/* NSC -- new Scala compiler * Copyright 2005-2013 LAMP/EPFL * @author Martin Odersky */ package scala package reflect package internal import Flags._ import scala.collection.mutable import scala.reflect.macros.Attachments import util.Statistics trait Trees extends api.Trees { self: SymbolTable => private[scala] var nodeCount = 0 protected def treeLine(t: Tree): String = if (t.pos.isDefined && t.pos.isRange) t.pos.lineContent.drop(t.pos.column - 1).take(t.pos.end - t.pos.start + 1) else t.summaryString protected def treeStatus(t: Tree, enclosingTree: Tree = null) = { val parent = if (enclosingTree eq null) " " else " P#%5s".format(enclosingTree.id) "[L%4s%8s] #%-6s %-15s %-10s // %s".format(t.pos.line, parent, t.id, t.pos.show, t.shortClass, treeLine(t)) } protected def treeSymStatus(t: Tree) = { val line = if (t.pos.isDefined) "line %-4s".format(t.pos.line) else " " "#%-5s %s %-10s // %s".format(t.id, line, t.shortClass, if (t.symbol ne NoSymbol) "(" + t.symbol.fullLocationString + ")" else treeLine(t) ) } abstract class Tree extends TreeContextApiImpl with Attachable with Product { val id = nodeCount // TODO: add to attachment? nodeCount += 1 if (Statistics.canEnable) Statistics.incCounter(TreesStats.nodeByType, getClass) final override def pos: Position = rawatt.pos private[this] var rawtpe: Type = _ final def tpe = rawtpe @deprecated("use setType", "2.11.0") def tpe_=(t: Type): Unit = setType(t) def clearType(): this.type = this setType null def setType(tp: Type): this.type = { rawtpe = tp; this } def defineType(tp: Type): this.type = setType(tp) def symbol: Symbol = null //!!!OPT!!! symbol is about 3% of hot compile times -- megamorphic dispatch? def symbol_=(sym: Symbol) { throw new UnsupportedOperationException("symbol_= inapplicable for " + this) } def setSymbol(sym: Symbol): this.type = { symbol = sym; this } def hasSymbolField = false @deprecated("use hasSymbolField", "2.11.0") def hasSymbol = hasSymbolField def isDef = false def isEmpty = false def nonEmpty = !isEmpty def canHaveAttrs = true /** The canonical way to test if a Tree represents a term. */ def isTerm: Boolean = this match { case _: TermTree => true case Bind(name, _) => name.isTermName case Select(_, name) => name.isTermName case Ident(name) => name.isTermName case Annotated(_, arg) => arg.isTerm case _ => false } /** The canonical way to test if a Tree represents a type. */ def isType: Boolean = this match { case _: TypTree => true case Bind(name, _) => name.isTypeName case Select(_, name) => name.isTypeName case Ident(name) => name.isTypeName case Annotated(_, arg) => arg.isType case _ => false } private[scala] def copyAttrs(tree: Tree): this.type = { rawatt = tree.rawatt setType(tree.tpe) if (hasSymbolField) symbol = tree.symbol this } override def hashCode(): Int = System.identityHashCode(this) override def equals(that: Any) = this eq that.asInstanceOf[AnyRef] override def duplicate: this.type = (duplicator transform this).asInstanceOf[this.type] } abstract class TreeContextApiImpl extends TreeApi { this: Tree => override def orElse(alt: => Tree) = if (!isEmpty) this else alt override def foreach(f: Tree => Unit) { new ForeachTreeTraverser(f).traverse(this) } override def withFilter(f: Tree => Boolean): List[Tree] = { val ft = new FilterTreeTraverser(f) ft.traverse(this) ft.hits.toList } override def filter(f: Tree => Boolean): List[Tree] = withFilter(f) override def collect[T](pf: PartialFunction[Tree, T]): List[T] = { val ctt = new CollectTreeTraverser[T](pf) ctt.traverse(this) ctt.results.toList } override def find(p: Tree => Boolean): Option[Tree] = { val ft = new