/* NSC -- new Scala compiler * Copyright 2005-2013 LAMP/EPFL * @author Martin Odersky */ package scala.tools.nsc package typechecker import scala.language.postfixOps import scala.collection.mutable import scala.collection.mutable.ListBuffer import scala.tools.nsc.settings.ScalaVersion import scala.tools.nsc.settings.NoScalaVersion import symtab.Flags._ import transform.Transform /**

* Post-attribution checking and transformation. *

*

* This phase performs the following checks. *

* *

* It performs the following transformations. *

* * * @author Martin Odersky * @version 1.0 * * @todo Check whether we always check type parameter bounds. */ abstract class RefChecks extends Transform { val global: Global // need to repeat here because otherwise last mixin defines global as // SymbolTable. If we had DOT this would not be an issue import global._ import definitions._ import typer.typed /** the following two members override abstract members in Transform */ val phaseName: String = "refchecks" def newTransformer(unit: CompilationUnit): RefCheckTransformer = new RefCheckTransformer(unit) val toJavaRepeatedParam = new SubstSymMap(RepeatedParamClass -> JavaRepeatedParamClass) val toScalaRepeatedParam = new SubstSymMap(JavaRepeatedParamClass -> RepeatedParamClass) def accessFlagsToString(sym: Symbol) = flagsToString( sym getFlag (PRIVATE | PROTECTED), if (sym.hasAccessBoundary) "" + sym.privateWithin.name else "" ) def overridesTypeInPrefix(tp1: Type, tp2: Type, prefix: Type, isModuleOverride: Boolean): Boolean = (tp1.dealiasWiden, tp2.dealiasWiden) match { case (MethodType(List(), rtp1), NullaryMethodType(rtp2)) => rtp1 <:< rtp2 case (NullaryMethodType(rtp1), MethodType(List(), rtp2)) => rtp1 <:< rtp2 // all this module business would be so much simpler if we moduled^w modelled a module as a class and an accessor, like we do for fields case (TypeRef(_, sym, _), _) if sym.isModuleClass => overridesTypeInPrefix(NullaryMethodType(tp1), tp2, prefix, isModuleOverride) case (_, TypeRef(_, sym, _)) if sym.isModuleClass => overridesTypeInPrefix(tp1, NullaryMethodType(tp2), prefix, isModuleOverride) case _ => def classBoundAsSeen(tp: Type) = tp.typeSymbol.classBound.asSeenFrom(prefix, tp.typeSymbol.owner) (tp1 <:< tp2) || isModuleOverride && ( // Object override check. This requires that both the overridden and the overriding member are object // definitions. The overriding module type is allowed to replace the original one with the same name // as long as it conform to the original non-singleton type. tp1.typeSymbol.isModuleClass && tp2.typeSymbol.isModuleClass && { val cb1 = classBoundAsSeen(tp1) val cb2 = classBoundAsSeen(tp2) (cb1 <:< cb2) && { log("Allowing %s to override %s because %s <:< %s".format(tp1, tp2, cb1, cb2)) true } } ) } private val separatelyCompiledScalaSuperclass = perRunCaches.newAnyRefMap[Symbol, Unit]() final def isSeparatelyCompiledScalaSuperclass(sym: Symbol) = if (globalPhase.refChecked){ separatelyCompiledScalaSuperclass.contains(sym) } else { // conservative approximation in case someone in pre-refchecks phase asks for `exitingFields(someClass.info)` // and we haven't run the refchecks tree transform which populates `separatelyCompiledScalaSuperclass` false } class RefCheckTransformer(unit: CompilationUnit) extends Transformer { var localTyper: analyzer.Typer = typer var currentApplication: Tree = EmptyTree var inPattern: Boolean = false @inline final def savingInPattern[A](body: => A): A = { val saved = inPattern try body finally inPattern = saved } var checkedCombinations = Set[List[Type]]() // only one overloaded alternative is allowed to define default arguments private def checkOverloadedRestrictions(clazz: Symbol, defaultClass: Symbol): Unit = { // Using the default getters (such as methodName$default$1) as a cheap way of // finding methods with default parameters. This way, we can limit the members to // those with the DEFAULTPARAM flag, and infer the methods. Looking for the methods // directly requires inspecting the parameter list of every one. That modification // shaved 95% off the time spent in this method. val defaultGetters = defaultClass.info.findMembers(excludedFlags = PARAM, requiredFlags = DEFAULTPARAM) val defaultMethodNames = defaultGetters map (sym => nme.defaultGetterToMethod(sym.name)) defaultMethodNames.toList.distinct foreach { name => val methods = clazz.info.findMember(name, 0L, requiredFlags = METHOD, stableOnly = false).alternatives def hasDefaultParam(tpe: Type): Boolean = tpe match { case MethodType(params, restpe) => (params exists (_.hasDefault)) || hasDefaultParam(restpe) case _ => false } val haveDefaults = methods filter ( if (settings.isScala211) (sym => mexists(sym.info.paramss)(_.hasDefault) && !nme.isProtectedAccessorName(sym.name)) else (sym => hasDefaultParam(sym.info) && !nme.isProtectedAccessorName(sym.name)) ) if (haveDefaults.lengthCompare(1) > 0) { val owners = haveDefaults map (_.owner) // constructors of different classes are allowed to have defaults if (haveDefaults.exists(x => !x.isConstructor) || owners.distinct.size < haveDefaults.size) { reporter.error(clazz.pos, "in "+ clazz + ", multiple overloaded alternatives of "+ haveDefaults.head + " define default arguments" + ( if (owners.forall(_ == clazz)) "." else ".\nThe members with defaults are defined in "+owners.map(_.fullLocationString).mkString("", " and ", ".") ) ) } } } // Check for doomed attempt to overload applyDynamic if (clazz isSubClass DynamicClass) { for ((_, m1 :: m2 :: _) <- (clazz.info member nme.applyDynamic).alternatives groupBy (_.typeParams.length)) { reporter.error(m1.pos, "implementation restriction: applyDynamic cannot be overloaded except by methods with different numbers of type parameters, e.g. applyDynamic[T1](method: String)(arg: T1) and applyDynamic[T1, T2](method: String)(arg1: T1, arg2: T2)") } } // This has become noisy with implicit classes. if (settings.warnPolyImplicitOverload && settings.developer) { clazz.info.decls.foreach(sym => if (sym.isImplicit && sym.typeParams.nonEmpty) { // implicit classes leave both a module symbol and a method symbol as residue val alts = clazz.info.decl(sym.name).alternatives filterNot (_.isModule) if (alts.size > 1) alts foreach (x => reporter.warning(x.pos, "parameterized overloaded implicit methods are not visible as view bounds")) }) } } // Override checking ------------------------------------------------------------ /** Add bridges for vararg methods that extend Java vararg methods */ def addVarargBridges(clazz: Symbol): List[Tree] = { // This is quite expensive, so attempt to skip it completely. // Insist there at least be a java-defined ancestor which // defines a varargs method. TODO: Find a cheaper way to exclude. if (inheritsJavaVarArgsMethod(clazz)) { log("Found java varargs ancestor in " + clazz.fullLocationString + ".") val self = clazz.thisType val bridges = new ListBuffer[Tree] def varargBridge(member: Symbol, bridgetpe: Type): Tree = { log(s"Generating varargs bridge for ${member.fullLocationString} of type $bridgetpe") val newFlags = (member.flags | VBRIDGE) & ~PRIVATE val bridge = member.cloneSymbolImpl(clazz, newFlags) setPos clazz.pos bridge.setInfo(bridgetpe.cloneInfo(bridge)) clazz.info.decls enter bridge val params = bridge.paramss.head val elemtp = params.last.tpe.typeArgs.head val idents = params map Ident val lastarg = gen.wildcardStar(gen.mkWrapArray(idents.last, elemtp)) val body = Apply(Select(This(clazz), member), idents.init :+ lastarg) localTyper typed DefDef(bridge, body) } // For all concrete non-private members (but: see below) that have a (Scala) repeated // parameter: compute the corresponding method type `jtpe` with a Java repeated parameter // if a method with type `jtpe` exists and that method is not a varargs bridge // then create a varargs bridge of type `jtpe` that forwards to the // member method with the Scala vararg type. // // @PP: Can't call nonPrivateMembers because we will miss refinement members, // which have been marked private. See SI-4729. for (member <- nonTrivialMembers(clazz)) { log(s"Considering $member for java varargs bridge in $clazz") if (!member.isDeferred && member.isMethod && hasRepeatedParam(member.info)) { val inherited = clazz.info.nonPrivateMemberAdmitting(member.name, VBRIDGE) // Delaying calling memberType as long as possible if (inherited.exists) { val jtpe = toJavaRepeatedParam(self memberType member) // this is a bit tortuous: we look for non-private members or bridges // if we find a bridge everything is OK. If we find another member, // we need to create a bridge val inherited1 = inherited filter (sym => !