/* NSC -- new Scala compiler * Copyright 2005-2010 LAMP/EPFL * @author Martin Odersky */ //todo: rewrite or disllow new T where T is a mixin (currently: not a member of T) //todo: use inherited type info also for vars and values //todo: disallow C#D in superclass //todo: treat :::= correctly package scala.tools.nsc package typechecker import scala.collection.mutable.{LinkedHashMap, ListBuffer} import scala.tools.nsc.util.{HashSet, Set, SourceFile} import symtab.Flags._ import util.Statistics._ /** This trait provides methods to find various kinds of implicits. * * @author Martin Odersky * @version 1.0 */ trait Implicits { self: Analyzer => import global._ import definitions._ def traceImplicits = printTypings import global.typer.{printTyping, deindentTyping, indentTyping} /** Search for an implicit value. See the comment on `result` at the end of class `ImplicitSearch` * for more info how the search is conducted. * @param tree The tree for which the implicit needs to be inserted. * (the inference might instantiate some of the undetermined * type parameters of that tree. * @param pt The expected type of the implicit. * @param reportAmbiguous Should ambiguous implicit errors be reported? * False iff we search for a view to find out * whether one type is coercible to another. * @param isView We are looking for a view * @param context The current context * @return A search result */ def inferImplicit(tree: Tree, pt: Type, reportAmbiguous: Boolean, isView: Boolean, context: Context): SearchResult = { printTyping("Beginning implicit search for "+ tree +" expecting "+ pt + (if(isView) " looking for a view" else "")) indentTyping() val rawTypeStart = startCounter(rawTypeImpl) val findMemberStart = startCounter(findMemberImpl) val subtypeStart = startCounter(subtypeImpl) val start = startTimer(implicitNanos) if (traceImplicits && !tree.isEmpty && !context.undetparams.isEmpty) println("typing implicit with undetermined type params: "+context.undetparams+"\n"+tree) val result = new ImplicitSearch(tree, pt, isView, context.makeImplicit(reportAmbiguous)).bestImplicit context.undetparams = context.undetparams filterNot (result.subst.from contains _) stopTimer(implicitNanos, start) stopCounter(rawTypeImpl, rawTypeStart) stopCounter(findMemberImpl, findMemberStart) stopCounter(subtypeImpl, subtypeStart) deindentTyping() printTyping("Implicit search yielded: "+ result) result } final val sizeLimit = 50000 val implicitsCache = new LinkedHashMap[Type, List[List[ImplicitInfo]]] def resetImplicits() { implicitsCache.clear() } /** If type `pt` an instance of Manifest or OptManifest, or an abstract type lower-bounded * by such an instance? */ def isManifest(pt: Type): Boolean = pt.dealias match { case TypeRef(_, PartialManifestClass, List(_)) | TypeRef(_, FullManifestClass, List(_)) | TypeRef(_, OptManifestClass, List(_)) => true case TypeRef(_, tsym, _) => tsym.isAbstractType && isManifest(pt.bounds.lo) case _ => false } /** The result of an implicit search * @param tree The tree representing the implicit * @param subst A substituter that represents the undetermined type parameters * that were instantiated by the winning implicit. */ class SearchResult(val tree: Tree, val subst: TreeTypeSubstituter) { override def toString = "SearchResult("+tree+", "+subst+")" } lazy val SearchFailure = new SearchResult(EmptyTree, EmptyTreeTypeSubstituter) /** A class that records an available implicit * @param name The name of the implicit * @param pre The prefix type of the implicit * @param sym The symbol of the implicit */ class ImplicitInfo(val name: Name, val pre: Type, val sym: Symbol) { private var tpeCache: Type = null /** Computes member type of implicit from prefix `pre` (cached). */ def tpe: Type = { if (tpeCache eq null) tpeCache = pre.memberType(sym) tpeCache } /** Does type `tp` contain an Error type as parameter or result? */ private def containsError(tp: Type): Boolean = tp match { case PolyType(tparams, restpe) => containsError(restpe) case MethodType(params, restpe) => for (p <- params) if (p.tpe.isError) return true containsError(restpe) case _ => tp.isError } def isCyclicOrErroneous = try { containsError(tpe) } catch { case ex: CyclicReference => true } override def equals(other: Any) = other match { case that: ImplicitInfo => this.name == that.name && this.pre =:= that.pre && this.sym == that.sym case _ => false } override def hashCode = name.## + pre.## + sym.