FindTreeTraverser(p) ft.traverse(this) ft.result } override def exists(p: Tree => Boolean): Boolean = !find(p).isEmpty override def forAll(p: Tree => Boolean): Boolean = find(!p(_)).isEmpty override def equalsStructure(that : Tree) = correspondsStructure(that)(_ eq _) def correspondsStructure(that: Tree)(f: (Tree,Tree) => Boolean): Boolean = f(this, that) || ((productArity == that.productArity) && { def equals0(this0: Any, that0: Any): Boolean = (this0, that0) match { case (x: Tree, y: Tree) => f(x, y) || (x correspondsStructure y)(f) case (xs: List[_], ys: List[_]) => (xs corresponds ys)(equals0) case _ => this0 == that0 } def compareOriginals() = (this, that) match { case (x: TypeTree, y: TypeTree) if x.original != null && y.original != null => (x.original correspondsStructure y.original)(f) case _ => true } (productIterator zip that.productIterator forall { case (x, y) => equals0(x, y) }) && compareOriginals() }) override def children: List[Tree] = { def subtrees(x: Any): List[Tree] = x match { case EmptyTree => Nil case t: Tree => List(t) case xs: List[_] => xs flatMap subtrees case _ => Nil } productIterator.toList flatMap subtrees } def freeTerms: List[FreeTermSymbol] = freeSyms[FreeTermSymbol](_.isFreeTerm, _.termSymbol) def freeTypes: List[FreeTypeSymbol] = freeSyms[FreeTypeSymbol](_.isFreeType, _.typeSymbol) private def freeSyms[S <: Symbol](isFree: Symbol => Boolean, symOfType: Type => Symbol): List[S] = { val s = mutable.LinkedHashSet[S]() def addIfFree(sym: Symbol): Unit = if (sym != null && isFree(sym)) s += sym.asInstanceOf[S] for (t <- this) { addIfFree(t.symbol) if (t.tpe != null) { for (tp <- t.tpe) { addIfFree(symOfType(tp)) } } } s.toList } def substituteSymbols(from: List[Symbol], to: List[Symbol]): Tree = new TreeSymSubstituter(from, to)(this) def substituteTypes(from: List[Symbol], to: List[Type]): Tree = new TreeTypeSubstituter(from, to)(this) def substituteThis(clazz: Symbol, to: => Tree): Tree = new ThisSubstituter(clazz, to) transform this def hasExistingSymbol = (symbol ne null) && (symbol ne NoSymbol) def hasSymbolWhich(f: Symbol => Boolean) = hasExistingSymbol && f(symbol) def isErroneous = (tpe ne null) && tpe.isErroneous def isTyped = (tpe ne null) && !tpe.isErroneous /** Sets the tree's type to the result of the given function. * If the type is null, it remains null - the function is not called. */ def modifyType(f: Type => Type): Tree = if (tpe eq null) this else this setType f(tpe) /** If `pf` is defined for a given subtree, call super.traverse(pf(tree)), * otherwise super.traverse(tree). */ def foreachPartial(pf: PartialFunction[Tree, Tree]) { new ForeachPartialTreeTraverser(pf).traverse(this) } def changeOwner(pairs: (Symbol, Symbol)*): Tree = { pairs.foldLeft(this) { case (t, (oldOwner, newOwner)) => new ChangeOwnerTraverser(oldOwner, newOwner) apply t } } def shallowDuplicate: Tree = new ShallowDuplicator(this) transform this def shortClass: String = (getClass.getName split "[.$]").last def isErrorTyped = (tpe ne null) && tpe.isError /** When you want to know a little more than the class, but a lot * less than the whole tree. */ def summaryString: String = this match { case Literal(const) => "Literal(" + const + ")" case Ident(name) => "Ident(%s)".format(name.decode) case Select(qual, name) => "Select(%s, %s)".format(qual.summaryString, name.decode) case t: NameTree => t.name.longString case t => t.shortClass + ( if (t.symbol != null && t.symbol != NoSymbol) "(" + t.symbol + ")" else "" ) } } trait TermTree extends Tree with TermTreeApi trait TypTree extends Tree with TypTreeApi abstract class SymTree extends