/* __ *\ ** ________ ___ / / ___ Scala API ** ** / __/ __// _ | / / / _ | (c) 2002-2011, LAMP/EPFL ** ** __\ \/ /__/ __ |/ /__/ __ | http://scala-lang.org/ ** ** /____/\___/_/ |_/____/_/ | | ** ** |/ ** \* */ package scala import scala.collection.{ mutable, immutable, generic } import immutable.StringOps import mutable.ArrayOps import generic.CanBuildFrom import annotation.{ elidable, implicitNotFound } import annotation.elidable.ASSERTION import language.{implicitConversions, existentials} /** The `Predef` object provides definitions that are accessible in all Scala * compilation units without explicit qualification. * * === Commonly Used Types === * Predef provides type aliases for types which are commonly used, such as * the immutable collection types [[scala.collection.immutable.Map]], * [[scala.collection.immutable.Set]], and the [[scala.collection.immutable.List]] * constructors ([[scala.collection.immutable.::]] and * [[scala.collection.immutable.Nil]]). * The types `Pair` (a [[scala.Tuple2]]) and `Triple` (a [[scala.Tuple3]]), with * simple constructors, are also provided. * * === Console I/O === * Predef provides a number of simple functions for console I/O, such as * `print`, `println`, `readLine`, `readInt`, etc. These functions are all * aliases of the functions provided by [[scala.Console]]. * * === Assertions === * * A set of `assert` functions are provided for use as a way to document * and dynamically check invariants in code. `assert` statements can be elided * at runtime by providing the command line argument `-Xdisable-assertions` to * the `scala` command. * * Variants of `assert` intended for use with static analysis tools are also * provided: `assume`, `require` and `ensuring`. `require` and `ensuring` are * intended for use as a means of design-by-contract style specification * of pre- and post-conditions on functions, with the intention that these * specifications could be consumed by a static analysis tool. For instance, * * {{{ * def addNaturals(nats: List[Int]): Int = { * require(nats forall (_ >= 0), "List contains negative numbers") * nats.foldLeft(0)(_ + _) * } ensuring(_ >= 0) * }}} * * The declaration of `addNaturals` states that the list of integers passed should * only contain natural numbers (i.e. non-negative), and that the result returned * will also be natural. `require` is distinct from `assert` in that if the * condition fails, then the caller of the function is to blame rather than a * logical error having been made within `addNaturals` itself. `ensures` is a * form of `assert` that declares the guarantee the function is providing with * regards to it's return value. * * === Implicit Conversions === * A number of commonly applied implicit conversions are also defined here, and * in the parent type [[scala.LowPriorityImplicits]]. Implicit conversions * are provided for the "widening" of numeric values, for instance, converting a * Short value to a Long value as required, and to add additional higher-order * functions to Array values. These are described in more detail in the documentation of [[scala.Array]]. */ object Predef extends LowPriorityImplicits { /** * Retrieve the runtime representation of a class type. `classOf[T]` is equivalent to * the class literal `T.class` in Java. * * @example {{{ * val listClass = classOf[List[_]] * // listClass is java.lang.Class[List[_]] = class scala.collection.immutable.List * * val mapIntString = classOf[Map[Int,String]] * // mapIntString is java.lang.Class[Map[Int,String]] = interface scala.collection.immutable.Map * }}} */ def classOf[T]: Class[T] = null // This is a stub method. The actual implementation is filled in by the compiler. type String = java.lang.String type Class[T] = java.lang.Class[T] // miscelleaneous ----------------------------------------------------- scala.`package` // to force scala package object to be seen. scala.collection.immutable.List // to force Nil, :: to be seen. type Function[-A, +B] = Function1[A, B] type Map[A, +B] = immutable.Map[A, B] type Set[A] = immutable.Set[A] val Map = immutable.Map val Set = immutable.Set // @deprecated("Use scala.AnyRef instead", "2.10.0") // def AnyRef = scala.AnyRef // Manifest types, companions, and incantations for summoning @deprecated("Use `@scala.reflect.ClassTag` instead", "2.10.0") type ClassManifest[T] = scala.reflect.ClassManifest[T] @deprecated("OptManifest is no longer supported and using it may lead to incorrect results, use `@scala.reflect.TypeTag` instead", "2.10.0") type