/* NSC -- new Scala compiler * Copyright 2005-2012 LAMP/EPFL * @author Paul Phillips */ package scala.tools.nsc package typechecker import symtab.Flags._ import scala.collection.{ mutable, immutable } import scala.reflect.internal.util.StringOps.{ ojoin } import scala.reflect.ClassTag import scala.reflect.runtime.{ universe => ru } import scala.language.higherKinds /** Logic related to method synthesis which involves cooperation between * Namer and Typer. */ trait MethodSynthesis { self: Analyzer => import global._ import definitions._ import CODE._ object synthesisUtil { type TT[T] = ru.TypeTag[T] type CT[T] = ClassTag[T] def ValOrDefDef(sym: Symbol, body: Tree) = if (sym.isLazy) ValDef(sym, body) else DefDef(sym, body) def applyTypeInternal(tags: List[TT[_]]): Type = { val symbols = tags map compilerSymbolFromTag val container :: args = symbols val tparams = container.typeConstructor.typeParams // Conservative at present - if manifests were more usable this could do a lot more. // [Eugene to Paul] all right, they are now. what do you have in mind? require(symbols forall (_ ne NoSymbol), "Must find all tags: " + symbols) require(container.owner.isPackageClass, "Container must be a top-level class in a package: " + container) require(tparams.size == args.size, "Arguments must match type constructor arity: " + tparams + ", " + args) appliedType(container, args map (_.tpe): _*) } def companionType[T](implicit ct: CT[T]) = rootMirror.getRequiredModule(ct.runtimeClass.getName).tpe // Use these like `applyType[List, Int]` or `applyType[Map, Int, String]` def applyType[CC](implicit t1: TT[CC]): Type = applyTypeInternal(List(t1)) def applyType[CC[X1], X1](implicit t1: TT[CC[_]], t2: TT[X1]): Type = applyTypeInternal(List(t1, t2)) def applyType[CC[X1, X2], X1, X2](implicit t1: TT[CC[_,_]], t2: TT[X1], t3: TT[X2]): Type = applyTypeInternal(List(t1, t2, t3)) def applyType[CC[X1, X2, X3], X1, X2, X3](implicit t1: TT[CC[_,_,_]], t2: TT[X1], t3: TT[X2], t4: TT[X3]): Type = applyTypeInternal(List(t1, t2, t3, t4)) def newMethodType[F](owner: Symbol)(implicit t: TT[F]): Type = { val fnSymbol = compilerSymbolFromTag(t) val formals = compilerTypeFromTag(t).typeArguments assert(fnSymbol isSubClass FunctionClass(formals.size - 1), (owner, t)) val params = owner newSyntheticValueParams formals MethodType(params, formals.last) } /** The annotations amongst those found on the original symbol which * should be propagated to this kind of accessor. */ def deriveAnnotations(initial: List[AnnotationInfo], category: Symbol, keepClean: Boolean): List[AnnotationInfo] = { initial filter { ann => // There are no meta-annotation arguments attached to `ann` if (ann.metaAnnotations.isEmpty) { // A meta-annotation matching `annotKind` exists on `ann`'s definition. (ann.defaultTargets contains category) || // `ann`'s definition has no meta-annotations, and `keepClean` is true. (ann.defaultTargets.isEmpty && keepClean) } // There are meta-annotation arguments, and one of them matches `annotKind` else ann.metaAnnotations exists (_ matches category) } } } import synthesisUtil._ class ClassMethodSynthesis(val clazz: Symbol, localTyper: Typer) { def mkThis = This(clazz) setPos clazz.pos.focus def mkThisSelect(sym: Symbol) = atPos(clazz.pos.focus)(Select(mkThis, sym)) private def isOverride(name: TermName) = clazzMember(name).alternatives exists (sym => !sym.isDeferred && (sym.owner != clazz)) def newMethodFlags(name: TermName) = { val overrideFlag = if (isOverride(name)) OVERRIDE else 0L overrideFlag | SYNTHETIC } def newMethodFlags(method: Symbol) = { val overrideFlag = if (isOverride(method.name)) OVERRIDE else 0L (method.flags | overrideFlag | SYNTHETIC) & ~DEFERRED } private def finishMethod(method: Symbol, f: Symbol => Tree): Tree = localTyper typed ValOrDefDef(method, f(method)) private def createInternal(name: Name, f: Symbol => Tree, info: Type): Tree = { val m = clazz.newMethod(name.toTermName, clazz.pos.focus, newMethodFlags(name)) finishMethod(m setInfoAndEnter info, f) } private def createInternal(name: Name, f: Symbol => Tree, infoFn: Symbol => Type): Tree = { val m = clazz.newMethod(name.toTermName, clazz.pos.focus, newMethodFlags(name)) finishMethod(m setInfoAndEnter infoFn(m), f) } private def cloneInternal(original: Symbol, f: Symbol => Tree, name: Name): Tree = { val m = original.cloneSymbol(clazz, newMethodFlags(original), name) setPos clazz.pos.focus finishMethod(clazz.info.decls enter m, f) } private def cloneInternal(original: Symbol, f: Symbol => Tree): Tree = cloneInternal(original, f, original.name) def clazzMember(name: Name) = clazz.info nonPrivateMember name def typeInClazz(sym: Symbol) = clazz.thisType memberType sym /** Function argument takes the newly created method symbol of * the same type as `name` in clazz, and returns the tree to be * added to the template. */ def overrideMethod(name: Name)(f: Symbol => Tree): Tree = overrideMethod(clazzMember(name))(f) def overrideMethod(original: Symbol)(f: Symbol => Tree): Tree = cloneInternal(original, sym => f(sym setFlag OVERRIDE)) def deriveMethod(original: Symbol, nameFn: Name => Name)(f: Symbol => Tree): Tree = cloneInternal(original, f, nameFn(original.name)) def createMethod(name: Name, paramTypes: List[Type], returnType: Type)(f: Symbol => Tree): Tree = createInternal(name, f, (m: Symbol) => MethodType(m newSyntheticValueParams paramTypes, returnType)) def createMethod(name: Name, returnType: Type)(f: Symbol => Tree): Tree = createInternal(name, f, NullaryMethodType(returnType)) def createMethod(original: Symbol)(f: Symbol => Tree): Tree = createInternal(original.name, f, original.info) def forwardMethod(original: Symbol, newMethod: Symbol)(transformArgs: List[Tree] => List[Tree]): Tree = createMethod(original)(m => gen.mkMethodCall(newMethod, transformArgs(m.paramss.head map Ident))) def createSwitchMethod(name: Name, range: Seq[Int], returnType: Type)(f: Int => Tree) = { createMethod(name, List(IntClass.tpe), returnType) { m => val arg0 = Ident(m.firstParam) val default = DEFAULT ==> THROW(IndexOutOfBoundsExceptionClass, arg0) val cases = range.map(num => CASE(LIT(num)) ==> f(num)).toList :+ default Match(arg0, cases) } } // def foo() = constant def constantMethod(name: Name, value: Any): Tree = { val constant = Constant(value) createMethod(name, Nil, constant.tpe)(_ => Literal(constant)) } // def foo = constant def constantNullary(name: Name, value: Any): Tree = { val constant = Constant(value) createMethod(name, constant.tpe)(_ => Literal(constant)) } } /** There are two key methods in here. * * 1) Enter methods such as enterGetterSetterare called * from Namer with a tree which may generate further trees such as accessors or * implicit wrappers. Some setup is performed. In general this creates symbols * and enters them into the scope of the owner. * * 2) addDerivedTrees is called from Typer when a Template is typed. * It completes the job, returning a list of trees with their symbols * set to those created in the enter methods. Those trees then become * part of the typed template. */ trait MethodSynth { self: Namer => import NamerErrorGen._ def enterImplicitWrapper(tree: ClassDef) { ImplicitClassWrapper(tree).createAndEnterSymbol() } def enterGetterSetter(tree: ValDef) { val ValDef(mods, name, _, _) = tree if (nme.isSetterName(name)) ValOrValWithSetterSuffixError(tree) tree.symbol = ( if (mods.isLazy) { val lazyValGetter = LazyValGetter(tree).createAndEnterSymbol() enterLazyVal(tree, lazyValGetter) } else { if (mods.isPrivateLocal) PrivateThisCaseClassParameterError(tree) val getter = Getter(tree).createAndEnterSymbol() // Create the setter if necessary. if (mods.isMutable) Setter(tree).createAndEnterSymbol() // If abstract, the tree gets the getter's symbol. Otherwise, create a field. if (mods.isDeferred) getter setPos tree.pos else enterStrictVal(tree) } ) enterBeans(tree) } def addDerivedTrees(typer: Typer, stat: Tree): List[Tree] = stat match { case vd @ ValDef(mods, name, tpt, rhs) if !noFinishGetterSetter(vd) => // If we don't save the annotations, they seem to wander off. val annotations = stat.symbol.initialize.annotations ( allValDefDerived(vd) map (acc => atPos(vd.pos.focus)(acc derive annotations)) filterNot (_ eq EmptyTree) ) case cd @ ClassDef(mods, _, _, _) if mods.isImplicit => val