFTED | BRIDGE)) { // mixin objects: todo what happens with abstract objects? addMember(clazz, member.cloneSymbol(clazz, member.flags & ~(DEFERRED | lateDEFERRED)) setPos clazz.pos) } } } for (mc <- clazz.mixinClasses) if (mc hasFlag lateINTERFACE) { // @SEAN: adding trait tracking so we don't have to recompile transitive closures unit.depends += mc addLateInterfaceMembers(mc) mixinTraitMembers(mc) mixinImplClassMembers(implClass(mc), mc) } } } /** The info transform for this phase does the following: * - The parents of every class are mapped from implementation class to interface * - Implementation classes become modules that inherit nothing * and that define all. */ override def transformInfo(sym: Symbol, tp: Type): Type = tp match { case ClassInfoType(parents, decls, clazz) => var parents1 = parents var decls1 = decls if (!clazz.isPackageClass) { atPhase(phase.next)(clazz.owner.info) if (clazz.isImplClass) { clazz setFlag lateMODULE var sourceModule = clazz.owner.info.decls.lookup(sym.name.toTermName) if (sourceModule != NoSymbol) { sourceModule setPos sym.pos sourceModule.flags = MODULE | FINAL } else { sourceModule = ( clazz.owner.newModuleSymbol(sym.name.toTermName, sym.pos, MODULE | FINAL) setModuleClass sym.asInstanceOf[ClassSymbol] ) clazz.owner.info.decls enter sourceModule } sourceModule setInfo sym.tpe // Companion module isn't visible for anonymous class at this point anyway assert(clazz.sourceModule != NoSymbol || clazz.isAnonymousClass, clazz + " has no sourceModule: sym = " + sym + " sym.tpe = " + sym.tpe) parents1 = List() decls1 = newScopeWith(decls.toList filter isImplementedStatically: _*) } else if (!parents.isEmpty) { parents1 = parents.head :: (parents.tail map toInterface) } } //decls1 = atPhase(phase.next)(newScopeWith(decls1.toList: _*))//debug if ((parents1 eq parents) && (decls1 eq decls)) tp else ClassInfoType(parents1, decls1, clazz) case MethodType(params, restp) => toInterfaceMap( if (isImplementedStatically(sym)) { val ownerParam = sym.newSyntheticValueParam(toInterface(sym.owner.typeOfThis)) MethodType(ownerParam :: params, restp) } else tp) case _ => tp } /** Return a map of single-use fields to the lazy value that uses them during initialization. * Each field has to be private and defined in the enclosing class, and there must * be exactly one lazy value using it. * * Such fields will be nulled after the initializer has memoized the lazy value. */ def singleUseFields(templ: Template): collection.Map[Symbol, List[Symbol]] = { val usedIn = new mutable.HashMap[Symbol, List[Symbol]] { override def default(key: Symbol) = Nil } object SingleUseTraverser extends Traverser { override def traverse(tree: Tree) { tree match { case Assign(lhs, rhs) => traverse(rhs) // assignments don't count case _ => if (tree.hasSymbol && tree.symbol != NoSymbol) { val sym = tree.symbol if ((sym.hasAccessorFlag || (sym.isTerm && !sym.isMethod)) && sym.isPrivate && !(currentOwner.isGetter && currentOwner.accessed == sym) // getter && !definitions.isValueClass(sym.tpe.resultType.typeSymbol) && sym.owner == templ.symbol.owner && !sym.isLazy && !tree.isDef) { log("added use in: " + currentOwner + " -- " + tree) usedIn(sym) ::= currentOwner } } super.traverse(tree) } } } SingleUseTraverser(templ) log("usedIn: " + usedIn) usedIn filter { case (_, member :: Nil) => member.isValue && member.isLazy case _ => false } } // --------- term transformation ----------------------------------------------- protected def newTransformer(unit: CompilationUnit): Transformer = new MixinTransformer(unit) class MixinTransformer(unit : CompilationUnit) extends Transformer { /** Within a static implementation method: the parameter referring to the * current object. Undefined