Tree with SymTreeApi { override def hasSymbolField = true override var symbol: Symbol = NoSymbol } trait NameTree extends Tree with NameTreeApi { def name: Name def getterName: TermName = name.getterName def setterName: TermName = name.setterName def localName: TermName = name.localName } trait RefTree extends SymTree with NameTree with RefTreeApi { def qualifier: Tree // empty for Idents def name: Name } object RefTree extends RefTreeExtractor { def apply(qualifier: Tree, name: Name): RefTree = qualifier match { case EmptyTree => Ident(name) case qual if qual.isTerm => Select(qual, name) case qual if qual.isType => assert(name.isTypeName, s"qual = $qual, name = $name") SelectFromTypeTree(qual, name.toTypeName) } def unapply(refTree: RefTree): Option[(Tree, Name)] = Some((refTree.qualifier, refTree.name)) } abstract class DefTree extends SymTree with NameTree with DefTreeApi { def name: Name override def isDef = true } abstract class MemberDef extends DefTree with MemberDefApi { def mods: Modifiers def keyword: String = this match { case TypeDef(_, _, _, _) => "type" case ClassDef(mods, _, _, _) => if (mods hasFlag TRAIT) "trait" else "class" case DefDef(_, _, _, _, _, _) => "def" case ModuleDef(_, _, _) => "object" case PackageDef(_, _) => "package" case ValDef(mods, _, _, _) => if (mods hasFlag MUTABLE) "var" else "val" case _ => "" } } case class PackageDef(pid: RefTree, stats: List[Tree]) extends MemberDef with PackageDefApi { def name = pid.name def mods = NoMods } object PackageDef extends PackageDefExtractor abstract class ImplDef extends MemberDef with ImplDefApi { def impl: Template } case class ClassDef(mods: Modifiers, name: TypeName, tparams: List[TypeDef], impl: Template) extends ImplDef with ClassDefApi object ClassDef extends ClassDefExtractor { /** @param sym the class symbol * @param impl the implementation template * @return the class definition */ def apply(sym: Symbol, impl: Template): ClassDef = atPos(sym.pos) { ClassDef(Modifiers(sym.flags), sym.name.toTypeName, sym.typeParams map TypeDef.apply, impl) setSymbol sym } /** @param sym the class symbol * @param body trees that constitute the body of the class * @return the class definition */ def apply(sym: Symbol, body: List[Tree]): ClassDef = ClassDef(sym, Template(sym, body)) } case class ModuleDef(mods: Modifiers, name: TermName, impl: Template) extends ImplDef with ModuleDefApi object ModuleDef extends ModuleDefExtractor { /** * @param sym the class symbol * @param impl the implementation template */ def apply(sym: Symbol, impl: Template): ModuleDef = atPos(sym.pos) { ModuleDef(Modifiers(sym.flags), sym.name.toTermName, impl) setSymbol sym } } abstract class ValOrDefDef extends MemberDef with ValOrDefDefApi { def name: TermName def tpt: Tree def rhs: Tree } object ValOrDefDef { def unapply(tree: Tree): Option[(Modifiers, TermName, Tree, Tree)] = tree match { case ValDef(mods, name, tpt, rhs) => Some((mods, name, tpt, rhs)) case DefDef(mods, name, _, _, tpt, rhs) => Some((mods, name, tpt, rhs)) case _ => None } } case class ValDef(mods: Modifiers, name: TermName, tpt: Tree, rhs: Tree) extends ValOrDefDef with ValDefApi object ValDef extends ValDefExtractor { def apply(sym: Symbol): ValDef = newValDef(sym, EmptyTree)() def apply(sym: Symbol, rhs: Tree): ValDef = newValDef(sym, rhs)() } case class DefDef(mods: Modifiers, name: TermName, tparams: List[TypeDef], vparamss: List[List[ValDef]], tpt: Tree, rhs: Tree) extends ValOrDefDef with DefDefApi object DefDef extends DefDefExtractor { def apply(sym: Symbol, rhs: Tree): DefDef = newDefDef(sym, rhs)() def apply(sym: Symbol, vparamss: List[List[ValDef]], rhs: Tree): DefDef = newDefDef(sym, rhs)(vparamss = vparamss) def apply(sym: Symbol, mods: Modifiers, rhs: Tree): DefDef = newDefDef(sym, rhs)(mods = mods) def apply(sym: Symbol, mods: Modifiers, vparamss: List[List[ValDef]], rhs: Tree): DefDef = newDefDef(sym, rhs)(mods = mods, vparamss = vparamss) def apply(sym: Symbol, rhs: List[List[Symbol]] => Tree): DefDef = newDefDef(sym, rhs(sym.info.paramss))() } case class TypeDef(mods: Modifiers, name: TypeName, tparams: List[TypeDef], rhs: Tree) extends MemberDef with TypeDefApi object TypeDef extends TypeDefExtractor { /** A TypeDef node which defines abstract type or type parameter for given `sym` */ def apply(sym: Symbol): TypeDef = newTypeDef(sym, TypeBoundsTree(sym))() def apply(sym: Symbol, rhs: Tree): TypeDef = newTypeDef(sym, rhs)() } case class LabelDef(name: TermName, params: List[Ident], rhs: Tree) extends DefTree with TermTree with LabelDefApi object LabelDef extends LabelDefExtractor { def apply(sym: Symbol, params: List[Symbol], rhs: Tree): LabelDef = atPos(sym.pos) { LabelDef(sym.name.toTermName, params map Ident, rhs) setSymbol sym } } case class ImportSelector(name: Name, namePos: Int, rename: Name, renamePos: Int) extends ImportSelectorApi object ImportSelector extends ImportSelectorExtractor { val wild = ImportSelector(nme.WILDCARD, -1, null, -1) val wildList = List(wild) // OPT This list is shared for performance. } case class Import(expr: Tree, selectors: List[ImportSelector]) extends SymTree with ImportApi object Import extends ImportExtractor case class Template(parents: List[Tree], self: ValDef, body: List[Tree]) extends SymTree with TemplateApi object Template extends TemplateExtractor case class Block(stats: List[Tree], expr: Tree) extends TermTree with BlockApi object Block extends BlockExtractor case class CaseDef(pat: Tree, guard: Tree, body: Tree) extends Tree with CaseDefApi object CaseDef extends CaseDefExtractor case class Alternative(trees: List[Tree]) extends TermTree with AlternativeApi object Alternative extends AlternativeExtractor case class Star(elem: Tree) extends TermTree with StarApi object Star extends StarExtractor case class Bind(name: Name, body: Tree) extends DefTree with BindApi object Bind extends BindExtractor case class UnApply(fun: Tree, args: List[Tree]) extends TermTree with UnApplyApi object UnApply extends UnApplyExtractor /** An array of expressions. This AST node needs to be translated in backend. * It is used to pass arguments to vararg arguments. * Introduced by compiler phase uncurry. * * This AST node does not have direct correspondence to Scala code, * and is used to pass arguments to vararg arguments. For instance: * * printf("%s%d", foo, 42) * * Is translated to after compiler phase uncurry to: * * Apply( * Ident("printf"), * Literal("%s%d"), * ArrayValue(, List(Ident("foo"), Literal(42)))) */ case class ArrayValue(elemtpt: Tree, elems: List[Tree]) extends TermTree case class Function(vparams: List[ValDef], body: Tree) extends SymTree with TermTree with FunctionApi object Function extends FunctionExtractor case class Assign(lhs: Tree, rhs: Tree) extends TermTree with AssignApi object Assign extends AssignExtractor case class AssignOrNamedArg(lhs: Tree, rhs: Tree) extends TermTree with AssignOrNamedArgApi object AssignOrNamedArg extends AssignOrNamedArgExtractor case class If(cond: Tree, thenp: Tree, elsep: Tree) extends TermTree with IfApi object If extends IfExtractor case class Match(selector: Tree, cases: List[CaseDef]) extends TermTree with MatchApi object Match extends MatchExtractor case class Return(expr: Tree) extends SymTree with TermTree with ReturnApi object Return extends ReturnExtractor case class Try(block: Tree, catches: List[CaseDef], finalizer: Tree) extends TermTree with TryApi object Try extends TryExtractor case class Throw(expr: Tree) extends TermTree with ThrowApi object Throw extends ThrowExtractor case class New(tpt: Tree) extends TermTree with NewApi object New extends NewExtractor case class Typed(expr: Tree, tpt: Tree) extends TermTree with TypedApi object Typed extends TypedExtractor abstract class GenericApply extends TermTree with GenericApplyApi { val fun: Tree val args: List[Tree] } case class TypeApply(fun: Tree, args: List[Tree]) extends GenericApply with TypeApplyApi { assert(fun.isTerm, fun) override def symbol: Symbol = fun.symbol override def symbol_=(sym: Symbol) { fun.symbol = sym } } object TypeApply extends TypeApplyExtractor case class Apply(fun: Tree, args: List[Tree]) extends GenericApply with ApplyApi { override def symbol: Symbol = fun.symbol override def symbol_=(sym: Symbol) { fun.symbol = sym } } object Apply extends ApplyExtractor // TODO remove this class, add a tree attachment to Apply to track whether implicits were involved // copying trees will all too easily forget to distinguish subclasses class ApplyToImplicitArgs(fun: Tree, args: List[Tree]) extends Apply(fun, args) // TODO remove this class, add a tree attachment to Apply to track whether implicits were involved // copying trees will all too easily forget to distinguish subclasses class ApplyImplicitView(fun: Tree, args: List[Tree]) extends Apply(fun, args) def ApplyConstructor(tpt: Tree, args: List[Tree]) = Apply(Select(New(tpt), nme.CONSTRUCTOR), args) // Creates a constructor call from the constructor symbol. This is // to avoid winding up with an OverloadedType for the constructor call. def NewFromConstructor(constructor: Symbol, args: Tree*) = { assert(constructor.isConstructor, constructor) val instance = New(TypeTree(constructor.owner.tpe)) val init = Select(instance, nme.CONSTRUCTOR) setSymbol constructor Apply(init, args.toList) } case class ApplyDynamic(qual: Tree, args: List[Tree]) extends SymTree with TermTree case class Super(qual: Tree, mix: TypeName) extends TermTree with SuperApi { override def symbol: Symbol = qual.symbol override def symbol_=(sym: Symbol) { qual.symbol = sym } } object Super extends SuperExtractor case class This(qual: TypeName) extends SymTree with TermTree with ThisApi object This extends ThisExtractor case class Select(qualifier: Tree, name: Name) extends RefTree with SelectApi { // !!! assert disabled due to test case pos/annotDepMethType.scala triggering it. // assert(qualifier.isTerm, qualifier) } object Select extends SelectExtractor case class Ident(name: Name) extends RefTree with IdentApi { def qualifier: Tree = EmptyTree def isBackquoted = this.hasAttachment[BackquotedIdentifierAttachment.type] } object Ident extends IdentExtractor case class ReferenceToBoxed(ident: Ident) extends TermTree with ReferenceToBoxedApi { override def symbol: Symbol = ident.symbol override def symbol_=(sym: Symbol) { ident.symbol = sym } } object ReferenceToBoxed extends ReferenceToBoxedExtractor case class Literal(value: Constant) extends TermTree with LiteralApi { assert(value ne null) } object Literal extends LiteralExtractor // @deprecated("will be removed and then be re-introduced with changed semantics, use Literal(Constant(x)) instead") // def Literal(x: Any) = new Literal(Constant(x)) case class Annotated(annot: Tree, arg: Tree) extends Tree with AnnotatedApi object Annotated extends AnnotatedExtractor case