annotations = stat.symbol.initialize.annotations // TODO: need to shuffle annotations between wrapper and class. val wrapper = ImplicitClassWrapper(cd) val meth = wrapper.derivedSym context.unit.synthetics get meth match { case Some(mdef) => context.unit.synthetics -= meth meth setAnnotations deriveAnnotations(annotations, MethodTargetClass, false) cd.symbol setAnnotations deriveAnnotations(annotations, ClassTargetClass, true) List(cd, mdef) case _ => // Shouldn't happen, but let's give ourselves a reasonable error when it does abort("No synthetics for " + meth + ": synthetics contains " + context.unit.synthetics.keys.mkString(", ")) } case _ => stat :: Nil } def standardAccessors(vd: ValDef): List[DerivedFromValDef] = ( if (vd.mods.isMutable && !vd.mods.isLazy) List(Getter(vd), Setter(vd)) else if (vd.mods.isLazy) List(LazyValGetter(vd)) else List(Getter(vd)) ) def beanAccessors(vd: ValDef): List[DerivedFromValDef] = { val setter = if (vd.mods.isMutable) List(BeanSetter(vd)) else Nil if (forMSIL) Nil else if (vd.symbol hasAnnotation BeanPropertyAttr) BeanGetter(vd) :: setter else if (vd.symbol hasAnnotation BooleanBeanPropertyAttr) BooleanBeanGetter(vd) :: setter else Nil } def allValDefDerived(vd: ValDef) = { val field = if (vd.mods.isDeferred || (vd.mods.isLazy && hasUnitType(vd.symbol))) Nil else List(Field(vd)) field ::: standardAccessors(vd) ::: beanAccessors(vd) } // Take into account annotations so that we keep annotated unit lazy val // to get better error message already from the cps plugin itself def hasUnitType(sym: Symbol) = (sym.tpe.typeSymbol == UnitClass) && sym.tpe.annotations.isEmpty /** This trait assembles what's needed for synthesizing derived methods. * Important: Typically, instances of this trait are created TWICE for each derived * symbol; once form Namers in an enter method, and once from Typers in addDerivedTrees. * So it's important that creating an instance of Derived does not have a side effect, * or if it has a side effect, control that it is done only once. */ trait Derived { /** The tree from which we are deriving a synthetic member. Typically, that's * given as an argument of the instance. */ def tree: Tree /** The name of the method */ def name: TermName /** The flags that are retained from the original symbol */ def flagsMask: Long /** The flags that the derived symbol has in addition to those retained from * the original symbol*/ def flagsExtra: Long /** type completer for the synthetic member. */ def completer(sym: Symbol): Type /** The derived symbol. It is assumed that this symbol already exists and has been * entered in the parent scope when derivedSym is called */ def derivedSym: Symbol /** The definition tree of the derived symbol. */ def derivedTree: Tree } trait DerivedFromMemberDef extends Derived { def tree: MemberDef def enclClass: Symbol // Final methods to make the rest easier to reason about. final def mods = tree.mods final def basisSym = tree.symbol final def derivedFlags: Long = basisSym.flags & flagsMask | flagsExtra } trait DerivedFromClassDef extends DerivedFromMemberDef { def tree: ClassDef final def enclClass = basisSym.owner.enclClass } trait DerivedFromValDef extends DerivedFromMemberDef { def tree: ValDef final def enclClass = basisSym.enclClass /** Which meta-annotation is associated with this kind of entity. * Presently one of: field, getter, setter, beanGetter, beanSetter, param. */ def category: Symbol final def completer(sym: Symbol) = namerOf(sym).accessorTypeCompleter(tree, isSetter) final def fieldSelection = Select(This(enclClass), basisSym) final def derivedMods: Modifiers = mods & flagsMask | flagsExtra mapAnnotations (_ => Nil) def derivedSym: Symbol = tree.symbol def derivedTree: Tree = EmptyTree def isSetter = false def isDeferred = mods.isDeferred def keepClean = false // whether annotations whose definitions are not meta-annotated should be kept. def validate() { } def createAndEnterSymbol(): Symbol = { val sym = owner.newMethod(name, tree.pos.focus, (tree.mods.flags & flagsMask) | flagsExtra) setPrivateWithin(tree, sym) enterInScope(sym) sym setInfo completer(sym) } private def logDerived(result: Tree): Tree = { debuglog("[+derived] " + ojoin(mods.flagString, basisSym.accurateKindString, basisSym.getterName.decode) + " (" + derivedSym + ")\n " + result) result } final def derive(initial: List[AnnotationInfo]): Tree = { validate() derivedSym setAnnotations deriveAnnotations(initial, category, keepClean) logDerived(derivedTree) } } trait DerivedGetter extends DerivedFromValDef { // TODO } trait DerivedSetter extends DerivedFromValDef { override def isSetter = true private def setterParam = derivedSym.paramss match { case (p :: Nil) :: _ => p case _ => NoSymbol } private def setterRhs = ( if (mods.isDeferred || derivedSym.isOverloaded) EmptyTree else Assign(fieldSelection, Ident(setterParam)) ) private def setterDef = DefDef(derivedSym, setterRhs) override def derivedTree: Tree = if (setterParam == NoSymbol) EmptyTree else setterDef } /** A synthetic method which performs the implicit conversion implied by * the declaration of an implicit class. */ case class ImplicitClassWrapper(tree: ClassDef) extends DerivedFromClassDef { def completer(sym: Symbol): Type = ??? // not needed def createAndEnterSymbol(): Symbol = enterSyntheticSym(derivedTree) def derivedSym: Symbol = { // Only methods will do! Don't want to pick up any stray // companion objects of the same name. val result = enclClass.info decl name suchThat (x => x.isMethod && x.isSynthetic) assert(result != NoSymbol, "not found: "+name+" in "+enclClass+" "+enclClass.info.decls) result } def derivedTree: DefDef = factoryMeth(mods & flagsMask | flagsExtra, name, tree, symbolic = false) def flagsExtra: Long = METHOD | IMPLICIT | SYNTHETIC def flagsMask: Long = AccessFlags def name: TermName = tree.name.toTermName } abstract class BaseGetter(tree: ValDef) extends DerivedGetter { def name = tree.name def category = GetterTargetClass def flagsMask = GetterFlags def flagsExtra = ACCESSOR | ( if (tree.mods.isMutable) 0 else STABLE ) override def validate() { assert(derivedSym != NoSymbol, tree) if (derivedSym.isOverloaded) GetterDefinedTwiceError(derivedSym) super.validate() } } case class Getter(tree: ValDef) extends BaseGetter(tree) { override def derivedSym = ( if (mods.isDeferred) basisSym else basisSym.getter(enclClass) ) override def derivedTree: DefDef = { // For existentials, don't specify a type for the getter, even one derived // from the symbol! This leads to incompatible existentials for the field and // the getter. Let the typer do all the work. You might think "why only for // existentials, why not always," and you would be right, except: a single test // fails, but it looked like some work to deal with it. Test neg/t0606.scala // starts compiling (instead of failing like it's supposed to) because the typer // expects to be able to identify escaping locals in typedDefDef, and fails to // spot that brand of them. In other words it's an artifact of the implementation. val tpt = derivedSym.tpe.finalResultType match { case ExistentialType(_, _) => TypeTree() case tp => TypeTree(tp) } tpt setPos derivedSym.pos.focus // keep type tree of original abstract field if (mods.isDeferred) tpt setOriginal tree.tpt // TODO - reconcile this with the DefDef creator in Trees (which // at this writing presented no way to pass a tree in for tpt.) atPos(derivedSym.pos) { DefDef( Modifiers(derivedSym.flags), derivedSym.name.toTermName, Nil, Nil, tpt, if (mods.isDeferred) EmptyTree else gen.mkCheckInit(fieldSelection) ) setSymbol derivedSym } } } /** Implements lazy value accessors: * - for lazy values of type Unit and all lazy fields inside traits, * the rhs is the initializer itself * - for all other lazy values z the accessor is a block of this form: * { z = ; z } where z can be an identifier or a field. */ case class LazyValGetter(tree: ValDef) extends BaseGetter(tree) { // todo: in future this should be enabled but now other phases still depend on the flag for various reasons //override def flagsMask = (super.flagsMask & ~LAZY) override def derivedSym = basisSym.lazyAccessor override def derivedTree: DefDef = { val ValDef(_, _, tpt0, rhs0) = tree val rhs1 = transformed.get(rhs0) match { case Some(rhs) => rhs case None => rhs0 } val body = ( if (tree.symbol.owner.isTrait || hasUnitType(basisSym)) rhs1 else gen.mkAssignAndReturn(basisSym, rhs1) ) derivedSym.setPos(tree.pos) // cannot set it at createAndEnterSymbol because basisSym can possible stil have NoPosition val ddefRes = atPos(tree.pos)(DefDef(derivedSym, body.changeOwner(followModuleClass = true, basisSym -> derivedSym))) // ValDef will have its position focused whereas DefDef will have original correct rangepos // ideally positions would be correct at the creation time but lazy vals are really a special case // here so for the sake of keeping api clean we fix positions manually in LazyValGetter ddefRes.tpt.setPos(tpt0.pos) tpt0.setPos(tpt0.pos.focus) ddefRes } } case class Setter(tree: ValDef) extends DerivedSetter { def name = nme.getterToSetter(tree.name) def category = SetterTargetClass def flagsMask = SetterFlags def flagsExtra = ACCESSOR override def derivedSym = basisSym.setter(enclClass) } case class Field(tree: ValDef) extends DerivedFromValDef { def name = nme.getterToLocal(tree.name) def category = FieldTargetClass def flagsMask = FieldFlags def flagsExtra = PrivateLocal // By default annotations go to the field, except if the field is // generated for a class parameter (PARAMACCESSOR). override def keepClean = !mods.isParamAccessor override def derivedTree = ( if (mods.isDeferred) EmptyTree else if (mods.isLazy) copyValDef(tree)(mods = mods | flagsExtra, name = this.name, rhs = EmptyTree).setPos(tree.pos.focus) else copyValDef(tree)(mods = mods | flagsExtra, name = this.name) ) } case class Param(tree: ValDef) extends DerivedFromValDef { def name = tree.name def category = ParamTargetClass def flagsMask = -1L def flagsExtra = 0L override def keepClean = true override def derivedTree = EmptyTree } def validateParam(tree: ValDef) { Param(tree).derive(tree.symbol.annotations) } sealed abstract class BeanAccessor(bean: String) extends DerivedFromValDef { val name = newTermName(bean + tree.name.toString.capitalize) def flagsMask = BeanPropertyFlags def flagsExtra = 0 override def derivedSym = enclClass.info decl name } trait AnyBeanGetter extends BeanAccessor with DerivedGetter { def category = BeanGetterTargetClass override def validate() { if (derivedSym == NoSymbol) { // the namer decides whether to generate these symbols or not. at that point, we don't // have symbolic information yet, so we only look for annotations named "BeanProperty". BeanPropertyAnnotationLimitationError(tree) } super.validate() } } trait NoSymbolBeanGetter extends AnyBeanGetter { // Derives a tree without attempting to use the original tree's symbol. override def derivedTree = { atPos(tree.pos.focus) { DefDef(derivedMods, name, Nil, ListOfNil, tree.tpt.duplicate, if (isDeferred) EmptyTree else Select(This(owner), tree.name) ) } } override def createAndEnterSymbol(): Symbol = enterSyntheticSym(derivedTree) } case class BooleanBeanGetter(tree: ValDef) extends BeanAccessor("is") with AnyBeanGetter { } case class BeanGetter(tree: ValDef) extends BeanAccessor("get") with AnyBeanGetter { } case class BeanSetter(tree: ValDef) extends BeanAccessor("set") with DerivedSetter { def category = BeanSetterTargetClass } // No Symbols available. private def beanAccessorsFromNames(tree: ValDef) = { val ValDef(mods, name, tpt, _) = tree val hasBP = mods hasAnnotationNamed tpnme.BeanPropertyAnnot val hasBoolBP = mods hasAnnotationNamed tpnme.BooleanBeanPropertyAnnot if (hasBP || hasBoolBP) { val getter = ( if (hasBP) new BeanGetter(tree) with NoSymbolBeanGetter else new BooleanBeanGetter(tree) with NoSymbolBeanGetter ) getter :: { if (mods.isMutable) List(BeanSetter(tree)) else Nil } } else Nil } protected def enterBeans(tree: ValDef) { if (forMSIL) return val ValDef(mods, name, _, _) = tree val beans = beanAccessorsFromNames(tree) if (beans.nonEmpty) { if (!name.charAt(0).isLetter) BeanPropertyAnnotationFieldWithoutLetterError(tree) else if (mods.isPrivate) // avoids name clashes with private fields in traits BeanPropertyAnnotationPrivateFieldError(tree) // Create and enter the symbols here, add the trees in finishGetterSetter. beans foreach (_.createAndEnterSymbol()) } } } }