everywhere else. */ private var self: Symbol = _ /** The rootContext used for typing */ private val rootContext = erasure.NoContext.make(EmptyTree, RootClass, newScope) /** The typer */ private var localTyper: erasure.Typer = _ private def typedPos(pos: Position)(tree: Tree) = localTyper typed { atPos(pos)(tree) } private def localTyped(pos: Position, tree: Tree, pt: Type) = localTyper.typed(atPos(pos)(tree), pt) /** Map lazy values to the fields they should null after initialization. */ private var lazyValNullables: Map[Symbol, Set[Symbol]] = _ /** Map a field symbol to a unique integer denoting its position in the class layout. * For each class, fields defined by the class come after inherited fields. Mixed-in * fields count as fields defined by the class itself. */ private val fieldOffset = perRunCaches.newMap[Symbol, Int]() /** The first transform; called in a pre-order traversal at phase mixin * (that is, every node is processed before its children). * What transform does: * - For every non-trait class, add all mixed in members to the class info. * - For every trait, add all late interface members to the class info * - For every static implementation method: * - remove override flag * - create a new method definition that also has a `self` parameter * (which comes first) Iuli: this position is assumed by tail call elimination * on a different receiver. Storing a new 'this' assumes it is located at * index 0 in the local variable table. See 'STORE_THIS' and GenJVM/GenMSIL. * - Map implementation class types in type-apply's to their interfaces * - Remove all fields in implementation classes */ private def preTransform(tree: Tree): Tree = { val sym = tree.symbol tree match { case Template(parents, self, body) => localTyper = erasure.newTyper(rootContext.make(tree, currentOwner)) atPhase(phase.next)(currentOwner.owner.info)//todo: needed? if (!currentOwner.isTrait && !isValueClass(currentOwner)) addMixedinMembers(currentOwner, unit) else if (currentOwner hasFlag lateINTERFACE) addLateInterfaceMembers(currentOwner) tree case DefDef(_, _, _, vparams :: Nil, _, _) => if (currentOwner.isImplClass) { if (isImplementedStatically(sym)) { sym setFlag notOVERRIDE self = sym.newValueParameter(nme.SELF, sym.pos) setInfo toInterface(currentOwner.typeOfThis) val selfdef = ValDef(self) setType NoType copyDefDef(tree)(vparamss = List(selfdef :: vparams)) } else EmptyTree } else { if (currentOwner.isTrait && sym.isSetter && !atPhase(currentRun.picklerPhase)(sym.isDeferred)) { sym.addAnnotation(TraitSetterAnnotationClass) } tree } case Apply(tapp @ TypeApply(fn, List(arg)), List()) => if (arg.tpe.typeSymbol.isImplClass) { val ifacetpe = toInterface(arg.tpe) arg.tpe = ifacetpe tapp.tpe = MethodType(List(), ifacetpe) tree.tpe = ifacetpe } tree case ValDef(_, _, _, _) if currentOwner.isImplClass => EmptyTree case _ => tree } } /** Create an identifier which references self parameter. */ private def selfRef(pos: Position) = gen.mkAttributedIdent(self) setPos pos /** Replace a super reference by this or the self parameter, depending * on whether we are in an implementation class or not. * Leave all other trees unchanged. */ private def transformSuper(tree: Tree) = tree match { case Super(qual, _) => transformThis(qual) case _ => tree } /** Replace a this reference to the current implementation class by the self * parameter. Leave all other trees unchanged. */ private def transformThis(tree: Tree) = tree match { case This(_) if tree.symbol.isImplClass => assert(tree.symbol == currentOwner.enclClass) selfRef(tree.pos) case _ => tree } /** Create a static reference to given symbol sym of the * form M.sym where M is the symbol's implementation module. */ private def staticRef(sym: Symbol): Tree = { sym.owner.info //todo: needed? sym.owner.owner.info //todo: needed? assert( sym.owner.sourceModule ne NoSymbol, "" + sym.fullLocationString + " in " + sym.owner.owner + " " + sym.owner.owner.info.decls ) REF(sym.owner.sourceModule) DOT sym } def needsInitAndHasOffset(sym: Symbol) = needsInitFlag(sym) && (fieldOffset contains sym) /** Examines the symbol and returns a name indicating what brand of * bitmap it requires. The possibilities are the BITMAP_* vals * defined in StdNames. If it needs no bitmap, nme.NO_NAME. */ def bitmapCategory(field: Symbol): Name = { import nme._ val isNormal = ( if (isFieldWithBitmap(field)) true // bitmaps for checkinit fields are not inherited else if (needsInitFlag(field) && !field.isDeferred) false else return NO_NAME ) if (field.accessed hasAnnotation TransientAttr) { if (isNormal) BITMAP_TRANSIENT else BITMAP_CHECKINIT_TRANSIENT } else if (field hasFlag PRIVATE | notPRIVATE) { if (isNormal) BITMAP_PRIVATE else BITMAP_CHECKINIT } else { if (isNormal) BITMAP_NORMAL else BITMAP_CHECKINIT } } /** Add all new definitions to a non-trait class * These fall into the following categories: * - for a trait interface: * - abstract accessors for all fields in the implementation class * - for a non-trait class: * - A field for every in a mixin class * - Setters and getters for such fields * - getters for mixed in lazy fields are completed * - module variables and module creators for every module in a mixin class * (except if module is lifted -- in this case the module variable * is local to some function, and the creator method is static.) * - A super accessor for every super accessor in a mixin class * - Forwarders for all methods that are implemented statically * All superaccessors are completed with right-hand sides (@see completeSuperAccessor) * @param clazz The class to which definitions are added */ private def addNewDefs(clazz: Symbol, stats: List[Tree]): List[Tree] = { val newDefs = mutable.ListBuffer[Tree]() /** Attribute given tree and anchor at given position */ def attributedDef(pos: Position, tree: Tree): Tree = { debuglog("add new def to " + clazz + ": " + tree) typedPos(pos)(tree) } /** The position of given symbol, or, if this is undefined, * the position of the current class. */ def position(sym: Symbol) = if (sym.pos == NoPosition) clazz.pos else sym.pos /** Add tree at given position as new definition */ def addDef(pos: Position, tree: Tree) { newDefs += attributedDef(pos, tree) } /** Add new method definition. * * @param sym The method symbol. * @param rhs The method body. */ def addDefDef(sym: Symbol, rhs: Tree = EmptyTree) = addDef(position(sym), DefDef(sym, rhs)) def addValDef(sym: Symbol, rhs: Tree = EmptyTree) = addDef(position(sym), ValDef(sym, rhs)) /** Add `newdefs` to `stats`, removing any abstract method definitions * in stats that are matched by some symbol defined in * newDefs. */ def add(stats: List[Tree], newDefs: List[Tree]) = { val newSyms = newDefs map (_.symbol) def isNotDuplicate(tree: Tree) = tree match { case DefDef(_, _, _, _, _, _) => val sym = tree.symbol !(sym.isDeferred && (newSyms exists (nsym => nsym.name == sym.name && (nsym.tpe matches sym.tpe)))) case _ => true } if (newDefs.isEmpty) stats else newDefs ::: (stats filter isNotDuplicate) } def addDeferredBitmap(clazz: Symbol, tree: Tree) { // Append the set of deferred defs deferredBitmaps(clazz) ::= typedPos(clazz.pos)(tree) } /** If `stat` is a superaccessor, complete it by adding a right-hand side. * Note: superaccessors are always abstract until this point. * The method to call in a superaccessor is stored in the accessor symbol's alias field. * The rhs is: * super.A(xs) where A is the super accessor's alias and