## override def toString = "ImplicitInfo(" + name + "," + pre + "," + sym + ")" } /** A sentinel indicating no implicit was found */ val NoImplicitInfo = new ImplicitInfo(null, NoType, NoSymbol) { // equals used to be implemented in ImplicitInfo with an `if(this eq NoImplicitInfo)` // overriding the equals here seems cleaner and benchmarks show no difference in performance override def equals(other: Any) = other match { case that: AnyRef => that eq this case _ => false } override def hashCode = 1 } /** A constructor for types ?{ name: tp }, used in infer view to member * searches. */ def memberWildcardType(name: Name, tp: Type) = { val result = refinedType(List(WildcardType), NoSymbol) var psym = name match { case x: TypeName => result.typeSymbol.newAbstractType(NoPosition, x) case x: TermName => result.typeSymbol.newValue(NoPosition, x) } psym setInfo tp result.decls enter psym result } /** An extractor for types of the form ? { name: ? } */ object HasMember { def apply(name: Name): Type = memberWildcardType(name, WildcardType) def unapply(pt: Type): Option[Name] = pt match { case RefinedType(List(WildcardType), decls) => decls.toList match { case List(sym) if (sym.tpe == WildcardType) => Some(sym.name) case _ => None } case _ => None } } /** An extractor for types of the form ? { name: (? >: argtpe <: Any*)restp } */ object HasMethodMatching { def apply(name: Name, argtpes: List[Type], restpe: Type): Type = { def templateArgType(argtpe: Type) = new BoundedWildcardType(TypeBounds(argtpe, AnyClass.tpe)) val dummyMethod = new TermSymbol(NoSymbol, NoPosition, "typer$dummy") val mtpe = MethodType(dummyMethod.newSyntheticValueParams(argtpes map templateArgType), restpe) memberWildcardType(name, mtpe) } def unapply(pt: Type): Option[(Name, List[Type], Type)] = pt match { case RefinedType(List(WildcardType), decls) => decls.toList match { case List(sym) => sym.tpe match { case MethodType(params, restpe) if (params forall (_.tpe.isInstanceOf[BoundedWildcardType])) => Some((sym.name, params map (_.tpe.bounds.lo), restpe)) case _ => None } case _ => None } case _ => None } } /** An extractor for unary function types arg => res */ object Function1 { def unapply(tp: Type) = tp match { case TypeRef(_, sym, List(arg, res)) if (sym == FunctionClass(1)) => Some(arg, res) case _ => None } } /** A class that sets up an implicit search. For more info, see comments for `inferImplicit`. * @param tree The tree for which the implicit needs to be inserted. * @param pt The original expected type of the implicit. * @param isView We are looking for a view * @param context0 The context used for the implicit search */ class ImplicitSearch(tree: Tree, pt: Type, isView: Boolean, context0: Context) extends Typer(context0) { printTyping("begin implicit search: "+(tree, pt, isView, context.outer.undetparams)) // assert(tree.isEmpty || tree.pos.isDefined, tree) import infer._ /** Is implicit info `info1` better than implicit info `info2`? */ def improves(info1: ImplicitInfo, info2: ImplicitInfo) = { incCounter(improvesCount) (info2 == NoImplicitInfo) || (info1 != NoImplicitInfo) && isStrictlyMoreSpecific(info1.tpe, info2.tpe, info1.sym, info2.sym) } /** Map all type params in given list to WildcardType * @param tp The type in which to do the mapping * @param tparams The list of type parameters to map */ private def tparamsToWildcards(tp: Type, tparams: List[Symbol]) = tp.instantiateTypeParams(tparams, tparams map (t => WildcardType)) /* Map a polytype to one in which all type parameters and argument-dependent types are replaced by wildcards. * Consider `implicit def b(implicit x: A): x.T = error("")`. We need to approximate DebruijnIndex types * when checking whether `b` is a valid implicit, as we haven't even searched a value for the implicit arg `x`, * so we have to approximate (otherwise it is excluded a priori). */ private def depoly(tp: Type): Type = tp match { case PolyType(tparams, restpe) => tparamsToWildcards(ApproximateDependentMap(restpe), tparams) case _ => ApproximateDependentMap(tp) } /** Does type `dtor` dominate type `dted`? * This is the case if the stripped cores `dtor1` and `dted1` of both types are * the same wrt `=:=`, or if they overlap and the complexity of `dtor1` is higher * than the complexity of `dted1`. * The _stripped core_ of a type is the type where * - all refinements and annotations are dropped, * - all universal and existential quantification is eliminated * by replacing variables by their upper bounds, * - all remaining free type parameters in the type are replaced by WildcardType. * The _complexity_ of a stripped core type corresponds roughly to the number of * nodes in its ast, except that singleton types are widened before taking the complexity. * Two types overlap if they have the