(sym hasFlag VBRIDGE) && (self memberType sym matches jtpe)) if (inherited1.exists) bridges += varargBridge(member, jtpe) } } } if (bridges.size > 0) log(s"Adding ${bridges.size} bridges for methods extending java varargs.") bridges.toList } else Nil } /** 1. Check all members of class `clazz` for overriding conditions. * That is for overriding member M and overridden member O: * * 1.1. M must have the same or stronger access privileges as O. * 1.2. O must not be final. * 1.3. O is deferred, or M has `override` modifier. * 1.4. If O is stable, then so is M. * // @M: LIFTED 1.5. Neither M nor O are a parameterized type alias * 1.6. If O is a type alias, then M is an alias of O. * 1.7. If O is an abstract type then * 1.7.1 either M is an abstract type, and M's bounds are sharper than O's bounds. * or M is a type alias or class which conforms to O's bounds. * 1.7.2 higher-order type arguments must respect bounds on higher-order type parameters -- @M * (explicit bounds and those implied by variance annotations) -- @see checkKindBounds * 1.8. If O and M are values, then * 1.8.1 M's type is a subtype of O's type, or * 1.8.2 M is of type []S, O is of type ()T and S <: T, or * 1.8.3 M is of type ()S, O is of type []T and S <: T, or * 1.9. If M is a macro def, O cannot be deferred unless there's a concrete method overriding O. * 1.10. If M is not a macro def, O cannot be a macro def. * 2. Check that only abstract classes have deferred members * 3. Check that concrete classes do not have deferred definitions * that are not implemented in a subclass. * 4. Check that every member with an `override` modifier * overrides some other member. */ private def checkAllOverrides(clazz: Symbol, typesOnly: Boolean = false) { val self = clazz.thisType def classBoundAsSeen(tp: Type) = { tp.typeSymbol.classBound.asSeenFrom(self, tp.typeSymbol.owner) } case class MixinOverrideError(member: Symbol, msg: String) val mixinOverrideErrors = new ListBuffer[MixinOverrideError]() def printMixinOverrideErrors() { mixinOverrideErrors.toList match { case List() => case List(MixinOverrideError(_, msg)) => reporter.error(clazz.pos, msg) case MixinOverrideError(member, msg) :: others => val others1 = others.map(_.member.name.decode).filter(member.name.decode != _).distinct reporter.error( clazz.pos, msg+(if (others1.isEmpty) "" else ";\n other members with override errors are: "+(others1 mkString ", "))) } } def infoString(sym: Symbol) = infoString0(sym, sym.owner != clazz) def infoStringWithLocation(sym: Symbol) = infoString0(sym, true) def infoString0(member: Symbol, showLocation: Boolean) = { val underlying = // not using analyzer.underlyingSymbol(member) because we should get rid of it if (!(member hasFlag ACCESSOR)) member else member.accessed match { case field if field.exists => field case _ if member.isSetter => member.getterIn(member.owner) case _ => member } def memberInfo = self.memberInfo(underlying) match { case getterTp if underlying.isGetter => getterTp.resultType case tp => tp } underlying.toString() + (if (showLocation) underlying.locationString + (if (underlying.isAliasType) s", which equals $memberInfo" else if (underlying.isAbstractType) s" with bounds$memberInfo" else if (underlying.isModule) "" else if (underlying.isTerm) s" of type $memberInfo" else "") else "") } /* Check that all conditions for overriding `other` by `member` * of class `clazz` are met. */ def checkOverride(pair: SymbolPair) { import pair._ val member = low val other = high def memberTp = lowType def otherTp = highType // debuglog(s"Checking validity of ${member.fullLocationString} overriding ${other.fullLocationString}") def noErrorType = !pair.isErroneous def isRootOrNone(sym: Symbol) = sym != null && sym.isRoot || sym == NoSymbol def isNeitherInClass = member.owner != pair.base && other.owner != pair.base def objectOverrideErrorMsg = ( "overriding " + high.fullLocationString + " with " + low.fullLocationString + ":\n" + "an overriding object must conform to the overridden object's class bound" + analyzer.foundReqMsg(pair.lowClassBound, pair.highClassBound) ) def overrideErrorMsg(msg: String): String = { val isConcreteOverAbstract = (other.owner isSubClass member.owner) && other.isDeferred && !member.isDeferred val addendum = if (isConcreteOverAbstract) ";\n (Note that %s is abstract,\n and is therefore overridden by concrete %s)".format( infoStringWithLocation(other), infoStringWithLocation(member) ) else if (settings.debug) analyzer.foundReqMsg(member.tpe, other.tpe) else "" s"overriding ${infoStringWithLocation(other)};\n ${infoString(member)} $msg$addendum" } def emitOverrideError(fullmsg: String) { if (member.owner == clazz) reporter.error(member.pos, fullmsg) else mixinOverrideErrors += new MixinOverrideError(member, fullmsg) } def overrideError(msg: String) { if (noErrorType) emitOverrideError(overrideErrorMsg(msg)) } def overrideTypeError() { if (noErrorType) { emitOverrideError( if (member.isModule && other.isModule) objectOverrideErrorMsg else overrideErrorMsg("has incompatible type") ) } } def overrideAccessError() { val otherAccess = accessFlagsToString(other) overrideError("has weaker access privileges; it should be "+ (if (otherAccess == "") "public" else "at least "+otherAccess)) } //Console.println(infoString(member) + " overrides " + infoString(other) + " in " + clazz);//DEBUG // return if we already checked this combination elsewhere if (member.owner != clazz) { def deferredCheck = member.isDeferred || !other.isDeferred def subOther(s: Symbol) = s isSubClass other.owner def subMember(s: Symbol) = s isSubClass member.owner if (subOther(member.owner) && deferredCheck) { //Console.println(infoString(member) + " shadows1 " + infoString(other) " in " + clazz);//DEBUG return } if (clazz.parentSymbols exists (p => subOther(p) && subMember(p) && deferredCheck)) { //Console.println(infoString(member) + " shadows2 " + infoString(other) + " in " + clazz);//DEBUG return } if (clazz.parentSymbols forall (p => subOther(p) == subMember(p))) { //Console.println(infoString(member) + " shadows " + infoString(other) + " in " + clazz);//DEBUG return } } /* Is the intersection between given two lists of overridden symbols empty? */ def intersectionIsEmpty(syms1: List[Symbol], syms2: List[Symbol]) = !(syms1 exists (syms2 contains _)) if (typesOnly) checkOverrideTypes() else { // o: public | protected | package-protected (aka java's default access) // ^-may be overridden by member with access privileges-v // m: public | public/protected | public/protected/package-protected-in-same-package-as-o if (member.isPrivate) // (1.1) overrideError("has weaker access privileges; it should not be private") // todo: align accessibility implication checking with isAccessible in Contexts val ob = other.accessBoundary(member.owner) val mb = member.accessBoundary(member.owner) def isOverrideAccessOK = member.isPublic || { // member is public, definitely same or relaxed access (!other.isProtected || member.isProtected) && // if o is protected, so is m ((!isRootOrNone(ob) && ob.hasTransOwner(mb)) || // m relaxes o's access boundary other.isJavaDefined) // overriding a protected java member, see #3946 } if (!isOverrideAccessOK) { overrideAccessError() } else if (other.isClass) { overrideError("cannot be used here - class definitions cannot be overridden") } else if (!other.isDeferred && member.isClass) { overrideError("cannot be used here - classes can only override abstract types") } else if (other.isEffectivelyFinal) { // (1.2) overrideError("cannot override final member") } else if (!other.isDeferred && !member.isAnyOverride && !member.isSynthetic) { // (*) // (*) Synthetic exclusion for (at least) default getters, fixes SI-5178. We cannot assign the OVERRIDE flag to // the default getter: one default getter might sometimes override, sometimes not. Example in comment on ticket. if (isNeitherInClass && !(other.owner isSubClass member.owner)) emitOverrideError( clazz + " inherits conflicting members:\n " + infoStringWithLocation(other) + " and\n " + infoStringWithLocation(member) + "\n(Note: this can be resolved by declaring an override in " + clazz + ".)" ) else overrideError("needs `override' modifier") } else if (other.isAbstractOverride && other.isIncompleteIn(clazz) && !member.isAbstractOverride) { overrideError("needs `abstract override' modifiers") } else if (member.isAnyOverride && (other hasFlag ACCESSOR) && !