xs are its formal parameters. * This rhs is typed and then mixin transformed. */ def completeSuperAccessor(stat: Tree) = stat match { case DefDef(_, _, _, vparams :: Nil, _, EmptyTree) if stat.symbol.isSuperAccessor => val rhs0 = (Super(clazz, tpnme.EMPTY) DOT stat.symbol.alias)(vparams map (v => Ident(v.symbol)): _*) val rhs1 = localTyped(stat.pos, rhs0, stat.symbol.tpe.resultType) debuglog( "complete super acc " + stat.symbol.fullLocationString + " " + rhs1 + " " + stat.symbol.alias.fullLocationString + "/" + stat.symbol.alias.owner.hasFlag(lateINTERFACE) )//debug deriveDefDef(stat)(_ => atPhase(currentRun.mixinPhase)(transform(rhs1))) case _ => stat } import lazyVals._ /** * Private or transient lazy vals use bitmaps that are private for the class context, * unlike public or protected vals, which can use inherited bitmaps. * Similarly fields in the checkinit mode use private bitmaps. */ def isLocalBitmapField(field: Symbol) = ( field.accessed.hasAnnotation(TransientAttr) || field.hasFlag(PRIVATE | notPRIVATE) || isCheckInitField(field) ) /** * Return the bitmap field for 'offset'. Depending on the hierarchy it is possible to reuse * the bitmap of its parents. If that does not exist yet we create one. */ def bitmapFor(clazz0: Symbol, offset: Int, field: Symbol, searchParents: Boolean = true): Symbol = { val category = bitmapCategory(field) val bitmapName = nme.newBitmapName(category, offset / FLAGS_PER_WORD) val sym = clazz0.info.member(bitmapName) assert(!sym.isOverloaded, sym) def createBitmap: Symbol = { val sym = clazz0.newVariable(bitmapName, clazz0.pos) setInfo IntClass.tpe atPhase(currentRun.typerPhase)(sym addAnnotation VolatileAttr) category match { case nme.BITMAP_TRANSIENT | nme.BITMAP_CHECKINIT_TRANSIENT => sym addAnnotation TransientAttr case _ => } category match { case nme.BITMAP_NORMAL if field.isLazy => sym setFlag PROTECTED case _ => sym setFlag PrivateLocal } clazz0.info.decls.enter(sym) if (clazz0 == clazz) addDef(clazz.pos, VAL(sym) === ZERO) else { //FIXME: the assertion below will not work because of the way bitmaps are added. // They should be added during infoTransform, so that in separate compilation, bitmap // is a member of clazz and doesn't fail the condition couple lines below. // This works, as long as we assume that the previous classes were compiled correctly. //assert(clazz0.sourceFile != null) addDeferredBitmap(clazz0, VAL(sym) === ZERO) } sym } if (sym ne NoSymbol) sym else if (searchParents && !isLocalBitmapField(field)) bitmapForParents(clazz0, offset, field) getOrElse createBitmap else createBitmap } def bitmapForParents(clazz0: Symbol, offset: Int, valSym: Symbol): Option[Symbol] = { def requiredBitmaps(fs: Int): Int = if (fs == 0) -1 else (fs - 1) / FLAGS_PER_WORD val bitmapNum = offset / FLAGS_PER_WORD // filter private and transient // since we do not inherit normal values (in checkinit mode) also filter them out // !!! Not sure how that comment relates to this code... superClassesToCheck(clazz0) foreach { cl => val fields0 = usedBits(cl) if (requiredBitmaps(fields0) < bitmapNum) { val fields1 = cl.info.decls filter isNonLocalFieldWithBitmap size; return { if (requiredBitmaps(fields0 + fields1) >= bitmapNum) Some(bitmapFor(cl, offset, valSym, false)) else None // Don't waste time, since we won't find bitmap anyway } } } None } /** Return an (untyped) tree of the form 'Clazz.this.bmp = Clazz.this.bmp | mask'. */ def mkSetFlag(clazz: Symbol, offset: Int, valSym: Symbol): Tree = { val bmp = bitmapFor(clazz, offset, valSym) val mask = LIT(1 << (offset % FLAGS_PER_WORD)) def x = This(clazz) DOT bmp x === (x INT_| mask) } /** Return an (untyped) tree of the form 'clazz.this.bitmapSym & mask (==|!