OptManifest[T] = scala.reflect.OptManifest[T] @deprecated("Use `@scala.reflect.ConcreteTypeTag` instead", "2.10.0") type Manifest[T] = scala.reflect.Manifest[T] @deprecated("Use `@scala.reflect.ClassTag` instead", "2.10.0") val ClassManifest = scala.reflect.ClassManifest // [Paul to Eugene] No lazy vals in Predef. Too expensive. Have to work harder on breaking initialization dependencies. @deprecated("Use `@scala.reflect.ConcreteTypeTag` instead", "2.10.0") lazy val Manifest = scala.reflect.Manifest // needs to be lazy, because requires scala.reflect.mirror instance @deprecated("NoManifest is no longer supported and using it may lead to incorrect results, use `@scala.reflect.TypeTag` instead", "2.10.0") lazy val NoManifest = scala.reflect.NoManifest // needs to be lazy, because requires scala.reflect.mirror instance def manifest[T](implicit m: Manifest[T]) = m def classManifest[T](implicit m: ClassManifest[T]) = m def optManifest[T](implicit m: OptManifest[T]) = m // Tag types and companions, and incantations for summoning type ClassTag[T] = scala.reflect.ClassTag[T] type TypeTag[T] = scala.reflect.TypeTag[T] type ConcreteTypeTag[T] = scala.reflect.ConcreteTypeTag[T] val ClassTag = scala.reflect.ClassTag // doesn't need to be lazy, because it's not a path-dependent type // [Paul to Eugene] No lazy vals in Predef. Too expensive. Have to work harder on breaking initialization dependencies. lazy val TypeTag = scala.reflect.TypeTag // needs to be lazy, because requires scala.reflect.mirror instance lazy val ConcreteTypeTag = scala.reflect.ConcreteTypeTag // [Eugene to Martin] it's really tedious to type "implicitly[...]" all the time, so I'm reintroducing these shortcuts def classTag[T](implicit ctag: ClassTag[T]) = ctag def tag[T](implicit ttag: TypeTag[T]) = ttag def typeTag[T](implicit ttag: TypeTag[T]) = ttag def concreteTag[T](implicit cttag: ConcreteTypeTag[T]) = cttag def concreteTypeTag[T](implicit cttag: ConcreteTypeTag[T]) = cttag // Minor variations on identity functions def identity[A](x: A): A = x // @see `conforms` for the implicit version @inline def implicitly[T](implicit e: T) = e // for summoning implicit values from the nether world -- TODO: when dependent method types are on by default, give this result type `e.type`, so that inliner has better chance of knowing which method to inline in calls like `implicitly[MatchingStrategy[Option]].zero` @inline def locally[T](x: T): T = x // to communicate intent and avoid unmoored statements // Apparently needed for the xml library val $scope = scala.xml.TopScope // Deprecated @deprecated("Use sys.error(message) instead", "2.9.0") def error(message: String): Nothing = sys.error(message) @deprecated("Use sys.exit() instead", "2.9.0") def exit(): Nothing = sys.exit() @deprecated("Use sys.exit(status) instead", "2.9.0") def exit(status: Int): Nothing = sys.exit(status) @deprecated("Use formatString.format(args: _*) or arg.formatted(formatString) instead", "2.9.0") def format(text: String, xs: Any*) = augmentString(text).format(xs: _*) // errors and asserts ------------------------------------------------- /** Tests an expression, throwing an `AssertionError` if false. * Calls to this method will not be generated if `-Xelide-below` * is at least `ASSERTION`. * * @see elidable * @param p the expression to test */ @elidable(ASSERTION) def assert(assertion: Boolean) { if (!assertion) throw new java.lang.AssertionError("assertion failed") } /** Tests an expression, throwing an `AssertionError` if false. * Calls to this method will not be generated if `-Xelide-below` * is at least `ASSERTION`. * * @see elidable * @param p the expression to test * @param msg a String to include in the failure message */ @elidable(ASSERTION) @inline final def assert(assertion: Boolean, message: => Any) { if (!assertion) throw new java.lang.AssertionError("assertion failed: "+ message) } /** Tests an expression, throwing an `AssertionError` if false. * This method differs from assert only in the intent expressed: * assert contains a predicate which needs to be proven, while * assume contains an axiom for a static checker. Calls to this method * will not be generated if `-Xelide-below` is at least `ASSERTION`. * * @see elidable * @param p the expression to test */ @elidable(ASSERTION) def assume(assumption: Boolean) { if (!assumption) throw new java.lang.AssertionError("assumption failed") } /** Tests an expression, throwing an `AssertionError` if false. * This method differs from assert only in the intent expressed: * assert contains a predicate