(other hasFlag STABLE | DEFERRED)) { // The check above used to look at `field` == `other.accessed`, ensuring field.isVariable && !field.isLazy, // which I think is identical to the more direct `!(other hasFlag STABLE)` (given that `other` is a method). // Also, we're moving away from (looking at) underlying fields (vals in traits no longer have them, to begin with) // TODO: this is not covered by the spec. We need to resolve this either by changing the spec or removing the test here. if (!settings.overrideVars) overrideError("cannot override a mutable variable") } else if (member.isAnyOverride && !(member.owner.thisType.baseClasses exists (_ isSubClass other.owner)) && !member.isDeferred && !other.isDeferred && intersectionIsEmpty(member.extendedOverriddenSymbols, other.extendedOverriddenSymbols)) { overrideError("cannot override a concrete member without a third member that's overridden by both "+ "(this rule is designed to prevent ``accidental overrides'')") } else if (other.isStable && !member.isStable) { // (1.4) overrideError("needs to be a stable, immutable value") } else if (member.isValue && member.isLazy && other.isValue && other.hasFlag(STABLE) && !(other.isDeferred || other.isLazy)) { overrideError("cannot override a concrete non-lazy value") } else if (other.isValue && other.isLazy && member.isValue && !member.isLazy) { overrideError("must be declared lazy to override a concrete lazy value") } else if (other.isDeferred && member.isTermMacro && member.extendedOverriddenSymbols.forall(_.isDeferred)) { // (1.9) overrideError("cannot be used here - term macros cannot override abstract methods") } else if (other.isTermMacro && !member.isTermMacro) { // (1.10) overrideError("cannot be used here - only term macros can override term macros") } else { checkOverrideTypes() checkOverrideDeprecated() if (settings.warnNullaryOverride) { if (other.paramss.isEmpty && !member.paramss.isEmpty && !member.isJavaDefined) { reporter.warning(member.pos, "non-nullary method overrides nullary method") } } } } //if (!member.typeParams.isEmpty) (1.5) @MAT // overrideError("may not be parameterized"); //if (!other.typeParams.isEmpty) (1.5) @MAT // overrideError("may not override parameterized type"); // @M: substSym def checkOverrideAlias() { // Important: first check the pair has the same kind, since the substitution // carries high's type parameter's bounds over to low, so that // type equality doesn't consider potentially different bounds on low/high's type params. // In b781e25afe this went from using memberInfo to memberType (now lowType/highType), tested by neg/override.scala. // TODO: was that the right fix? it seems type alias's RHS should be checked by looking at the symbol's info if (pair.sameKind && lowType.substSym(low.typeParams, high.typeParams) =:= highType) () else overrideTypeError() // (1.6) } //if (!member.typeParams.isEmpty) // (1.7) @MAT // overrideError("may not be parameterized"); def checkOverrideAbstract() { if (!(highInfo.bounds containsType lowType)) { // (1.7.1) overrideTypeError(); // todo: do an explaintypes with bounds here explainTypes(_.bounds containsType _, highInfo, lowType) } // check overriding (abstract type --> abstract type or abstract type --> concrete type member (a type alias)) // making an abstract type member concrete is like passing a type argument typer.infer.checkKindBounds(high :: Nil, lowType :: Nil, rootType, low.owner) match { // (1.7.2) case Nil => case kindErrors => reporter.error(member.pos, "The kind of "+member.keyString+" "+member.varianceString + member.nameString+ " does not conform to the expected kind of " + other.defString + other.locationString + "." + kindErrors.toList.mkString("\n", ", ", "")) } // check a type alias's RHS corresponds to its declaration // this overlaps somewhat with validateVariance if (low.isAliasType) { typer.infer.checkKindBounds(low :: Nil, lowType.normalize :: Nil, rootType, low.owner) match { case Nil => case kindErrors => reporter.error(member.pos, "The kind of the right-hand side "+lowType.normalize+" of "+low.keyString+" "+ low.varianceString + low.nameString+ " does not conform to its expected kind."+ kindErrors.toList.mkString("\n", ", ", "")) } } else if (low.isAbstractType && lowType.isVolatile && !highInfo.bounds.hi.isVolatile) overrideError("is a volatile type; cannot override a type with non-volatile upper bound") } def checkOverrideTerm() { other.cookJavaRawInfo() // #2454 if (!overridesTypeInPrefix(lowType, highType, rootType, low.isModuleOrModuleClass && high.isModuleOrModuleClass)) { // 8 overrideTypeError() explainTypes(lowType, highType) } if (low.isStable && !highType.isVolatile) { if (lowType.isVolatile) overrideError("has a volatile type; cannot override a member with non-volatile type") else lowType.normalize.resultType match { case rt: RefinedType if !(rt =:= highType) && !(checkedCombinations contains rt.parents) => // might mask some inconsistencies -- check overrides checkedCombinations += rt.parents val tsym = rt.typeSymbol if (tsym.pos == NoPosition) tsym setPos member.pos checkAllOverrides(tsym, typesOnly = true) case _ => } } } def checkOverrideTypes() { if (high.isAliasType) checkOverrideAlias() else if (high.isAbstractType) checkOverrideAbstract() else if (high.isTerm) checkOverrideTerm() } def checkOverrideDeprecated() { if (other.hasDeprecatedOverridingAnnotation && !(member.hasDeprecatedOverridingAnnotation || member.ownerChain.exists(x => x.isDeprecated || x.hasBridgeAnnotation))) { val version = other.deprecatedOverridingVersion.getOrElse("") val since = if (version.isEmpty) version else s" (since $version)" val message = other.deprecatedOverridingMessage map (msg => s": $msg") getOrElse "" val report = s"overriding ${other.fullLocationString} is deprecated$since$message" currentRun.reporting.deprecationWarning(member.pos, other, report, version) } } } val opc = new overridingPairs.Cursor(clazz) while (opc.hasNext) { if (!opc.high.isClass) checkOverride(opc.currentPair) opc.next() } printMixinOverrideErrors() // Verifying a concrete class has nothing unimplemented. if (clazz.isConcreteClass && !typesOnly) { val abstractErrors = new ListBuffer[String] def abstractErrorMessage = // a little formatting polish if (abstractErrors.size <= 2) abstractErrors mkString " " else abstractErrors.tail.mkString(abstractErrors.head + ":\n", "\n", "") def abstractClassError(mustBeMixin: Boolean, msg: String) { def prelude = ( if (clazz.isAnonymousClass || clazz.isModuleClass) "object creation impossible" else if (mustBeMixin) clazz + " needs to be a mixin" else clazz + " needs to be abstract" ) + ", since" if (abstractErrors.isEmpty) abstractErrors ++= List(prelude, msg) else abstractErrors += msg } def javaErasedOverridingSym(sym: Symbol): Symbol = clazz.tpe.nonPrivateMemberAdmitting(sym.name, BRIDGE).filter(other => !other.isDeferred && other.isJavaDefined && !sym.enclClass.isSubClass(other.enclClass) && { // #3622: erasure operates on uncurried types -- // note on passing sym in both cases: only sym.isType is relevant for uncurry.transformInfo // !!! erasure.erasure(sym, uncurry.transformInfo(sym, tp)) gives erroneous or inaccessible type - check whether that's still the case! def uncurryAndErase(tp: Type) = erasure.erasure(sym)(uncurry.transformInfo(sym, tp)) val tp1 = uncurryAndErase(clazz.thisType.memberType(sym)) val tp2 = uncurryAndErase(clazz.thisType.memberType(other)) exitingErasure(tp1 matches tp2) }) def ignoreDeferred(member: Symbol) = ( (member.isAbstractType && !member.isFBounded) || ( // the test requires exitingErasure so shouldn't be // done if the compiler has no erasure phase available member.isJavaDefined && (currentRun.erasurePhase == NoPhase || javaErasedOverridingSym(member) != NoSymbol) ) ) // 2. Check that only abstract classes have deferred members def checkNoAbstractMembers(): Unit = { // Avoid spurious duplicates: first gather any missing members. def memberList = clazz.info.nonPrivateMembersAdmitting(VBRIDGE) val (missing, rest) = memberList partition (m => m.isDeferred && !ignoreDeferred(m)) // Group missing members by the name of the underlying symbol, // to consolidate getters and setters. val grouped = missing groupBy (_.name.getterName) val missingMethods = grouped.toList flatMap { case (name, syms) => if (syms exists (_.isSetter)) syms filterNot (_.isGetter) else syms } def stubImplementations: List[String] = { // Grouping missing methods by the declaring class val regrouped = missingMethods.groupBy(_.owner).toList def membersStrings(members: List[Symbol]) = { members foreach fullyInitializeSymbol members.sortBy(_.name) map (m => m.defStringSeenAs(clazz.tpe_* memberType m) + " = ???") } if (regrouped.tail.isEmpty) membersStrings(regrouped.head._2) else (regrouped.sortBy("" + _._1.name) flatMap { case (owner, members) => ("// Members declared in " + owner.fullName) +: membersStrings(members) :+ "" }).init } // If there are numerous missing methods, we presume they are aware of it and // give them a nicely formatted set of method signatures for implementing. if (missingMethods.size > 1) { abstractClassError(false, "it has " + missingMethods.size + " unimplemented members.") val preface = """|/** As seen from %s, the missing signatures are as follows. | * For convenience, these are usable as stub implementations. | */ |""".stripMargin.format(clazz) abstractErrors += stubImplementations.map(" " + _ + "\n").mkString(preface, "", "") return } for (member <- missing) { def undefined(msg: String) = abstractClassError(false, infoString(member) + " is not defined" + msg) val underlying = analyzer.underlyingSymbol(member) // TODO: don't use this method // Give a specific error message for abstract vars based on why it fails: // It could be unimplemented, have only one accessor, or be uninitialized. val groupedAccessors = grouped.getOrElse(member.name.getterName, Nil) val isMultiple = groupedAccessors.size > 1 if (groupedAccessors.exists(_.isSetter) || (member.isGetter && !isMultiple && member.setterIn(member.owner).exists)) { // If both getter and setter are missing, squelch the setter error. if (member.isSetter && isMultiple) () else undefined( if (member.isSetter) "\n(Note that an abstract var requires a setter in addition to the getter)" else if (member.isGetter && !isMultiple) "\n(Note that an abstract var requires a getter in addition to the setter)" else "\n(Note that variables need to be initialized to be defined)" ) } else if (underlying.isMethod) { // If there is a concrete method whose name matches the unimplemented // abstract method, and a cursory examination of the difference reveals // something obvious to us, let's make it more obvious to them. val abstractParams = underlying.tpe.paramTypes val matchingName = clazz.tpe.nonPrivateMembersAdmitting(VBRIDGE) val matchingArity = matchingName filter { m => !m.isDeferred && (m.name == underlying.name) && (m.tpe.paramTypes.size == underlying.tpe.paramTypes.size) && (m.tpe.typeParams.size == underlying.tpe.typeParams.size) } matchingArity match { // So far so good: only one candidate method case Scope(concrete) => val mismatches = abstractParams zip concrete.tpe.paramTypes filterNot { case (x, y) => x =:= y } mismatches match { // Only one mismatched parameter: say something useful. case (pa, pc) :: Nil => val abstractSym = pa.typeSymbol val concreteSym = pc.typeSymbol def subclassMsg(c1: Symbol, c2: Symbol) = ( ": %s is a subclass of %s, but method parameter types must match exactly.".format( c1.fullLocationString, c2.fullLocationString) ) val addendum = ( if (abstractSym == concreteSym) { // TODO: what is the optimal way to test for a raw type at this point? // Compilation has already failed so we shouldn't have to worry overmuch // about forcing types. if (underlying.isJavaDefined && pa.typeArgs.isEmpty && abstractSym.typeParams.nonEmpty) ". To implement a raw type, use %s[_]".format(pa) else if (pa.prefix =:= pc.prefix) ": their type parameters differ" else ": their prefixes (i.e. enclosing instances) differ" } else if (abstractSym isSubClass concreteSym) subclassMsg(abstractSym, concreteSym) else if (concreteSym isSubClass abstractSym) subclassMsg(concreteSym, abstractSym) else "" ) undefined("\n(Note that %s does not match %s%s)".format(pa, pc, addendum)) case xs => undefined("") } case _ => undefined("") } } else undefined("") } // Check the remainder for invalid absoverride. for (member <- rest ; if (member.isAbstractOverride && member.isIncompleteIn(clazz))) { val other = member.superSymbolIn(clazz) val explanation = if (other != NoSymbol) " and overrides incomplete superclass member " + infoString(other) else ", but no concrete implementation could be found in a base class" abstractClassError(true, infoString(member) + " is marked `abstract' and `override'" + explanation) } } // 3. Check that concrete classes do not have deferred definitions // that are not implemented in a subclass. // Note that this is not the same as (2); In a situation like // // class C { def m: Int = 0} // class D extends C { def m: Int } // // (3) is violated but not (2). def checkNoAbstractDecls(bc: Symbol) { for (decl <- bc.info.decls) { if (decl.isDeferred && !ignoreDeferred(decl)) { val impl = decl.matchingSymbol(clazz.thisType, admit = VBRIDGE) if (impl == NoSymbol || (decl.owner isSubClass impl.owner)) { abstractClassError(false, "there is a deferred declaration of "+infoString(decl)+ " which is not implemented in a subclass"+analyzer.abstractVarMessage(decl)) } } } if (bc.superClass hasFlag ABSTRACT) checkNoAbstractDecls(bc.superClass) } checkNoAbstractMembers() if (abstractErrors.isEmpty) checkNoAbstractDecls(clazz) if (abstractErrors.nonEmpty) reporter.error(clazz.pos, abstractErrorMessage) } else if (clazz.isTrait && !(clazz isSubClass AnyValClass)) { // For non-AnyVal classes, prevent abstract methods in interfaces that override // final members in Object; see #4431 for (decl <- clazz.info.decls) { // Have to use matchingSymbol, not a method involving overridden symbols, // because the scala type system understands that an abstract method here does not // override a concrete method in Object. The jvm, however, does not. val overridden = decl.matchingSymbol(ObjectClass, ObjectTpe) if (overridden.isFinal) reporter.error(decl.pos, "trait cannot redefine final method from class AnyRef") } } /* Returns whether there is a symbol declared in class `inclazz` * (which must be different from `clazz`) whose name and type * seen as a member of `class.thisType` matches `member`'s. */ def hasMatchingSym(inclazz: Symbol, member: Symbol): Boolean = { val isVarargs = hasRepeatedParam(member.tpe) lazy val varargsType = toJavaRepeatedParam(member.tpe) def isSignatureMatch(sym: Symbol) = !sym.isTerm || { val symtpe = clazz.thisType memberType sym def matches(tp: Type) = tp matches symtpe matches(member.tpe) || (isVarargs && matches(varargsType)) } /* The rules for accessing members which have an access boundary are more * restrictive in java than scala. Since java has no concept of package nesting, * a member with "default" (package-level) access can only be accessed by members * in the exact same package. Example: * * package a.b; * public class JavaClass { void foo() { } } * * The member foo() can be accessed only from members of package a.b, and not * nested packages like a.b.c. In the analogous scala class: * * package a.b * class ScalaClass { private[b] def foo() = () } * * The member IS accessible to classes in package a.b.c. The javaAccessCheck logic * is restricting the set of matching signatures according to the above semantics. */ def javaAccessCheck(sym: Symbol) = ( !inclazz.isJavaDefined // not a java defined member || !sym.hasAccessBoundary // no access boundary || sym.isProtected // marked protected in java, thus accessible to subclasses || sym.privateWithin == member.enclosingPackageClass // exact package match ) def classDecls = inclazz.info.nonPrivateDecl(member.name) def matchingSyms = classDecls filter (sym => isSignatureMatch(sym) && javaAccessCheck(sym)) (inclazz != clazz) && (matchingSyms != NoSymbol) } // 4. Check that every defined member with an `override` modifier overrides some other member. for (member <- clazz.info.decls) if (member.isAnyOverride && !(clazz.thisType.baseClasses exists (hasMatchingSym(_, member)))) { // for (bc <- clazz.info.baseClasses.tail) Console.println("" + bc + " has " + bc.info.decl(member.name) + ":" + bc.info.decl(member.name).tpe);//DEBUG val nonMatching: List[Symbol] = clazz.info.member(member.name).alternatives.filterNot(_.owner == clazz).filterNot(_.isFinal) def issueError(suffix: String) = reporter.error(member.pos, member.toString() + " overrides nothing" + suffix) nonMatching match { case Nil => issueError("") case ms => val superSigs = ms.map(m => m.defStringSeenAs(clazz.tpe memberType m)).mkString("\n") issueError(s".\nNote: the super classes of ${member.owner} contain the following, non final members named ${member.name}:\n${superSigs}") } member resetFlag (OVERRIDE | ABSOVERRIDE) // Any Override } } // Basetype Checking -------------------------------------------------------- /**