=) 0', the * precise comparison operator depending on the value of 'equalToZero'. */ def mkTest(clazz: Symbol, mask: Tree, bitmapSym: Symbol, equalToZero: Boolean): Tree = { def lhs = (This(clazz) DOT bitmapSym) INT_& mask if (equalToZero) lhs INT_== ZERO else lhs INT_!= ZERO } /** return a 'lazified' version of rhs. It uses double-checked locking to ensure * initialization is performed at most once. Private fields used only in this * initializer are subsequently set to null. * * @param clazz The class symbol * @param init The tree which initializes the field ( f = ) * @param fieldSym The symbol of this lazy field * @param offset The offset of this field in the flags bitmap * * The result will be a tree of the form * { * if ((bitmap$n & MASK) == 0) { * synchronized(this) { * if ((bitmap$n & MASK) == 0) { * init // l$ = * bitmap$n = bimap$n | MASK * } * } * this.f1 = null * ... this.fn = null * } * l$ * } * where bitmap$n is an int value acting as a bitmap of initialized values. It is * the 'n' is (offset / 32), the MASK is (1 << (offset % 32)). */ def mkLazyDef(clazz: Symbol, lzyVal: Symbol, init: List[Tree], retVal: Tree, offset: Int): Tree = { def nullify(sym: Symbol) = Select(This(clazz), sym.accessedOrSelf) === LIT(null) val bitmapSym = bitmapFor(clazz, offset, lzyVal) val mask = LIT(1 << (offset % FLAGS_PER_WORD)) def cond = mkTest(clazz, mask, bitmapSym, true) val nulls = lazyValNullables(lzyVal).toList sortBy (_.id) map nullify def syncBody = init ::: List(mkSetFlag(clazz, offset, lzyVal), UNIT) log("nulling fields inside " + lzyVal + ": " + nulls) val result = gen.mkDoubleCheckedLocking(clazz, cond, syncBody, nulls) typedPos(init.head.pos)(BLOCK(result, retVal)) } def mkInnerClassAccessorDoubleChecked(attrThis: Tree, rhs: Tree): Tree = rhs match { case Block(List(assign), returnTree) => val Assign(moduleVarRef, _) = assign val cond = Apply(Select(moduleVarRef, nme.eq), List(NULL)) val doubleSynchrTree = gen.mkDoubleCheckedLocking(attrThis, cond, List(assign), Nil) Block(List(doubleSynchrTree), returnTree) case _ => assert(false, "Invalid getter " + rhs + " for module in class " + clazz) EmptyTree } def mkCheckedAccessor(clazz: Symbol, retVal: Tree, offset: Int, pos: Position, fieldSym: Symbol): Tree = { val bitmapSym = bitmapFor(clazz, offset, fieldSym.getter(fieldSym.owner)) val mask = LIT(1 << (offset % FLAGS_PER_WORD)) val msg = "Uninitialized field: " + unit.source + ": " + pos.line val result = IF (mkTest(clazz, mask, bitmapSym, false)) . THEN (retVal) . ELSE (THROW(UninitializedErrorClass, LIT(msg))) typedPos(pos)(BLOCK(result, retVal)) } /** Complete lazy field accessors. Applies only to classes, * for it's own (non inherited) lazy fields. If 'checkinit' * is enabled, getters that check for the initialized bit are * generated, and the class constructor is changed to set the * initialized bits. */ def addCheckedGetters(clazz: Symbol, stats: List[Tree]): List[Tree] = { def dd(stat: DefDef) = { val sym = stat.symbol def isUnit = sym.tpe.resultType.typeSymbol == UnitClass def isEmpty = stat.rhs == EmptyTree if (sym.isLazy && !isEmpty && !clazz.isImplClass) { assert(fieldOffset contains sym, sym) deriveDefDef(stat)(rhs => if (isUnit) mkLazyDef(clazz, sym, List(rhs), UNIT, fieldOffset(sym)) else { val Block(stats, res) = rhs mkLazyDef(clazz, sym, stats, Select(This(clazz), res.symbol), fieldOffset(sym)) } ) } else if (needsInitFlag(sym) && !isEmpty && !clazz.hasFlag(IMPLCLASS | TRAIT)) { assert(fieldOffset contains sym, sym) deriveDefDef(stat)(rhs => (mkCheckedAccessor(clazz, _: Tree, fieldOffset(sym), stat.pos, sym))( if (sym.tpe.resultType.typeSymbol == UnitClass) UNIT else rhs ) ) } else if (sym.isConstructor) { deriveDefDef(stat)(addInitBits(clazz, _)) } else if (settings.checkInit.value && !clazz.isTrait && sym.isSetter) { val getter = sym.getter(clazz) if (needsInitFlag(getter) && fieldOffset.isDefinedAt(getter)) deriveDefDef(stat)(rhs => Block(List(rhs, localTyper.typed(mkSetFlag(clazz, fieldOffset(getter), getter))), UNIT)) else stat } else if (sym.isModule && (!clazz.isTrait || clazz.isImplClass) && !sym.isBridge) { deriveDefDef(stat)(rhs => typedPos(stat.pos)( mkInnerClassAccessorDoubleChecked( // Martin to Hubert: I think this can be replaced by selfRef(tree.pos) // @PP: It does not seem so, it crashes for me trying to bootstrap. if (clazz.isImplClass) gen.mkAttributedIdent(stat.vparamss.head.head.symbol) else gen.mkAttributedThis(clazz), rhs ) ) ) } else stat } stats map { case defn: DefDef => dd(defn) case stat => stat } } class AddInitBitsTransformer(clazz: Symbol) extends Transformer { private def checkedGetter(lhs: Tree) = { val sym = clazz.info decl lhs.symbol.getterName suchThat (_.isGetter) if (needsInitAndHasOffset(sym)) { log("adding checked getter for: " + sym + " " + lhs.symbol.defaultFlagString) List(localTyper typed mkSetFlag(clazz, fieldOffset(sym), sym)) } else Nil } override def transformStats(stats: List[Tree], exprOwner: Symbol) = { // !!! Ident(self) is never referenced, is it supposed to be confirming // that self is anything in particular? super.transformStats( stats flatMap { case stat @ Assign(lhs @ Select(This(_), _), rhs) => stat :: checkedGetter(lhs) // remove initialization for default values case Apply(lhs @ Select(Ident(self), _), List(EmptyTree)) if lhs.symbol.isSetter => Nil case stat => List(stat) }, exprOwner ) } } /** Adds statements to set the 'init' bit for each field initialized * in the body of a constructor. */ def addInitBits(clazz: Symbol, rhs: Tree): Tree = new AddInitBitsTransformer(clazz) transform rhs def isNonLocalFieldWithBitmap(field: Symbol) = isFieldWithBitmap(field) && !isLocalBitmapField(field) def isCheckInitField(field: Symbol) = needsInitFlag(field) && !field.isDeferred def superClassesToCheck(clazz: Symbol) = clazz.ancestors filterNot (_ hasFlag TRAIT | JAVA) /** * Return the number of bits used by superclass fields. */ def usedBits(clazz0: Symbol): Int = superClassesToCheck(clazz0) flatMap (_.info.decls) count { f => f.owner != clazz0 && isNonLocalFieldWithBitmap(f) } // begin addNewDefs /** Fill the map from fields to offset numbers. * Instead of field symbols, the map keeps their getter symbols. This makes * code generation easier later. */ def buildBitmapOffsets() { def fold(zero: Int, fields: List[Symbol]) = { var idx = zero fields foreach { f => idx += 1 fieldOffset(f) = idx } } clazz.info.decls.toList groupBy bitmapCategory foreach { case (nme.NO_NAME, _) => () case (nme.BITMAP_NORMAL, fields) => fold(usedBits(clazz), fields) case (_, fields) => fold(0, fields) } } buildBitmapOffsets() var stats1 = addCheckedGetters(clazz, stats) // add deferred bitmaps deferredBitmaps remove clazz foreach { d => stats1 = add(stats1, d) } def accessedReference(sym: Symbol) = sym.tpe match { case MethodType(Nil, ConstantType(c)) => Literal(c) case _ => // if it is a mixed-in lazy value, complete the accessor if (sym.isLazy && sym.isGetter) { val isUnit = sym.tpe.resultType.typeSymbol == UnitClass val initCall = Apply(staticRef(initializer(sym)), gen.mkAttributedThis(clazz) :: Nil) val selection = Select(This(clazz), sym.accessed) val init = if (isUnit) initCall else atPos(sym.pos)(Assign(selection, initCall)) val returns = if (isUnit) UNIT else selection mkLazyDef(clazz, sym, List(init), returns, fieldOffset(sym)) } else sym.getter(sym.owner).tpe.resultType.typeSymbol match { case UnitClass => UNIT case _ => Select(This(clazz), sym.accessed) } } def