same type symbol, or * if one or both are intersection types with a pair of overlapiing parent types. */ private def dominates(dtor: Type, dted: Type): Boolean = { def core(tp: Type): Type = tp.normalize match { case RefinedType(parents, defs) => intersectionType(parents map core, tp.typeSymbol.owner) case AnnotatedType(annots, tp, selfsym) => core(tp) case ExistentialType(tparams, result) => core(result).subst(tparams, tparams map (t => core(t.info.bounds.hi))) case PolyType(tparams, result) => core(result).subst(tparams, tparams map (t => core(t.info.bounds.hi))) case _ => tp } def stripped(tp: Type): Type = { val tparams = freeTypeParametersNoSkolems.collect(tp) tp.subst(tparams, tparams map (t => WildcardType)) } def sum(xs: List[Int]) = (0 /: xs)(_ + _) def complexity(tp: Type): Int = tp.normalize match { case NoPrefix => 0 case SingleType(pre, sym) => if (sym.isPackage) 0 else complexity(tp.widen) case TypeRef(pre, sym, args) => complexity(pre) + sum(args map complexity) + 1 case RefinedType(parents, _) => sum(parents map complexity) + 1 case _ => 1 } def overlaps(tp1: Type, tp2: Type): Boolean = (tp1, tp2) match { case (RefinedType(parents, _), _) => parents exists (overlaps(_, tp2)) case (_, RefinedType(parents, _)) => parents exists (overlaps(tp1, _)) case _ => tp1.typeSymbol == tp2.typeSymbol } val dtor1 = stripped(core(dtor)) val dted1 = stripped(core(dted)) overlaps(dtor1, dted1) && (dtor1 =:= dted1 || complexity(dtor1) > complexity(dted1)) } incCounter(implicitSearchCount) /** Issues an error signalling ambiguous implicits */ private def ambiguousImplicitError(info1: ImplicitInfo, info2: ImplicitInfo, pre1: String, pre2: String, trailer: String) = if (!info1.tpe.isErroneous && !info2.tpe.isErroneous) { val coreMsg = pre1+" "+info1.sym+info1.sym.locationString+" of type "+info1.tpe+"\n "+ pre2+" "+info2.sym+info2.sym.locationString+" of type "+info2.tpe+"\n "+ trailer error(tree.pos, if (isView) { val found = pt.typeArgs(0) val req = pt.typeArgs(1) /** A nice spot to explain some common situations a little * less confusingly. */ def explanation = { if ((found =:= AnyClass.tpe) && (AnyRefClass.tpe <:< req)) "Note: Any is not implicitly converted to AnyRef. You can safely\n" + "pattern match x: AnyRef or cast x.asInstanceOf[AnyRef] to do so." else if ((found <:< AnyValClass.tpe) && (AnyRefClass.tpe <:< req)) "Note: primitive types are not implicitly converted to AnyRef.\n" + "You can safely force boxing by casting x.asInstanceOf[AnyRef]." else "Note that implicit conversions are not applicable because they are ambiguous:\n "+ coreMsg+"are possible conversion functions from "+ found+" to "+req } typeErrorMsg(found, req) + "\n" + explanation } else { "ambiguous implicit values:\n "+coreMsg + "match expected type "+pt }) } /** The type parameters to instantiate */ val undetParams = if (isView) List() else context.outer.undetparams /** Replace undetParams in type `tp` by Any/Nothing, according to variance */ def approximate(tp: Type) = tp.instantiateTypeParams(undetParams, undetParams map (_ => WildcardType)) val wildPt = approximate(pt) /** Try to construct a typed tree from given implicit info with given * expected type. * Detect infinite search trees for implicits. * * @param info The given implicit info describing the implicit definition * @pre info.tpe does not contain an error */ private def typedImplicit(info: ImplicitInfo): SearchResult = (context.openImplicits find { case (tp, sym) => sym == tree.symbol && dominates(pt, tp)}) match { case Some(pending) => // println("Pending implicit "+pending+" dominates "+pt+"/"+undetParams) //@MDEBUG throw DivergentImplicit case None => try { context.openImplicits = (pt, tree.symbol) :: context.openImplicits // println(" "*context.openImplicits.length+"typed implicit "+info+" for "+pt) //@MDEBUG typedImplicit0(info) } catch { case DivergentImplicit => // println("DivergentImplicit for pt:"+ pt +", open implicits:"+context.openImplicits) //@MDEBUG if (context.openImplicits.tail.isEmpty) { if (!