    *
  1. * Check that later type instances in the base-type sequence * are subtypes of earlier type instances of the same mixin. *
  2. *
*/ private def validateBaseTypes(clazz: Symbol) { val seenParents = mutable.HashSet[Type]() val seenTypes = new Array[List[Type]](clazz.info.baseTypeSeq.length) for (i <- 0 until seenTypes.length) seenTypes(i) = Nil /* validate all base types of a class in reverse linear order. */ def register(tp: Type): Unit = { // if (clazz.fullName.endsWith("Collection.Projection")) // println("validate base type "+tp) val baseClass = tp.typeSymbol if (baseClass.isClass) { if (!baseClass.isTrait && !baseClass.isJavaDefined && !currentRun.compiles(baseClass) && !separatelyCompiledScalaSuperclass.contains(baseClass)) separatelyCompiledScalaSuperclass.update(baseClass, ()) val index = clazz.info.baseTypeIndex(baseClass) if (index >= 0) { if (seenTypes(index) forall (tp1 => !(tp1 <:< tp))) seenTypes(index) = tp :: (seenTypes(index) filter (tp1 => !(tp <:< tp1))) } } val remaining = tp.parents filterNot seenParents seenParents ++= remaining remaining foreach register } register(clazz.tpe) for (i <- 0 until seenTypes.length) { val baseClass = clazz.info.baseTypeSeq(i).typeSymbol seenTypes(i) match { case Nil => devWarning(s"base $baseClass not found in basetypes of $clazz. This might indicate incorrect caching of TypeRef#parents.") case _ :: Nil => ;// OK case tp1 :: tp2 :: _ => reporter.error(clazz.pos, "illegal inheritance;\n " + clazz + " inherits different type instances of " + baseClass + ":\n" + tp1 + " and " + tp2) explainTypes(tp1, tp2) explainTypes(tp2, tp1) } } } // Variance Checking -------------------------------------------------------- object varianceValidator extends VarianceValidator { private def tpString(tp: Type) = tp match { case ClassInfoType(parents, _, clazz) => "supertype "+intersectionType(parents, clazz.owner) case _ => "type "+tp } override def issueVarianceError(base: Symbol, sym: Symbol, required: Variance) { reporter.error(base.pos, s"${sym.variance} $sym occurs in $required position in ${tpString(base.info)} of $base") } } // Forward reference checking --------------------------------------------------- class LevelInfo(val outer: LevelInfo) { val scope: Scope = if (outer eq null) newScope else newNestedScope(outer.scope) var maxindex: Int = Int.MinValue var refpos: Position = _ var refsym: Symbol = _ } private var currentLevel: LevelInfo = null private val symIndex = perRunCaches.newMap[Symbol, Int]() private def pushLevel() { currentLevel = new LevelInfo(currentLevel) } private def popLevel() { currentLevel = currentLevel.outer } private def enterSyms(stats: List[Tree]) { var index = -1 for (stat <- stats) { index = index + 1 stat match { case _ : MemberDef if stat.symbol.isLocalToBlock => currentLevel.scope.enter(stat.symbol) symIndex(stat.symbol) = index case _ => } } } private def enterReference(pos: Position, sym: Symbol) { if (sym.isLocalToBlock) { val e = currentLevel.scope.lookupEntry(sym.name) if ((e ne null) && sym == e.sym) { var l = currentLevel while (l.scope != e.owner) l = l.outer val symindex = symIndex(sym) if (l.maxindex < symindex) { l.refpos = pos l.refsym = sym l.maxindex = symindex } } } } // Comparison checking ------------------------------------------------------- object normalizeAll extends TypeMap { def apply(tp: Type) = mapOver(tp).normalize } def checkImplicitViewOptionApply(pos: Position, fn: Tree, args: List[Tree]): Unit = if (settings.warnOptionImplicit) (fn, args) match { case (tap@TypeApply(fun, targs), List(view: ApplyImplicitView)) if fun.symbol == currentRun.runDefinitions.Option_apply => reporter.warning(pos, s"Suspicious application of an implicit view (${view.fun}) in the argument to Option.apply.") // SI-6567 case _ => } private def isObjectOrAnyComparisonMethod(sym: Symbol) = sym match { case Object_eq | Object_ne | Object_== | Object_!= | Any_== | Any_!= => true case _ => false } /** Check the sensibility of using the given `equals` to compare `qual` and `other`. */ private def checkSensibleEquals(pos: Position, qual: Tree, name: Name, sym: Symbol, other: Tree) = { def isReferenceOp = sym == Object_eq || sym == Object_ne def isNew(tree: Tree) = tree match { case Function(_, _) | Apply(Select(New(_), nme.CONSTRUCTOR), _) => true case _ => false } def underlyingClass(tp: Type): Symbol = { val sym = tp.widen.typeSymbol if (sym.isAbstractType) underlyingClass(sym.info.bounds.hi) else sym } val actual = underlyingClass(other.tpe) val receiver = underlyingClass(qual.tpe) def onTrees[T](f: List[Tree] => T) = f(List(qual, other)) def onSyms[T](f: List[Symbol] => T) = f(List(receiver, actual)) // @MAT normalize for consistency in error message, otherwise only part is normalized due to use of `typeSymbol` def typesString = normalizeAll(qual.tpe.widen)+" and "+normalizeAll(other.tpe.widen) /* Symbols which limit the warnings we can issue since they may be value types */ val isMaybeValue = Set[Symbol](AnyClass, AnyRefClass, AnyValClass, ObjectClass, ComparableClass, JavaSerializableClass) // Whether def equals(other: Any) has known behavior: it is the default // inherited from java.lang.Object, or it is a synthetically generated // case equals. TODO - more cases are warnable if the target is a synthetic // equals. def isUsingWarnableEquals = { val m = receiver.info.member(nme.equals_) ((m == Object_equals) || (m == Any_equals) || isMethodCaseEquals(m)) } def isMethodCaseEquals(m: Symbol) = m.isSynthetic && m.owner.isCase def isCaseEquals = isMethodCaseEquals(receiver.info.member(nme.equals_)) // Whether this == or != is one of those defined in Any/AnyRef or an overload from elsewhere. def isUsingDefaultScalaOp = sym == Object_== || sym == Object_!= || sym == Any_== || sym == Any_!= def haveSubclassRelationship = (actual isSubClass receiver) || (receiver isSubClass actual) // Whether the operands+operator represent a warnable combo (assuming anyrefs) // Looking for comparisons performed with ==/!= in combination with either an // equals method inherited from Object or a case class synthetic equals (for // which we know the logic.) def isWarnable = isReferenceOp || (isUsingDefaultScalaOp && isUsingWarnableEquals) def isEitherNullable = (NullTpe <:< receiver.info) || (NullTpe <:< actual.info) def isEitherValueClass = actual.isDerivedValueClass || receiver.isDerivedValueClass def isBoolean(s: Symbol) = unboxedValueClass(s) == BooleanClass def isUnit(s: Symbol) = unboxedValueClass(s) == UnitClass def isNumeric(s: Symbol) = isNumericValueClass(unboxedValueClass(s)) || isAnyNumber(s) def isScalaNumber(s: Symbol) = s isSubClass ScalaNumberClass def isJavaNumber(s: Symbol) = s isSubClass JavaNumberClass // includes java.lang.Number if appropriate [SI-5779] def isAnyNumber(s: Symbol) = isScalaNumber(s) || isJavaNumber(s) def isMaybeAnyValue(s: Symbol) = isPrimitiveValueClass(unboxedValueClass(s)) || isMaybeValue(s) // used to short-circuit unrelatedTypes check if both sides are special def isSpecial(s: Symbol) = isMaybeAnyValue(s) || isAnyNumber(s) val nullCount = onSyms(_ filter (_ == NullClass) size) def isNonsenseValueClassCompare = ( !haveSubclassRelationship && isUsingDefaultScalaOp && isEitherValueClass && !isCaseEquals ) // Have we already determined that the comparison is non-sensible? I mean, non-sensical? var isNonSensible = false def nonSensibleWarning(what: String, alwaysEqual: Boolean) = { val msg = alwaysEqual == (name == nme.EQ || name == nme.eq) reporter.warning(pos, s"comparing $what using `${name.decode}' will always yield $msg") isNonSensible = true } def nonSensible(pre: String, alwaysEqual: Boolean) = nonSensibleWarning(s"${pre}values of types $typesString", alwaysEqual) def nonSensiblyEq() = nonSensible("", alwaysEqual = true) def nonSensiblyNeq() = nonSensible("", alwaysEqual = false) def nonSensiblyNew() = nonSensibleWarning("a fresh object", alwaysEqual = false) def unrelatedMsg = name match { case nme.EQ | nme.eq => "never compare equal" case _ => "always compare unequal" } def unrelatedTypes() = if (!isNonSensible) { val weaselWord = if (isEitherValueClass) "" else " most likely" reporter.warning(pos, s"$typesString are unrelated: they will$weaselWord $unrelatedMsg") } if (nullCount == 2) // null == null nonSensiblyEq() else if (nullCount == 1) { if (onSyms(_ exists isPrimitiveValueClass)) // null == 5 nonSensiblyNeq() else if (onTrees( _ exists isNew)) // null == new AnyRef nonSensiblyNew() } else if (isBoolean(receiver)) { if (!isBoolean(actual) && !isMaybeValue(actual)) // true == 5 nonSensiblyNeq() } else if (isUnit(receiver)) { if (isUnit(actual)) // () == () nonSensiblyEq() else if (!isUnit(actual) && !isMaybeValue(actual)) // () == "abc" nonSensiblyNeq() } else if (isNumeric(receiver)) { if (!isNumeric(actual)) if (isUnit(actual) || isBoolean(actual) || !isMaybeValue(actual)) // 5 == "abc" nonSensiblyNeq() } else if (isWarnable && !isCaseEquals) { if (isNew(qual)) // new X == y nonSensiblyNew() else if (isNew(other) && (receiver.isEffectivelyFinal || isReferenceOp)) // object X ; X == new Y nonSensiblyNew() else if (receiver.isEffectivelyFinal && !