isOverriddenSetter(sym: Symbol) = nme.isTraitSetterName(sym.name) && { val other = sym.nextOverriddenSymbol isOverriddenAccessor(other.getter(other.owner), clazz.info.baseClasses) } // for all symbols `sym` in the class definition, which are mixed in: for (sym <- clazz.info.decls ; if sym hasFlag MIXEDIN) { // if current class is a trait interface, add an abstract method for accessor `sym` if (clazz hasFlag lateINTERFACE) { addDefDef(sym) } // if class is not a trait add accessor definitions else if (!clazz.isTrait) { if (sym.hasAccessorFlag && (!sym.isDeferred || sym.hasFlag(lateDEFERRED))) { // add accessor definitions addDefDef(sym, { val accessedRef = accessedReference(sym) if (sym.isSetter) { if (isOverriddenSetter(sym)) UNIT else accessedRef match { case Literal(_) => accessedRef case _ => val init = Assign(accessedRef, Ident(sym.firstParam)) val getter = sym.getter(clazz) if (!needsInitFlag(getter)) init else Block(init, mkSetFlag(clazz, fieldOffset(getter), getter), UNIT) } } else if (needsInitFlag(sym)) mkCheckedAccessor(clazz, accessedRef, fieldOffset(sym), sym.pos, sym) else gen.mkCheckInit(accessedRef) }) } else if (sym.isModule && !(sym hasFlag LIFTED | BRIDGE)) { // add modules val vdef = gen.mkModuleVarDef(sym) addDef(position(sym), vdef) val rhs = gen.newModule(sym, vdef.symbol.tpe) val assignAndRet = gen.mkAssignAndReturn(vdef.symbol, rhs) val attrThis = gen.mkAttributedThis(clazz) val rhs1 = mkInnerClassAccessorDoubleChecked(attrThis, assignAndRet) addDefDef(sym, rhs1) } else if (!sym.isMethod) { // add fields addValDef(sym) } else if (sym.isSuperAccessor) { // add superaccessors addDefDef(sym) } else { // add forwarders assert(sym.alias != NoSymbol, sym) // debuglog("New forwarder: " + sym.defString + " => " + sym.alias.defString) addDefDef(sym, Apply(staticRef(sym.alias), gen.mkAttributedThis(clazz) :: sym.paramss.head.map(Ident))) } } } stats1 = add(stats1, newDefs.toList) if (!clazz.isTrait) stats1 = stats1 map completeSuperAccessor stats1 } private def nullableFields(templ: Template): Map[Symbol, Set[Symbol]] = { val scope = templ.symbol.owner.info.decls // if there are no lazy fields, take the fast path and save a traversal of the whole AST if (scope exists (_.isLazy)) { val map = mutable.Map[Symbol, Set[Symbol]]() withDefaultValue Set() // check what fields can be nulled for for ((field, users) <- singleUseFields(templ); lazyFld <- users) map(lazyFld) += field map.toMap } else Map() } /** The transform that gets applied to a tree after it has been completely * traversed and possible modified by a preTransform. * This step will * - change every node type that refers to an implementation class to its * corresponding interface, unless the node's symbol is an implementation class. * - change parents of templates to conform to parents in the symbol info * - add all new definitions to a class or interface * - remove widening casts * - change calls to methods which are defined only in implementation classes * to static calls of methods in implementation modules (@see staticCall) * - change super calls to methods in implementation classes to static calls * (@see staticCall) * - change `this` in implementation modules to references to the self parameter * - refer to fields in some implementation class via an abstract method in the interface. */ private def postTransform(tree: Tree): Tree = { val sym = tree.symbol // assert(tree.tpe ne null, tree.getClass +" : "+ tree +" in "+ localTyper.context.tree) // change every node type that refers to an implementation class to its // corresponding interface, unless the node's symbol is an implementation class. if (tree.tpe.typeSymbol.isImplClass && ((sym eq null) || !sym.isImplClass)) tree.tpe = toInterface(tree.tpe) tree