which needs to be proven, while * assume contains an axiom for a static checker. Calls to this method * will not be generated if `-Xelide-below` is at least `ASSERTION`. * * @see elidable * @param p the expression to test * @param msg a String to include in the failure message */ @elidable(ASSERTION) @inline final def assume(assumption: Boolean, message: => Any) { if (!assumption) throw new java.lang.AssertionError("assumption failed: "+ message) } /** Tests an expression, throwing an `IllegalArgumentException` if false. * This method is similar to `assert`, but blames the caller of the method * for violating the condition. * * @param p the expression to test */ def require(requirement: Boolean) { if (!requirement) throw new IllegalArgumentException("requirement failed") } /** Tests an expression, throwing an `IllegalArgumentException` if false. * This method is similar to `assert`, but blames the caller of the method * for violating the condition. * * @param p the expression to test * @param msg a String to include in the failure message */ @inline final def require(requirement: Boolean, message: => Any) { if (!requirement) throw new IllegalArgumentException("requirement failed: "+ message) } final class Ensuring[A](val __resultOfEnsuring: A) extends AnyVal { // `__resultOfEnsuring` must be a public val to allow inlining. // See comments in ArrowAssoc for more. @deprecated("Use __resultOfEnsuring instead", "2.10.0") def x = __resultOfEnsuring def ensuring(cond: Boolean): A = { assert(cond); __resultOfEnsuring } def ensuring(cond: Boolean, msg: => Any): A = { assert(cond, msg); __resultOfEnsuring } def ensuring(cond: A => Boolean): A = { assert(cond(__resultOfEnsuring)); __resultOfEnsuring } def ensuring(cond: A => Boolean, msg: => Any): A = { assert(cond(__resultOfEnsuring), msg); __resultOfEnsuring } } @inline implicit def any2Ensuring[A](x: A): Ensuring[A] = new Ensuring(x) /** `???` can be used for marking methods that remain to be implemented. * @throws A `NotImplementedError` */ def ??? : Nothing = throw new NotImplementedError // tupling ------------------------------------------------------------ type Pair[+A, +B] = Tuple2[A, B] object Pair { def apply[A, B](x: A, y: B) = Tuple2(x, y) def unapply[A, B](x: Tuple2[A, B]): Option[Tuple2[A, B]] = Some(x) } type Triple[+A, +B, +C] = Tuple3[A, B, C] object Triple { def apply[A, B, C](x: A, y: B, z: C) = Tuple3(x, y, z) def unapply[A, B, C](x: Tuple3[A, B, C]): Option[Tuple3[A, B, C]] = Some(x) } final class ArrowAssoc[A](val __leftOfArrow: A) extends AnyVal { // `__leftOfArrow` must be a public val to allow inlining. The val // used to be called `x`, but now goes by `__leftOfArrow`, as that // reduces the chances of a user's writing `foo.__leftOfArrow` and // being confused why they get an ambiguous implicit conversion // error. (`foo.x` used to produce this error since both // any2Ensuring and any2ArrowAssoc pimped an `x` onto everything) @deprecated("Use __leftOfArrow instead", "2.10.0") def x = __leftOfArrow @inline def -> [B](y: B): Tuple2[A, B] = Tuple2(__leftOfArrow, y) def →[B](y: B): Tuple2[A, B] = ->(y) } @inline implicit def any2ArrowAssoc[A](x: A): ArrowAssoc[A] = new ArrowAssoc(x) // printing and reading ----------------------------------------------- def print(x: Any) = Console.print(x) def println() = Console.println() def println(x: Any) = Console.println(x) def printf(text: String, xs: Any*) = Console.print(text.format(xs: _*)) def readLine(): String = Console.readLine() def readLine(text: String, args: Any*) = Console.readLine(text, args: _*) def readBoolean() = Console.readBoolean() def readByte() = Console.readByte() def readShort() = Console.readShort() def readChar() = Console.readChar() def readInt() = Console.readInt() def readLong() = Console.readLong() def readFloat() = Console.readFloat() def readDouble() = Console.readDouble() def readf(format: String) = Console.readf(format) def readf1(format: String) = Console.readf1(format) def readf2(format: String) = Console.readf2(format) def readf3(format: String) = Console.readf3(format) // views -------------------------------------------------------------- implicit def exceptionWrapper(exc: Throwable) = new runtime.RichException(exc) implicit def zipped2ToTraversable[El1, El2](zz: Tuple2[_, _]#Zipped[_, El1, _, El2]): Traversable[(El1, El2)] = new collection.AbstractTraversable[(El1, El2)] { def foreach[U](f: ((El1, El2)) => U): Unit = zz foreach Function.untupled(f) } implicit def zipped3ToTraversable[El1, El2, El3](zz: Tuple3[_, _, _]#Zipped[_, El1, _, El2, _, El3]): Traversable[(El1, El2, El3)] = new collection.AbstractTraversable[(El1, El2, El3)] { def foreach[U](f: ((El1, El2, El3)) => U): Unit = zz foreach Function.untupled(f) } implicit def genericArrayOps[T](xs: Array[T]): ArrayOps[T] = xs match { case x: Array[AnyRef] => refArrayOps[AnyRef](x).asInstanceOf[ArrayOps[T]] case x: Array[Int] => intArrayOps(x).asInstanceOf[ArrayOps[T]] case x: Array[Double] => doubleArrayOps(x).asInstanceOf[ArrayOps[T]] case x: Array[Long] => longArrayOps(x).asInstanceOf[ArrayOps[T]] case x: Array[Float] => floatArrayOps(x).asInstanceOf[ArrayOps[T]] case x: Array[Char] => charArrayOps(x).asInstanceOf[ArrayOps[T]] case x: Array[Byte] => byteArrayOps(x).asInstanceOf[ArrayOps[T]] case x: Array[Short] => shortArrayOps(x).asInstanceOf[ArrayOps[T]] case x: Array[Boolean] => booleanArrayOps(x).asInstanceOf[ArrayOps[T]] case x: Array[Unit] => unitArrayOps(x).asInstanceOf[ArrayOps[T]] case null => null } implicit def refArrayOps[T <: AnyRef](xs: Array[T]): ArrayOps[T] = new ArrayOps.ofRef[T](xs) implicit def intArrayOps(xs: Array[Int]): ArrayOps[Int] = new ArrayOps.ofInt(xs) implicit def doubleArrayOps(xs: Array[Double]): ArrayOps[Double] = new ArrayOps.ofDouble(xs) implicit def longArrayOps(xs: Array[Long]): ArrayOps[Long] = new ArrayOps.ofLong(xs) implicit def floatArrayOps(xs: Array[Float]): ArrayOps[Float] = new ArrayOps.ofFloat(xs) implicit def charArrayOps(xs: Array[Char]): ArrayOps[Char] = new ArrayOps.ofChar(xs) implicit def byteArrayOps(xs: Array[Byte]): ArrayOps[Byte] = new ArrayOps.ofByte(xs) implicit def shortArrayOps(xs: Array[Short]): ArrayOps[Short] = new ArrayOps.ofShort(xs) implicit def booleanArrayOps(xs: Array[Boolean]): ArrayOps[Boolean] = new ArrayOps.ofBoolean(xs) implicit def unitArrayOps(xs: Array[Unit]): ArrayOps[Unit] = new ArrayOps.ofUnit(xs) // Primitive Widenings -------------------------------------------------------------- @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def byte2short(x: Byte): Short = x.toShort @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def byte2int(x: Byte): Int = x.toInt @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def byte2long(x: Byte): Long = x.toLong @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def byte2float(x: Byte): Float = x.toFloat @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def byte2double(x: Byte): Double = x.toDouble @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def short2int(x: Short): Int = x.toInt @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def short2long(x: Short): Long = x.toLong @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def short2float(x: Short): Float = x.toFloat @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def short2double(x: Short): Double = x.toDouble @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def char2int(x: Char): Int = x.toInt @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def char2long(x: Char): Long = x.toLong @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def char2float(x: Char): Float = x.toFloat @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def char2double(x: Char): Double = x.toDouble @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def int2long(x: Int): Long = x.toLong @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def int2float(x: Int): Float = x.toFloat @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def int2double(x: Int): Double = x.toDouble @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def long2float(x: Long): Float = x.toFloat @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def long2double(x: Long): Double = x.toDouble @deprecated("Use a method in an AnyVal's companion object", "2.10.0") def float2double(x: Float): Double = x.toDouble // "Autoboxing" and "Autounboxing" --------------------------------------------------- implicit def byte2Byte(x: Byte) = java.lang.Byte.valueOf(x) implicit def short2Short(x: Short) = java.lang.Short.valueOf(x) implicit def char2Character(x: Char) = java.lang.Character.valueOf(x) implicit def int2Integer(x: Int) = java.lang.Integer.valueOf(x) implicit def long2Long(x: Long) = java.lang.Long.valueOf(x) implicit def float2Float(x: Float) = java.lang.Float.valueOf(x) implicit def double2Double(x: Double) = java.lang.Double.valueOf(x) implicit def boolean2Boolean(x: Boolean) = java.lang.Boolean.valueOf(x) // These next eight implicits exist solely to exclude AnyRef methods from the // eight implicits above so that primitives