(receiver isSubClass actual) && !actual.isRefinementClass) { // object X, Y; X == Y if (isEitherNullable) nonSensible("non-null ", false) else nonSensiblyNeq() } } // warn if one but not the other is a derived value class // this is especially important to enable transitioning from // regular to value classes without silent failures. if (isNonsenseValueClassCompare) unrelatedTypes() // possibleNumericCount is insufficient or this will warn on e.g. Boolean == j.l.Boolean else if (isWarnable && nullCount == 0 && !(isSpecial(receiver) && isSpecial(actual))) { // better to have lubbed and lost def warnIfLubless(): Unit = { val common = global.lub(List(actual.tpe, receiver.tpe)) if (ObjectTpe <:< common && !(ObjectTpe <:< actual.tpe) && !(ObjectTpe <:< receiver.tpe)) unrelatedTypes() } // warn if actual has a case parent that is not same as receiver's; // if actual is not a case, then warn if no common supertype, as below if (isCaseEquals) { def thisCase = receiver.info.member(nme.equals_).owner actual.info.baseClasses.find(_.isCase) match { case Some(p) if p != thisCase => nonSensible("case class ", false) case None => // stronger message on (Some(1) == None) //if (receiver.isCase && receiver.isEffectivelyFinal && !(receiver isSubClass actual)) nonSensiblyNeq() //else // if a class, it must be super to thisCase (and receiver) since not <: thisCase if (!actual.isTrait && !(receiver isSubClass actual)) nonSensiblyNeq() else if (!haveSubclassRelationship) warnIfLubless() case _ => } } // warn only if they have no common supertype below Object else if (!haveSubclassRelationship) { warnIfLubless() } } } /** Sensibility check examines flavors of equals. */ def checkSensible(pos: Position, fn: Tree, args: List[Tree]) = fn match { case Select(qual, name @ (nme.EQ | nme.NE | nme.eq | nme.ne)) if args.length == 1 && isObjectOrAnyComparisonMethod(fn.symbol) && (!currentOwner.isSynthetic || currentOwner.isAnonymousFunction) => checkSensibleEquals(pos, qual, name, fn.symbol, args.head) case _ => } // SI-6276 warn for trivial recursion, such as `def foo = foo` or `val bar: X = bar`, which come up more frequently than you might think. // TODO: Move to abide rule. Also, this does not check that the def is final or not overridden, for example def checkInfiniteLoop(sym: Symbol, rhs: Tree): Unit = if (!sym.isValueParameter && sym.paramss.isEmpty) { rhs match { case t@(Ident(_) | Select(This(_), _)) if t hasSymbolWhich (_.accessedOrSelf == sym) => reporter.warning(rhs.pos, s"${sym.fullLocationString} does nothing other than call itself recursively") case _ => } } // Transformation ------------------------------------------------------------ /* Convert a reference to a case factory of type `tpe` to a new of the class it produces. */ def toConstructor(pos: Position, tpe: Type): Tree = { val rtpe = tpe.finalResultType assert(rtpe.typeSymbol hasFlag CASE, tpe) val tree = localTyper.typedOperator { atPos(pos) { Select(New(TypeTree(rtpe)), rtpe.typeSymbol.primaryConstructor) } } checkUndesiredProperties(rtpe.typeSymbol, tree.pos) checkUndesiredProperties(rtpe.typeSymbol.primaryConstructor, tree.pos) tree } override def transformStats(stats: List[Tree], exprOwner: Symbol): List[Tree] = { pushLevel() try { enterSyms(stats) var index = -1 stats flatMap { stat => index += 1; transformStat(stat, index) } } finally popLevel() } def transformStat(tree: Tree, index: Int): List[Tree] = tree match { case t if treeInfo.isSelfConstrCall(t) => assert(index == 0, index) try transform(tree) :: Nil finally if (currentLevel.maxindex > 0) { // An implementation restriction to avoid VerifyErrors and lazyvals mishaps; see SI-4717 debuglog("refsym = " + currentLevel.refsym) reporter.error(currentLevel.refpos, "forward reference not allowed from self constructor invocation") } case ValDef(_, _, _, _) => val tree1 = transform(tree) // important to do before forward reference check if (tree1.symbol.isLazy) tree1 :: Nil else { val sym = tree.symbol if (sym.isLocalToBlock && index <= currentLevel.maxindex) { debuglog("refsym = " + currentLevel.refsym) reporter.error(currentLevel.refpos, "forward reference extends over definition of " + sym) } tree1 :: Nil } case Import(_, _) => Nil case DefDef(mods, _, _, _, _, _) if (mods hasFlag MACRO) || (tree.symbol hasFlag MACRO) => Nil case _ => transform(tree) :: Nil } /* Check whether argument types conform to bounds of type parameters */ private def checkBounds(tree0: Tree, pre: Type, owner: Symbol, tparams: List[Symbol], argtps: List[Type]): Unit = try typer.infer.checkBounds(tree0, pre, owner, tparams, argtps, "") catch { case ex: TypeError => reporter.error(tree0.pos, ex.getMessage()) if (settings.explaintypes) { val bounds = tparams map (tp => tp.info.instantiateTypeParams(tparams, argtps).bounds) (argtps, bounds).zipped map ((targ, bound) => explainTypes(bound.lo, targ)) (argtps, bounds).zipped map ((targ, bound) => explainTypes(targ, bound.hi)) () } } private def isIrrefutable(pat: Tree, seltpe: Type): Boolean = pat match { case Apply(_, args) => val clazz = pat.tpe.typeSymbol clazz == seltpe.typeSymbol && clazz.isCaseClass && (args corresponds clazz.primaryConstructor.tpe.asSeenFrom(seltpe, clazz).paramTypes)(isIrrefutable) case Typed(pat, tpt) => seltpe <:< tpt.tpe case Ident(tpnme.WILDCARD) => true case Bind(_, pat) => isIrrefutable(pat, seltpe) case _ => false } // Note: if a symbol has both @deprecated and @migration annotations and both // warnings are enabled, only the first one checked here will be emitted. // I assume that's a consequence of some code trying to avoid noise by suppressing // warnings after the first, but I think it'd be better if we didn't have to // arbitrarily choose one as more important than the other. private def checkUndesiredProperties(sym: Symbol, pos: Position) { // If symbol is deprecated, and the point of reference is not enclosed // in either a deprecated member or a scala bridge method, issue a warning. // TODO: x.hasBridgeAnnotation doesn't seem to be needed here... if (sym.isDeprecated && !currentOwner.ownerChain.exists(x => x.isDeprecated || x.hasBridgeAnnotation)) currentRun.reporting.deprecationWarning(pos, sym) // Similar to deprecation: check if the symbol is marked with @migration // indicating it has changed semantics between versions. if (sym.hasMigrationAnnotation && settings.Xmigration.value != NoScalaVersion) { val changed = try settings.Xmigration.value < ScalaVersion(sym.migrationVersion.get) catch { case e : NumberFormatException => reporter.warning(pos, s"${sym.fullLocationString} has an unparsable version number: ${e.getMessage()}") // if we can't parse the format on the migration annotation just conservatively assume it changed true } if (changed) reporter.warning(pos, s"${sym.fullLocationString} has changed semantics in version ${sym.migrationVersion.get}:\n${sym.migrationMessage.get}") } // See an explanation of compileTimeOnly in its scaladoc at scala.annotation.compileTimeOnly. if (sym.isCompileTimeOnly && !currentOwner.ownerChain.exists(x => x.isCompileTimeOnly)) { def defaultMsg = sm"""Reference to ${sym.fullLocationString} should not have survived past type checking, |it should have been processed and eliminated during expansion of an enclosing macro.""" // The getOrElse part should never happen, it's just here as a backstop. reporter.error(pos, sym.compileTimeOnlyMessage getOrElse defaultMsg) } } private def checkDelayedInitSelect(qual: Tree, sym: Symbol, pos: Position) = { def isLikelyUninitialized = ( (sym.owner isSubClass DelayedInitClass) && !qual.tpe.isInstanceOf[ThisType] && sym.accessedOrSelf.isVal ) if (settings.warnDelayedInit && isLikelyUninitialized) reporter.warning(pos, s"Selecting ${sym} from ${sym.owner}, which extends scala.DelayedInit, is likely to yield an uninitialized value") } private def lessAccessible(otherSym: Symbol, memberSym: Symbol): Boolean = ( (otherSym != NoSymbol) && !otherSym.isProtected && !otherSym.isTypeParameterOrSkolem && !otherSym.isExistentiallyBound && (otherSym isLessAccessibleThan memberSym) && (otherSym isLessAccessibleThan memberSym.enclClass) ) private def lessAccessibleSymsInType(other: Type, memberSym: Symbol): List[Symbol] = { val extras = other match { case TypeRef(pre, _, args) => // checking the prefix here gives us spurious errors on e.g. a private[process] // object which contains a type alias, which normalizes to a visible type. args filterNot (_ eq NoPrefix) flatMap (tp => lessAccessibleSymsInType(tp, memberSym)) case _ => Nil } if (lessAccessible(other.typeSymbol, memberSym)) other.typeSymbol :: extras else extras } private def warnLessAccessible(otherSym: Symbol, memberSym: Symbol) { val comparison = accessFlagsToString(memberSym) match { case "" => "" case acc => " is " + acc + " but" } val cannot = if (memberSym.isDeferred) "may be unable to provide a concrete implementation of" else "may be unable to override" reporter.warning(memberSym.pos, "%s%s references %s %s.".format( memberSym.fullLocationString, comparison, accessFlagsToString(otherSym), otherSym ) + "\nClasses which cannot access %s %s %s.".format( otherSym.decodedName, cannot, memberSym.decodedName) ) } /** Warn about situations where a method signature will include a type which * has more restrictive access than the method itself. */ private def checkAccessibilityOfReferencedTypes(tree: Tree) { val member = tree.symbol def checkAccessibilityOfType(tpe: Type) { val inaccessible = lessAccessibleSymsInType(tpe, member) // if the unnormalized type is accessible, that's good enough if (inaccessible.isEmpty) () // or if the normalized type is, that's good too else if ((tpe ne tpe.normalize) && lessAccessibleSymsInType(tpe.dealiasWiden, member).isEmpty) () // otherwise warn about the inaccessible syms in the unnormalized type else inaccessible foreach (sym => warnLessAccessible(sym, member)) } // types of the value parameters mapParamss(member)(p => checkAccessibilityOfType(p.tpe)) // upper bounds of type parameters member.typeParams.map(_.info.bounds.hi.widen) foreach checkAccessibilityOfType } private def checkByNameRightAssociativeDef(tree: DefDef) { tree match { case DefDef(_, name, _, params :: _, _, _) => if (settings.warnByNameRightAssociative && !treeInfo.isLeftAssoc(name.decodedName) && params.exists(p => isByName(p.symbol))) reporter.warning(tree.pos, "by-name parameters will be evaluated eagerly when called as a right-associative infix operator. For more details, see SI-1980.") case _ => } } /** Check that a deprecated val or def does not override a * concrete, non-deprecated method. If it does, then * deprecation is meaningless. */ private def checkDeprecatedOvers(tree: Tree) { val symbol = tree.symbol if (symbol.isDeprecated) { val concrOvers = symbol.allOverriddenSymbols.filter(sym => !sym.isDeprecated && !sym.isDeferred && !sym.hasDeprecatedOverridingAnnotation && !sym.enclClass.hasDeprecatedInheritanceAnnotation) if(!concrOvers.isEmpty) currentRun.reporting.deprecationWarning( tree.pos, symbol, s"${symbol.toString} overrides concrete, non-deprecated symbol(s): ${concrOvers.map(_.name.decode).mkString(", ")}", "") } } private def isRepeatedParamArg(tree: Tree) = currentApplication match { case Apply(fn, args) => ( args.nonEmpty && (args.last eq tree) && (fn.tpe.params.length == args.length) && isRepeatedParamType(fn.tpe.params.last.tpe) ) case _ => false } private def checkTypeRef(tp: Type, tree: Tree, skipBounds: Boolean) = tp match { case TypeRef(pre, sym, args) => tree match { case tt: TypeTree if tt.original == null => // SI-7783 don't warn about inferred types // FIXME: reconcile this check with one in resetAttrs case _ => checkUndesiredProperties(sym, tree.pos) } if(sym.isJavaDefined) sym.typeParams foreach (_.cookJavaRawInfo()) if (!tp.isHigherKinded && !skipBounds) checkBounds(tree, pre, sym.owner, sym.typeParams, args) case _ => } private def checkTypeRefBounds(tp: Type, tree: Tree) = { var skipBounds = false tp match { case AnnotatedType(ann :: Nil, underlying) if ann.symbol == UncheckedBoundsClass => skipBounds = true underlying case TypeRef(pre, sym, args) => if (!tp.isHigherKinded && !skipBounds) checkBounds(tree, pre, sym.owner, sym.typeParams, args) tp case _ => tp } } private def checkAnnotations(tpes: List[Type], tree: Tree) = tpes foreach { tp => checkTypeRef(tp, tree, skipBounds = false) checkTypeRefBounds(tp, tree) } private def doTypeTraversal(tree: Tree)(f: Type => Unit) = if (!inPattern) tree.tpe foreach f private def applyRefchecksToAnnotations(tree: Tree): Unit = { def applyChecks(annots: List[AnnotationInfo]) = { checkAnnotations(annots map (_.atp), tree) transformTrees(annots flatMap (_.args)) } def checkIsElisible(sym: Symbol) = if (sym ne null) sym.elisionLevel.foreach { level => if (!sym.isMethod || sym.isAccessor || sym.isLazy || sym.isDeferred) reporter.error(sym.pos, s"${sym.name}: Only methods can be marked @elidable.") } if (settings.isScala213) checkIsElisible(tree.symbol) tree match { case m: MemberDef => val sym = m.symbol applyChecks(sym.annotations) def messageWarning(name: String)(warn: String) = reporter.warning(tree.pos, f"Invalid $name message for ${sym}%s${sym.locationString}%s:%n$warn") // validate implicitNotFoundMessage and implicitAmbiguousMessage analyzer.ImplicitNotFoundMsg.check(sym) foreach messageWarning("implicitNotFound") analyzer.ImplicitAmbiguousMsg.check(sym) foreach messageWarning("implicitAmbiguous") case tpt@TypeTree() => if (tpt.original != null) { tpt.original foreach { case dc@TypeTreeWithDeferredRefCheck() => applyRefchecksToAnnotations(dc.check()) // #2416 case _ => } } doTypeTraversal(tree) { case tp @ AnnotatedType(annots, _) => applyChecks(annots) case tp => } case _ => } } private def isSimpleCaseApply(tree: Tree): Boolean = { val sym = tree.symbol def isClassTypeAccessible(tree: Tree): Boolean = tree match { case TypeApply(fun, targs) => isClassTypeAccessible(fun) case Select(module, apply) => ( // SI-4859 `CaseClass1().InnerCaseClass2()` must not be rewritten to `new InnerCaseClass2()`; // {expr; Outer}.Inner() must not be rewritten to `new Outer.Inner()`. treeInfo.isQualifierSafeToElide(module) && // SI-5626 Classes in refinement types cannot be constructed with `new`. In this case, // the companion class is actually not a ClassSymbol, but a reference to an abstract type. module.symbol.companionClass.isClass ) } sym.name == nme.apply && !(sym hasFlag STABLE) && // ??? sym.isCase && isClassTypeAccessible(tree) && !tree.tpe.finalResultType.typeSymbol.primaryConstructor.isLessAccessibleThan(tree.symbol) } private def transformCaseApply(tree: Tree) = { def loop(t: Tree): Unit = t match { case Ident(_) => checkUndesiredProperties(t.symbol, t.pos) case Select(qual, _) => checkUndesiredProperties(t.symbol, t.pos) loop(qual) case _ => } tree foreach { case i@Ident(_) => enterReference(i.pos, i.symbol) // SI-5390 need to `enterReference` for `a` in `a.B()` case _ => } loop(tree) toConstructor(tree.pos, tree.tpe) } private def transformApply(tree: Apply): Tree = tree match { case Apply( Select(qual, nme.withFilter), List(Function( List(ValDef(_, pname, tpt, _)), Match(_, CaseDef(pat1, _, _) :: _)))) if ((pname startsWith nme.CHECK_IF_REFUTABLE_STRING) && isIrrefutable(pat1, tpt.tpe) && (qual.tpe <:< tree.tpe)) => transform(qual) case Apply(fn, args) => // sensicality should be subsumed by the unreachability/exhaustivity/irrefutability // analyses in the pattern matcher if (!inPattern) { checkImplicitViewOptionApply(tree.pos, fn, args) checkSensible(tree.pos, fn, args) } currentApplication = tree tree } private def transformSelect(tree: Select): Tree = { val Select(qual, _) = tree val sym = tree.symbol checkUndesiredProperties(sym, tree.pos) checkDelayedInitSelect(qual, sym, tree.pos) if (!sym.exists) devWarning("Select node has NoSymbol! " + tree + " / " + tree.tpe) else if (sym.isLocalToThis) varianceValidator.checkForEscape(sym, currentClass) def checkSuper(mix: Name) = // term should have been eliminated by super accessors assert(!