match { case Template(parents, self, body) => // change parents of templates to conform to parents in the symbol info val parents1 = currentOwner.info.parents map (t => TypeTree(t) setPos tree.pos) // mark fields which can be nulled afterward lazyValNullables = nullableFields(tree.asInstanceOf[Template]) withDefaultValue Set() // add all new definitions to current class or interface treeCopy.Template(tree, parents1, self, addNewDefs(currentOwner, body)) // remove widening casts case Apply(TypeApply(Select(qual, _), targ :: _), _) if isCastSymbol(sym) && (qual.tpe <:< targ.tpe) => qual case Apply(Select(qual, _), args) => /** Changes qual.m(args) where m refers to an implementation * class method to Q.m(S, args) where Q is the implementation module of * m and S is the self parameter for the call, which * is determined as follows: * - if qual != super, qual itself * - if qual == super, and we are in an implementation class, * the current self parameter. * - if qual == super, and we are not in an implementation class, `this` */ def staticCall(target: Symbol) = { def implSym = implClass(sym.owner).info.member(sym.name) assert(target ne NoSymbol, List(sym + ":", sym.tpe, sym.owner, implClass(sym.owner), implSym, atPhase(phase.prev)(implSym.tpe), phase) mkString " " ) typedPos(tree.pos)(Apply(staticRef(target), transformSuper(qual) :: args)) } if (isStaticOnly(sym)) { // change calls to methods which are defined only in implementation // classes to static calls of methods in implementation modules staticCall(sym) } else qual match { case Super(_, mix) => // change super calls to methods in implementation classes to static calls. // Transform references super.m(args) as follows: // - if `m` refers to a trait, insert a static call to the corresponding static // implementation // - otherwise return tree unchanged if (mix == tpnme.EMPTY && currentOwner.enclClass.isImplClass) assert(false, "illegal super in trait: " + currentOwner.enclClass + " " + tree); if (sym.owner hasFlag lateINTERFACE) { if (sym.hasAccessorFlag) { assert(args.isEmpty, args) val sym1 = sym.overridingSymbol(currentOwner.enclClass) typedPos(tree.pos)((transformSuper(qual) DOT sym1)()) } else { staticCall(atPhase(phase.prev)(sym.overridingSymbol(implClass(sym.owner)))) } } else { assert(!currentOwner.enclClass.isImplClass, currentOwner.enclClass) tree } case _ => tree } case This(_) => transformThis(tree) case Select(Super(_, _), name) => tree case Select(qual, name) if sym.owner.isImplClass && !isStaticOnly(sym) => assert(!sym.isMethod, "no method allowed here: %s%s %s".format(sym, sym.isImplOnly, flagsToString(sym.flags))) // refer to fields in some implementation class via an abstract // getter in the interface. val iface = toInterface(sym.owner.tpe).typeSymbol val getter = sym.getter(iface) assert(getter != NoSymbol, sym) typedPos(tree.pos)((qual DOT getter)()) case Assign(Apply(lhs @ Select(qual, _), List()), rhs) => // assign to fields in some implementation class via an abstract // setter in the interface. def setter = lhs.symbol.setter( toInterface(lhs.symbol.owner.tpe).typeSymbol, needsExpandedSetterName(lhs.symbol) ) setPos lhs.pos typedPos(tree.pos)((qual DOT setter)(rhs)) case _ => tree } } /** The main transform method. * This performs pre-order traversal preTransform at mixin phase; * when coming back, it performs a postTransform at phase after. */ override def transform(tree: Tree): Tree = { val saved = localTyper val tree1 = super.transform(preTransform(tree)) // localTyper needed when not flattening inner classes. parts after an // inner class will otherwise be typechecked with a wrong scope try atPhase(phase.next)(postTransform(tree1)) finally localTyper = saved } } }