(pt.isErroneous)) context.unit.error( tree.pos, "diverging implicit expansion for type "+pt+"\nstarting with "+ info.sym+info.sym.locationString) SearchFailure } else { throw DivergentImplicit } } finally { context.openImplicits = context.openImplicits.tail } } private def typedImplicit0(info: ImplicitInfo): SearchResult = { /** Todo reconcile with definition of stability given in Types.scala */ def isStable(tp: Type): Boolean = tp match { case TypeRef(pre, sym, _) => sym.isPackageClass || sym.isModuleClass && isStable(pre) /*|| sym.isAliasType && isStable(tp.normalize)*/ case _ => tp.isStable } /** Does type `tp' match expected type `pt' * This is the case if either `pt' is a unary function type with a * HasMethodMatching type as result, and `tp' is a unary function * or method type whose result type has a method whose name and type * correspond to the HasMethodMatching type, * or otherwise if `tp' is compatible with `pt'. * This method is performance critical: 5-8% of typechecking time. */ def matchesPt(tp: Type, pt: Type, undet: List[Symbol]) = { val start = startTimer(matchesPtNanos) val result = normSubType(tp, pt) || isView && { pt match { case Function1(arg, res) => matchesPtView(tp, arg, res, undet) case _ => false } } stopTimer(matchesPtNanos, start) result } def matchesPtView(tp: Type, ptarg: Type, ptres: Type, undet: List[Symbol]): Boolean = tp match { case mt @ MethodType(params, restpe) => if (mt.isImplicit) matchesPtView(restpe, ptarg, ptres, undet) else params.length == 1 && matchesArgRes(params.head.tpe, restpe, ptarg, ptres, undet) case ExistentialType(tparams, qtpe) => matchesPtView(normalize(qtpe), ptarg, ptres, undet) case Function1(arg1, res1) => matchesArgRes(arg1, res1, ptarg, ptres, undet) case _ => false } def matchesArgRes(tparg: Type, tpres: Type, ptarg: Type, ptres: Type, undet: List[Symbol]): Boolean = (ptarg weak_<:< tparg) && { ptres match { case HasMethodMatching(name, argtpes, restpe) => (tpres.member(name) filter (m => isApplicableSafe(undet, m.tpe, argtpes, restpe))) != NoSymbol case _ => tpres <:< ptres } } incCounter(plausiblyCompatibleImplicits) printTyping("typed impl for "+wildPt+"? "+info.name +":"+ depoly(info.tpe)+ " orig info= "+ info.tpe +"/"+undetParams+"/"+isPlausiblyCompatible(info.tpe, wildPt)+"/"+matchesPt(depoly(info.tpe), wildPt, List())+"/"+info.pre+"/"+isStable(info.pre)) if (matchesPt(depoly(info.tpe), wildPt, List()) && isStable(info.pre)) { incCounter(matchingImplicits) val itree = atPos(tree.pos.focus) { if (info.pre == NoPrefix) Ident(info.name) else Select(gen.mkAttributedQualifier(info.pre), info.name) } printTyping("typedImplicit0 typing"+ itree +" with wildpt = "+ wildPt +" from implicit "+ info.name+":"+info.tpe) def fail(reason: String): SearchResult = { if (settings.XlogImplicits.value) inform(itree+" is not a valid implicit value for "+pt+" because:\n"+reason) SearchFailure } try { val itree1 = if (isView) typed1 ( atPos(itree.pos) ( Apply(itree, List(Ident("").setType(approximate(pt.typeArgs.head))))), EXPRmode, approximate(pt.typeArgs.tail.head) ) else typed1(itree, EXPRmode, wildPt) incCounter(typedImplicits) printTyping("typed implicit "+itree1+":"+itree1.tpe+", pt = "+wildPt) val itree2 = if (isView) (itree1: @unchecked) match { case Apply(fun, _) => fun } else adapt(itree1, EXPRmode, wildPt) printTyping("adapted implicit "+itree1.symbol+":"+itree2.tpe+" to "+wildPt) def hasMatchingSymbol(tree: Tree): Boolean = (tree.symbol == info.sym) || { tree match { case Apply(fun, _) => hasMatchingSymbol(fun) case TypeApply(fun, _) => hasMatchingSymbol(fun) case Select(pre, name) => name == nme.apply && pre.symbol == info.sym case _ => false } } if (itree2.tpe.isError) SearchFailure else if (hasMatchingSymbol(itree1)) { val tvars = undetParams map freshVar if (matchesPt(itree2.tpe, pt.instantiateTypeParams(undetParams, tvars), undetParams)) { printTyping("tvars = "+tvars+"/"+(tvars map (_.constr))) val targs = solvedTypes(tvars, undetParams, undetParams map varianceInType(pt), false, lubDepth(List(itree2.tpe, pt))) // #2421: check that we correctly instantiated type parameters outside of the implicit tree: checkBounds(itree2.pos, NoPrefix, NoSymbol, undetParams, targs, "inferred ") // filter out failures from type inference, don't want to remove them from undetParams! // we must be conservative in leaving type params in undetparams val AdjustedTypeArgs(okParams, okArgs) = adjustTypeArgs(undetParams, targs) // prototype == WildcardType: want to remove all inferred Nothing's val subst = new TreeTypeSubstituter(okParams, okArgs) subst traverse itree2 // #2421b: since type inference (which may have been performed during implicit search) // does not check whether inferred arguments meet the bounds of the corresponding parameter (see note in solvedTypes), // must check again here: // TODO: I would prefer to just call typed instead of duplicating the code here, but this is probably a hotspot (and you can't just call typed, need to force re-typecheck) itree2 match { case TypeApply(fun, args) => typedTypeApply(itree2, EXPRmode, fun, args) case Apply(TypeApply(fun, args), _) => typedTypeApply(itree2, EXPRmode, fun, args) // t2421c case _ => } val result = new SearchResult(itree2, subst) incCounter(foundImplicits) if (traceImplicits) println("RESULT = "+result) // println("RESULT = "+itree+"///"+itree1+"///"+itree2)//DEBUG result } else { printTyping("incompatible: "+itree2.tpe+" does not match "+pt.instantiateTypeParams(undetParams, tvars)) SearchFailure } } else if (settings.XlogImplicits.value) fail("candidate implicit "+info.sym+info.sym.locationString+ " is shadowed by other implicit: "+itree1.symbol+itree1.symbol.locationString) else SearchFailure } catch { case ex: TypeError => fail(ex.getMessage()) } } else { SearchFailure } } /** Should implicit definition symbol `sym' be considered for applicability testing? * This is the case if one of the following holds: * - the symbol's type is initialized * - the symbol comes from a classfile * - the symbol comes from a different sourcefile than the current one * - the symbol and the accessed symbol's definitions come before, and do not contain the closest enclosing definition, // see #3373 * - the symbol's definition is a val, var, or def with an explicit result type * The aim of this method is to prevent premature cyclic reference errors * by computing the types of only those implicits for which one of these * conditions is true. */ def isValid(sym: Symbol) = { def hasExplicitResultType(sym: Symbol) = { def hasExplicitRT(tree: Tree) = tree match { case ValDef(_, _, tpt, _) => !tpt.isEmpty case DefDef(_, _, _, _, tpt, _) => !tpt.isEmpty case _ => false } sym.rawInfo match { case tc: TypeCompleter => hasExplicitRT(tc.tree) case PolyType(_, tc: TypeCompleter) => hasExplicitRT(tc.tree) case _ => true } } def comesBefore(sym: Symbol, owner: Symbol) = { val ownerPos = owner.pos.pointOrElse(Integer.MAX_VALUE) sym.pos.pointOrElse(0) < ownerPos && ( if(sym hasAccessorFlag) { val symAcc = sym.accessed // #3373 symAcc.pos.pointOrElse(0) < ownerPos && !(owner.ownerChain exists (o => (o eq sym) || (o eq symAcc))) // probably faster to iterate only once, don't feel like duplicating hasTransOwner for this case } else !(owner hasTransOwner sym)) // faster than owner.ownerChain contains sym } sym.isInitialized || sym.sourceFile == null || (sym.sourceFile ne context.unit.source.file) || hasExplicitResultType(sym) || comesBefore(sym, context.owner) } /** Computes from a list of lists of implicit infos a map which takes * infos which are applicable for given expected type `pt` to their attributed trees. * Computes invalid implicits as a side effect (used for better error message). * @param iss The given list of lists of implicit infos * @param isLocal Is implicit definition visible without prefix? * If this is the case then symbols in preceding lists shadow * symbols of the same name in succeeding lists. */ def applicableInfos(iss: List[List[ImplicitInfo]], isLocal: Boolean, invalidImplicits: ListBuffer[Symbol]): Map[ImplicitInfo, SearchResult] = { val start = startCounter(subtypeAppInfos) /** A set containing names that are shadowed by implicit infos */ lazy val shadowed = new HashSet[Name]("shadowed", 512) // #3453 // in addition to the implicit symbols that may shadow the implicit with name `name`, // this method tests whether there's a non-implicit symbol with name `name` in scope // inspired by logic in typedIdent def nonImplicitSynonymInScope(name: Name) = { val defEntry = context.scope.lookupEntry(name) (defEntry ne null) && reallyExists(defEntry.sym) && !defEntry.sym.isImplicit // the implicit ones are handled by the `shadowed` set above // also, subsumes the test that defEntry.sym ne info.sym // (the `info` that's in scope at the call to nonImplicitSynonymInScope in tryImplicit) } /** Is `sym' the standard conforms method in Predef? * Note: DON't replace this by sym == Predef_conforms, as Predef_conforms is a `def' * which does a member lookup (it can't be a lazy val because we might reload Predef * during resident compilations). */ def isConformsMethod(sym: Symbol) = sym.name == nme.conforms && sym.owner == PredefModule.moduleClass /** Try implicit `info` to see whether it is applicable for expected type `pt`. * This is the case if all of the following holds: * - the info's type is not erroneous, * - the info is not shadowed by another info with the same name, * - we're not trying to infer a view that amounts to the identity function (specifically, Predef.identity or Predef.conforms) * - the result of typedImplicit is non-empty. * @return A search result with an attributed tree containing the implicit if succeeded, * SearchFailure if not. * @note Extreme hotspot! */ def tryImplicit(info: ImplicitInfo): SearchResult = { incCounter(triedImplicits) if (info.isCyclicOrErroneous || (isLocal && (shadowed.contains(info.name) || nonImplicitSynonymInScope(info.name))) || (isView && isConformsMethod(info.sym)) || //@M this condition prevents no-op conversions, which are a problem (besides efficiency), // one example is removeNames in NamesDefaults, which relies on the type checker failing in case of ambiguity between an assignment/named arg !isPlausiblyCompatible(info.tpe, wildPt)) SearchFailure else typedImplicit(info) } def addAppInfos(is: List[ImplicitInfo], m: Map[ImplicitInfo, SearchResult]): Map[ImplicitInfo, SearchResult] = { var applicable = m for (i <- is) if (!isValid(i.sym)) invalidImplicits += i.sym else { val result = tryImplicit(i) if (result != SearchFailure) applicable += (i -> result) } if (isLocal) for (i <- is) shadowed addEntry i.name applicable } // #3453 -- alternative fix, seems not to be faster than encoding the set as the boolean predicate nonImplicitSynonymInScope // in addition to the *implicit* symbols that may shadow the implicit with name `name` (added to shadowed by addAppInfos) // add names of non-implicit symbols that are in scope (accessible without prefix) // for(sym <- context.scope; if !sym.isImplicit) shadowed addEntry sym.name var applicable = Map[ImplicitInfo, SearchResult]() for (is <- iss) applicable = addAppInfos(is, applicable) stopCounter(subtypeAppInfos, start) applicable } /** Search list of implicit info lists for one matching prototype * pt. If found return a search result with a tree from found implicit info * which is typed with expected type pt. * Otherwise return SearchFailure. * * @param implicitInfoss The given list of lists of implicit infos * @param isLocal Is implicit definition visible without prefix? * If this is the case then symbols in preceding lists shadow * symbols of the same name in succeeding lists. */ def searchImplicit(implicitInfoss: List[List[ImplicitInfo]], isLocal: Boolean): SearchResult = { /** The implicits that are not valid because they come later in the source * and lack an explicit result type. Used for error diagnostics only. */ val invalidImplicits = new ListBuffer[Symbol] /** A map which takes applicable infos to their attributed trees. */ val applicable = applicableInfos(implicitInfoss, isLocal, invalidImplicits) if (applicable.isEmpty && !invalidImplicits.isEmpty) { setAddendum(tree.pos, () => "\n Note: implicit "+invalidImplicits.head+" is not applicable here"+ " because it comes after the application point and it lacks an explicit result type") } val start = startCounter(subtypeImprovCount) /** A candidate for best applicable info wrt `improves` */ val best = (NoImplicitInfo /: applicable.keysIterator) ( (best, alt) => if (improves(alt, best)) alt else best) if (best == NoImplicitInfo) SearchFailure else { /** The list of all applicable infos which are not improved upon by `best`. */ val competing = applicable.keySet dropWhile (alt => best == alt || improves(best, alt)) if (!competing.isEmpty) ambiguousImplicitError(best, competing.head, "both", "and", "") stopCounter(subtypeImprovCount, start) applicable(best) } } // end searchImplicit /** The parts of a type is the smallest set of types that contains * - the type itself * - the parts of its immediate components (prefix and argument) * - the parts of its base types * - for alias types and abstract types, we take instead the parts * - of their upper bounds. * @return For those parts that refer to classes with companion objects that * can be accessed with unambiguous stable prefixes, the implicits infos * which are members of these companion objects. */ private def companionImplicits(tp: Type): List[List[ImplicitInfo]] = { val partMap = new LinkedHashMap[Symbol, Type] /** Enter all parts of `tp` into `parts` set. * This method is performance critical: about 2-4% of all type checking is spent here */ def getParts(tp: Type) { tp match { case TypeRef(pre, sym, args) => if (sym.isClass) { if (!((sym.name == tpnme.REFINE_CLASS_NAME) || (sym.name startsWith tpnme.ANON_CLASS_NAME) || (sym.name == tpnme.ROOT))) partMap get sym match { case Some(pre1) => if (!