(qual.symbol.isTrait && sym.isTerm && mix == tpnme.EMPTY), (qual.symbol, sym, mix)) // Rewrite eligible calls to monomorphic case companion apply methods to the equivalent constructor call. // // Note: for generic case classes the rewrite needs to be handled at the enclosing `TypeApply` to transform // `TypeApply(Select(C, apply), targs)` to `Select(New(C[targs]), )`. In case such a `TypeApply` // was deemed ineligible for transformation (e.g. the case constructor was private), the refchecks transform // will recurse to this point with `Select(C, apply)`, which will have a type `[T](...)C[T]`. // // We don't need to perform the check on the Select node, and `!isHigherKinded will guard against this // redundant (and previously buggy, SI-9546) consideration. if (!tree.tpe.isHigherKinded && isSimpleCaseApply(tree)) { transformCaseApply(tree) } else { qual match { case Super(_, mix) => checkSuper(mix) case _ => } tree } } private def transformIf(tree: If): Tree = { val If(cond, thenpart, elsepart) = tree def unitIfEmpty(t: Tree): Tree = if (t == EmptyTree) Literal(Constant(())).setPos(tree.pos).setType(UnitTpe) else t cond.tpe match { case ConstantType(value) => val res = if (value.booleanValue) thenpart else elsepart unitIfEmpty(res) case _ => tree } } // Warning about nullary methods returning Unit. private def checkNullaryMethodReturnType(sym: Symbol) = sym.tpe match { case NullaryMethodType(restpe) if restpe.typeSymbol == UnitClass => // this may be the implementation of e.g. a generic method being parameterized // on Unit, in which case we had better let it slide. val isOk = ( sym.isGetter || (sym.name containsName nme.DEFAULT_GETTER_STRING) || sym.allOverriddenSymbols.exists(over => !(over.tpe.resultType =:= sym.tpe.resultType)) ) if (!isOk) reporter.warning(sym.pos, s"side-effecting nullary methods are discouraged: suggest defining as `def ${sym.name.decode}()` instead") case _ => () } // Verify classes extending AnyVal meet the requirements private def checkAnyValSubclass(clazz: Symbol) = { if (clazz.isDerivedValueClass) { if (clazz.isTrait) reporter.error(clazz.pos, "Only classes (not traits) are allowed to extend AnyVal") else if (clazz.hasAbstractFlag) reporter.error(clazz.pos, "`abstract' modifier cannot be used with value classes") } } private def checkUnexpandedMacro(t: Tree) = if (!t.isDef && t.hasSymbolField && t.symbol.isTermMacro) reporter.error(t.pos, "macro has not been expanded") override def transform(tree: Tree): Tree = { val savedLocalTyper = localTyper val savedCurrentApplication = currentApplication try { val sym = tree.symbol // Apply RefChecks to annotations. Makes sure the annotations conform to // type bounds (bug #935), issues deprecation warnings for symbols used // inside annotations. applyRefchecksToAnnotations(tree) var result: Tree = tree match { // NOTE: a val in a trait is now a DefDef, with the RHS being moved to an Assign in Constructors case tree: ValOrDefDef => checkDeprecatedOvers(tree) if (!tree.isErroneous) checkInfiniteLoop(tree.symbol, tree.rhs) if (settings.warnNullaryUnit) checkNullaryMethodReturnType(sym) if (settings.warnInaccessible) { if (!sym.isConstructor && !sym.isEffectivelyFinalOrNotOverridden && !sym.isSynthetic) checkAccessibilityOfReferencedTypes(tree) } tree match { case dd: DefDef => checkByNameRightAssociativeDef(dd) if (sym hasAnnotation NativeAttr) { if (sym.owner.isTrait) { reporter.error(tree.pos, "A trait cannot define a native method.") tree } else if (dd.rhs == EmptyTree) { // pretend it had a stub implementation sym resetFlag DEFERRED deriveDefDef(dd)(_ => typed(gen.mkSysErrorCall("native method stub"))) } else tree } else tree case _ => tree } case Template(parents, self, body) => localTyper = localTyper.atOwner(tree, currentOwner) validateBaseTypes(currentOwner) checkOverloadedRestrictions(currentOwner, currentOwner) // SI-7870 default getters for constructors live in the companion module checkOverloadedRestrictions(currentOwner, currentOwner.companionModule) val bridges = addVarargBridges(currentOwner) // TODO: do this during uncurry? checkAllOverrides(currentOwner) checkAnyValSubclass(currentOwner) if (currentOwner.isDerivedValueClass) currentOwner.primaryConstructor makeNotPrivate NoSymbol // SI-6601, must be done *after* pickler! if (bridges.nonEmpty) deriveTemplate(tree)(_ ::: bridges) else tree case dc@TypeTreeWithDeferredRefCheck() => abort("adapt should have turned dc: TypeTreeWithDeferredRefCheck into tpt: TypeTree, with tpt.original == dc") case tpt@TypeTree() => if(tpt.original != null) { tpt.original foreach { case dc@TypeTreeWithDeferredRefCheck() => transform(dc.check()) // #2416 -- only call transform to do refchecks, but discard results // tpt has the right type if the deferred checks are ok case _ => } } val existentialParams = new ListBuffer[Symbol] var skipBounds = false // check all bounds, except those that are existential type parameters // or those within typed annotated with @uncheckedBounds doTypeTraversal(tree) { case tp @ ExistentialType(tparams, tpe) => existentialParams ++= tparams case ann: AnnotatedType if ann.hasAnnotation(UncheckedBoundsClass) => // SI-7694 Allow code synthetizers to disable checking of bounds for TypeTrees based on inferred LUBs // which might not conform to the constraints. skipBounds = true case tp: TypeRef => val tpWithWildcards = deriveTypeWithWildcards(existentialParams.toList)(tp) checkTypeRef(tpWithWildcards, tree, skipBounds) case _ => } if (skipBounds) { tree.setType(tree.tpe.map { _.filterAnnotations(_.symbol != UncheckedBoundsClass) }) } tree case TypeApply(fn, args) => checkBounds(tree, NoPrefix, NoSymbol, fn.tpe.typeParams, args map (_.tpe)) if (isSimpleCaseApply(tree)) transformCaseApply(tree) else tree case x @ Apply(_, _) => transformApply(x) case x @ If(_, _, _) => transformIf(x) case New(tpt) => enterReference(tree.pos, tpt.tpe.typeSymbol) tree case treeInfo.WildcardStarArg(_) if !isRepeatedParamArg(tree) => reporter.error(tree.pos, "no `: _*' annotation allowed here\n"+ "(such annotations are only allowed in arguments to *-parameters)") tree case Ident(name) => checkUndesiredProperties(sym, tree.pos) if (name != nme.WILDCARD && name != tpnme.WILDCARD_STAR) { assert(sym != NoSymbol, "transformCaseApply: name = " + name.debugString + " tree = " + tree + " / " + tree.getClass) //debug enterReference(tree.pos, sym) } tree case x @ Select(_, _) => transformSelect(x) case UnApply(fun, args) => transform(fun) // just make sure we enterReference for unapply symbols, note that super.transform(tree) would not transform(fun) // transformTrees(args) // TODO: is this necessary? could there be forward references in the args?? // probably not, until we allow parameterised extractors tree case _ => tree } // skip refchecks in patterns.... result = result match { case CaseDef(pat, guard, body) => val pat1 = savingInPattern { inPattern = true transform(pat) } treeCopy.CaseDef(tree, pat1, transform(guard), transform(body)) case LabelDef(_, _, _) if treeInfo.hasSynthCaseSymbol(result) => savingInPattern { inPattern = true deriveLabelDef(result)(transform) } case Apply(fun, args) if fun.symbol.isLabel && treeInfo.isSynthCaseSymbol(fun.symbol) => savingInPattern { // SI-7756 If we were in a translated pattern, we can now switch out of pattern mode, as the label apply signals // that we are in the user-supplied code in the case body. // // Relies on the translation of: // (null: Any) match { case x: List[_] => x; x.reverse; case _ => }' // to: // val x2: List[_] = (x1.asInstanceOf[List[_]]: List[_]); // matchEnd4({ x2; x2.reverse}) // case body is an argument to a label apply. inPattern = false super.transform(result) } case ValDef(_, _, _, _) if treeInfo.hasSynthCaseSymbol(result) => deriveValDef(result)(transform) // SI-7716 Don't refcheck the tpt of the synthetic val that holds the selector. case _ => super.transform(result) } result match { case ClassDef(_, _, _, _) | TypeDef(_, _, _, _) | ModuleDef(_, _, _) => if (result.symbol.isLocalToBlock || result.symbol.isTopLevel) varianceValidator.traverse(result) case tt @ TypeTree() if tt.original != null => varianceValidator.traverse(tt.original) // See SI-7872 case _ => } checkUnexpandedMacro(result) result } catch { case ex: TypeError => if (settings.debug) ex.printStackTrace() reporter.error(tree.pos, ex.getMessage()) tree } finally { localTyper = savedLocalTyper currentApplication = savedCurrentApplication } } } }