are not coerced to AnyRefs. They // only create such conflict for AnyRef methods, so the methods on the java.lang // boxed types are unambiguously reachable. implicit def byte2ByteConflict(x: Byte) = new AnyRef implicit def short2ShortConflict(x: Short) = new AnyRef implicit def char2CharacterConflict(x: Char) = new AnyRef implicit def int2IntegerConflict(x: Int) = new AnyRef implicit def long2LongConflict(x: Long) = new AnyRef implicit def float2FloatConflict(x: Float) = new AnyRef implicit def double2DoubleConflict(x: Double) = new AnyRef implicit def boolean2BooleanConflict(x: Boolean) = new AnyRef implicit def Byte2byte(x: java.lang.Byte): Byte = x.byteValue implicit def Short2short(x: java.lang.Short): Short = x.shortValue implicit def Character2char(x: java.lang.Character): Char = x.charValue implicit def Integer2int(x: java.lang.Integer): Int = x.intValue implicit def Long2long(x: java.lang.Long): Long = x.longValue implicit def Float2float(x: java.lang.Float): Float = x.floatValue implicit def Double2double(x: java.lang.Double): Double = x.doubleValue implicit def Boolean2boolean(x: java.lang.Boolean): Boolean = x.booleanValue // Strings and CharSequences -------------------------------------------------------------- implicit def any2stringadd(x: Any) = new runtime.StringAdd(x) @inline implicit def any2stringfmt(x: Any) = new runtime.StringFormat(x) @inline implicit def augmentString(x: String): StringOps = new StringOps(x) implicit def unaugmentString(x: StringOps): String = x.repr implicit def stringCanBuildFrom: CanBuildFrom[String, Char, String] = new CanBuildFrom[String, Char, String] { def apply(from: String) = apply() def apply() = mutable.StringBuilder.newBuilder } implicit def seqToCharSequence(xs: collection.IndexedSeq[Char]): CharSequence = new CharSequence { def length: Int = xs.length def charAt(index: Int): Char = xs(index) def subSequence(start: Int, end: Int): CharSequence = seqToCharSequence(xs.slice(start, end)) override def toString: String = xs.mkString("") } implicit def arrayToCharSequence(xs: Array[Char]): CharSequence = new CharSequence { def length: Int = xs.length def charAt(index: Int): Char = xs(index) def subSequence(start: Int, end: Int): CharSequence = arrayToCharSequence(xs.slice(start, end)) override def toString: String = xs.mkString("") } // Type Constraints -------------------------------------------------------------- /** * An instance of `A <:< B` witnesses that `A` is a subtype of `B`. * Requiring an implicit argument of the type `A <:< B` encodes * the generalized constraint `A <: B`. * * @note we need a new type constructor `<:<` and evidence `conforms`, * as reusing `Function1` and `identity` leads to ambiguities in * case of type errors (`any2stringadd` is inferred) * * To constrain any abstract type T that's in scope in a method's * argument list (not just the method's own type parameters) simply * add an implicit argument of type `T <:< U`, where `U` is the required * upper bound; or for lower-bounds, use: `L <:< T`, where `L` is the * required lower bound. * * In part contributed by Jason Zaugg. */ @implicitNotFound(msg = "Cannot prove that ${From} <:< ${To}.") sealed abstract class <:<[-From, +To] extends (From => To) with Serializable private[this] final val singleton_<:< = new <:<[Any,Any] { def apply(x: Any): Any = x } // not in the <:< companion object because it is also // intended to subsume identity (which is no longer implicit) implicit def conforms[A]: A <:< A = singleton_<:<.asInstanceOf[A <:< A] /** An instance of `A =:= B` witnesses that the types `A` and `B` are equal. * * @see `<:<` for expressing subtyping constraints */ @implicitNotFound(msg = "Cannot prove that ${From} =:= ${To}.") sealed abstract class =:=[From, To] extends (From => To) with Serializable private[this] final val singleton_=:= = new =:=[Any,Any] { def apply(x: Any): Any = x } object =:= { implicit def tpEquals[A]: A =:= A = singleton_=:=.asInstanceOf[A =:= A] } // less useful due to #2781 @deprecated("Use From => To instead", "2.9.0") sealed abstract class <%<[-From, +To] extends (From => To) with Serializable object <%< { implicit def conformsOrViewsAs[A <% B, B]: A <%< B = new (A <%< B) {def apply(x: A) = x} } /** A type for which there is always an implicit value. * @see fallbackCanBuildFrom in Array.scala */ class DummyImplicit object DummyImplicit { /** An implicit value yielding a `DummyImplicit`. * @see fallbackCanBuildFrom in Array.scala */ implicit def dummyImplicit: DummyImplicit = new DummyImplicit } }