(pre =:= pre1)) partMap(sym) = NoType // ambiguous prefix - ignore implicit members case None => if (pre.isStable) partMap(sym) = pre val bts = tp.baseTypeSeq var i = 1 while (i < bts.length) { getParts(bts(i)) i += 1 } getParts(pre) args foreach getParts } } else if (sym.isAliasType) { getParts(tp.normalize) } else if (sym.isAbstractType) { getParts(tp.bounds.hi) } case ThisType(_) => getParts(tp.widen) case _: SingletonType => getParts(tp.widen) case RefinedType(ps, _) => for (p <- ps) getParts(p) case AnnotatedType(_, t, _) => getParts(t) case ExistentialType(_, t) => getParts(t) case PolyType(_, t) => getParts(t) case _ => } } getParts(tp) val buf = new ListBuffer[List[ImplicitInfo]] for ((clazz, pre) <- partMap) { if (pre != NoType) { val companion = clazz.companionModule companion.moduleClass match { case mc: ModuleClassSymbol => buf += (mc.implicitMembers map (im => new ImplicitInfo(im.name, SingleType(pre, companion), im))) case _ => } } } //println("companion implicits of "+tp+" = "+buf.toList) // DEBUG buf.toList } /** The implicits made available by type `pt`. * These are all implicits found in companion objects of classes C * such that some part of `tp` has C as one of its superclasses. */ private def implicitsOfExpectedType: List[List[ImplicitInfo]] = implicitsCache get pt match { case Some(implicitInfoss) => incCounter(implicitCacheHits) implicitInfoss case None => incCounter(implicitCacheMisses) val start = startTimer(subtypeETNanos) val implicitInfoss = companionImplicits(pt) stopTimer(subtypeETNanos, start) implicitsCache(pt) = implicitInfoss if (implicitsCache.size >= sizeLimit) implicitsCache -= implicitsCache.keysIterator.next implicitInfoss } /** Creates a tree that calls the relevant factory method in object * reflect.Manifest for type 'tp'. An EmptyTree is returned if * no manifest is found. todo: make this instantiate take type params as well? */ private def manifestOfType(tp: Type, full: Boolean): SearchResult = { /** Creates a tree that calls the factory method called constructor in object reflect.Manifest */ def manifestFactoryCall(constructor: String, tparg: Type, args: Tree*): Tree = if (args contains EmptyTree) EmptyTree else typedPos(tree.pos.focus) { Apply( TypeApply( Select(gen.mkAttributedRef(if (full) FullManifestModule else PartialManifestModule), constructor), List(TypeTree(tparg)) ), args.toList ) } /** Creates a tree representing one of the singleton manifests.*/ def findSingletonManifest(name: String) = typedPos(tree.pos.focus) { Select(gen.mkAttributedRef(FullManifestModule), name) } /** Re-wraps a type in a manifest before calling inferImplicit on the result */ def findManifest(tp: Type, manifestClass: Symbol = if (full) FullManifestClass else PartialManifestClass) = inferImplicit(tree, appliedType(manifestClass.typeConstructor, List(tp)), true, false, context).tree def findSubManifest(tp: Type) = findManifest(tp, if (full) FullManifestClass else OptManifestClass) def mot(tp0: Type)(implicit from: List[Symbol] = List(), to: List[Type] = List()): SearchResult = { implicit def wrapResult(tree: Tree): SearchResult = if (tree == EmptyTree) SearchFailure else new SearchResult(tree, new TreeTypeSubstituter(from, to)) val tp1 = tp0.normalize tp1 match { case ThisType(_) | SingleType(_, _) if !(tp1 exists {tp => tp.typeSymbol.isExistentiallyBound}) => // can't generate a reference to a value that's abstracted over by an existential manifestFactoryCall("singleType", tp, gen.mkAttributedQualifier(tp1)) case ConstantType(value) => manifestOfType(tp1.deconst, full) case TypeRef(pre, sym, args) => if (isValueClass(sym) || isPhantomClass(sym)) { findSingletonManifest(sym.name.toString) } else if (sym == ObjectClass || sym == AnyRefClass) { findSingletonManifest("Object") } else if (sym == RepeatedParamClass || sym == ByNameParamClass) { EmptyTree } else if (sym == ArrayClass && args.length == 1) { manifestFactoryCall("arrayType", args.head, findManifest(args.head)) } else if (sym.isClass) { val classarg0 = gen.mkClassOf(tp1) val classarg = tp match { case ExistentialType(_, _) => TypeApply(Select(classarg0, Any_asInstanceOf), List(TypeTree(appliedType(ClassClass.typeConstructor, List(tp))))) case _ => classarg0 } val suffix = classarg :: (args map findSubManifest) manifestFactoryCall( "classType", tp, (if ((pre eq NoPrefix) || pre.typeSymbol.isStaticOwner) suffix else findSubManifest(pre) :: suffix): _*) } else if (sym.isExistentiallyBound && full) { manifestFactoryCall("wildcardType", tp, findManifest(tp.bounds.lo), findManifest(tp.bounds.hi)) } else if(undetParams contains sym) { // looking for a manifest of a type parameter that hasn't been inferred by now, can't do much, but let's not fail mot(NothingClass.tpe)(sym :: from, NothingClass.tpe :: to) // #3859: need to include the mapping from sym -> NothingClass.tpe in the SearchResult } else { EmptyTree // a manifest should have been found by normal searchImplicit } case RefinedType(parents, decls) => // refinement is not generated yet if (hasLength(parents, 1)) findManifest(parents.head) else if (full) manifestFactoryCall("intersectionType", tp, parents map (findSubManifest(_)): _*) else mot(erasure.erasure.intersectionDominator(parents)) case ExistentialType(tparams, result) => mot(tp1.skolemizeExistential) case _ => EmptyTree } } mot(tp) } def wrapResult(tree: Tree): SearchResult = if (tree == EmptyTree) SearchFailure else new SearchResult(tree, EmptyTreeTypeSubstituter) /** The manifest corresponding to type `pt`, provided `pt` is an instance of Manifest. */ private def implicitManifestOrOfExpectedType(pt: Type): SearchResult = pt.dealias match { case TypeRef(_, FullManifestClass, List(arg)) => manifestOfType(arg, true) case TypeRef(_, PartialManifestClass, List(arg)) => manifestOfType(arg, false) case TypeRef(_, OptManifestClass, List(arg)) => val res = manifestOfType(arg, false) if (res == SearchFailure) wrapResult(gen.mkAttributedRef(NoManifest)) else res case TypeRef(_, tsym, _) if (tsym.isAbstractType) => implicitManifestOrOfExpectedType(pt.bounds.lo) case _ => searchImplicit(implicitsOfExpectedType, false) // shouldn't we pass `pt` to `implicitsOfExpectedType`, or is the recursive case for an abstract type really only meant for manifests? } /** The result of the implicit search: * First search implicits visible in current context. * If that fails, search implicits in expected type `pt`. * If that fails, and `pt` is an instance of Manifest, try to construct a manifest. * If all fails return SearchFailure */ def bestImplicit: SearchResult = { val failstart = startTimer(inscopeFailNanos) val succstart = startTimer(inscopeSucceedNanos) var result = searchImplicit(context.implicitss, true) if (result == SearchFailure) { stopTimer(inscopeFailNanos, failstart) } else { stopTimer(inscopeSucceedNanos, succstart) incCounter(inscopeImplicitHits) } if (result == SearchFailure) { val failstart = startTimer(oftypeFailNanos) val succstart = startTimer(oftypeSucceedNanos) result = implicitManifestOrOfExpectedType(pt) if (result == SearchFailure) { stopTimer(oftypeFailNanos, failstart) } else { stopTimer(oftypeSucceedNanos, succstart) incCounter(oftypeImplicitHits) } } if (result == SearchFailure && settings.debug.value) log("no implicits found for "+pt+" "+pt.typeSymbol.info.baseClasses+" "+implicitsOfExpectedType) result } def allImplicits: List[SearchResult] = { val invalidImplicits = new ListBuffer[Symbol] def search(iss: List[List[ImplicitInfo]], isLocal: Boolean) = applicableInfos(iss, isLocal, invalidImplicits).values.toList search(context.implicitss, true) ::: search(implicitsOfExpectedType, false) } } object ImplicitNotFoundMsg { def unapply(sym: Symbol): Option[(Message)] = sym.implicitNotFoundMsg map (m => (new Message(sym, m))) // check the message's syntax: should be a string literal that may contain occurences of the string "${X}", // where `X` refers to a type parameter of `sym` def check(sym: Symbol): Option[String] = sym.getAnnotation(ImplicitNotFoundClass).flatMap(_.stringArg(0) match { case Some(m) => new Message(sym, m) validate case None => Some("Missing argument `msg` on implicitNotFound annotation.") }) class Message(sym: Symbol, msg: String) { // http://dcsobral.blogspot.com/2010/01/string-interpolation-in-scala-with.html private def interpolate(text: String, vars: Map[String, String]) = { import scala.util.matching.Regex """\$\{([^}]+)\}""".r.replaceAllIn(text, (_: Regex.Match) match { case Regex.Groups(v) => java.util.regex.Matcher.quoteReplacement(vars.getOrElse(v, "")) // #3915: need to quote replacement string since it may include $'s (such as the interpreter's $iw) })} private lazy val typeParamNames: List[String] = sym.typeParams.map(_.decodedName) def format(paramName: Name, paramTp: Type): String = format(paramTp.typeArgs map (_.toString)) def format(typeArgs: List[String]): String = interpolate(msg, Map((typeParamNames zip typeArgs): _*)) // TODO: give access to the name and type of the implicit argument, etc? def validate: Option[String] = { import scala.util.matching.Regex; import collection.breakOut // is there a shorter way to avoid the intermediate toList? val refs = Set("""\$\{([^}]+)\}""".r.findAllIn(msg).matchData.map(_.group(1)).toList : _*) val decls = Set(typeParamNames : _*) (refs &~ decls) match { case s if s isEmpty => None case unboundNames => val singular = unboundNames.size == 1 Some("The type parameter"+( if(singular) " " else "s " )+ unboundNames.mkString(", ") + " referenced in the message of the @implicitNotFound annotation "+( if(singular) "is" else "are" )+ " not defined by "+ sym +".") } } } } private val DivergentImplicit = new Exception() }