class SingletonTypeTree(ref: Tree) extends TypTree with SingletonTypeTreeApi object SingletonTypeTree extends SingletonTypeTreeExtractor case class SelectFromTypeTree(qualifier: Tree, name: TypeName) extends RefTree with TypTree with SelectFromTypeTreeApi { assert(qualifier.isType, qualifier) } object SelectFromTypeTree extends SelectFromTypeTreeExtractor case class CompoundTypeTree(templ: Template) extends TypTree with CompoundTypeTreeApi object CompoundTypeTree extends CompoundTypeTreeExtractor case class AppliedTypeTree(tpt: Tree, args: List[Tree]) extends TypTree with AppliedTypeTreeApi { assert(tpt.isType, tpt) override def symbol: Symbol = tpt.symbol override def symbol_=(sym: Symbol) { tpt.symbol = sym } } object AppliedTypeTree extends AppliedTypeTreeExtractor case class TypeBoundsTree(lo: Tree, hi: Tree) extends TypTree with TypeBoundsTreeApi object TypeBoundsTree extends TypeBoundsTreeExtractor case class ExistentialTypeTree(tpt: Tree, whereClauses: List[MemberDef]) extends TypTree with ExistentialTypeTreeApi object ExistentialTypeTree extends ExistentialTypeTreeExtractor case class TypeTree() extends TypTree with TypeTreeApi { private var orig: Tree = null /** Was this type tree originally empty? That is, does it now contain * an inferred type that must be forgotten in `resetAttrs` to * enable retyping. */ private[scala] var wasEmpty: Boolean = false override def symbol = typeTreeSymbol(this) // if (tpe == null) null else tpe.typeSymbol override def isEmpty = (tpe eq null) || tpe == NoType def original: Tree = orig def setOriginal(tree: Tree): this.type = { def followOriginal(t: Tree): Tree = t match { case tt: TypeTree => followOriginal(tt.original) case t => t } orig = followOriginal(tree); setPos(tree.pos) this } override def defineType(tp: Type): this.type = { wasEmpty = isEmpty setType(tp) } override private[scala] def copyAttrs(tree: Tree) = { super.copyAttrs(tree) tree match { case other: TypeTree => // SI-6648 Critical for correct operation of `resetAttrs`. wasEmpty = other.wasEmpty if (other.orig != null) orig = other.orig.duplicate case _ => } this } } object TypeTree extends TypeTreeExtractor def TypeTree(tp: Type): TypeTree = TypeTree() setType tp private def TypeTreeMemberType(sym: Symbol): TypeTree = { // Needed for pos/t4970*.scala. See SI-7853 val resType = (if (sym.isLocalToBlock) sym.tpe else (sym.owner.thisType memberType sym)).finalResultType atPos(sym.pos.focus)(TypeTree(resType)) } def TypeBoundsTree(bounds: TypeBounds): TypeBoundsTree = TypeBoundsTree(TypeTree(bounds.lo), TypeTree(bounds.hi)) def TypeBoundsTree(sym: Symbol): TypeBoundsTree = atPos(sym.pos)(TypeBoundsTree(sym.info.bounds)) override type TreeCopier >: Null <: InternalTreeCopierOps abstract class InternalTreeCopierOps extends TreeCopierOps { def ApplyDynamic(tree: Tree, qual: Tree, args: List[Tree]): ApplyDynamic def ArrayValue(tree: Tree, elemtpt: Tree, trees: List[Tree]): ArrayValue } class StrictTreeCopier extends InternalTreeCopierOps { def ClassDef(tree: Tree, mods: Modifiers, name: Name, tparams: List[TypeDef], impl: Template) = new ClassDef(mods, name.toTypeName, tparams, impl).copyAttrs(tree) def PackageDef(tree: Tree, pid: RefTree, stats: List[Tree]) = new PackageDef(pid, stats).copyAttrs(tree) def ModuleDef(tree: Tree, mods: Modifiers, name: Name, impl: Template) = new ModuleDef(mods, name.toTermName, impl).copyAttrs(tree) def ValDef(tree: Tree, mods: Modifiers, name: Name, tpt: Tree, rhs: Tree) = new ValDef(mods, name.toTermName, tpt, rhs).copyAttrs(tree) def DefDef(tree: Tree, mods: Modifiers, name: Name, tparams: List[TypeDef], vparamss: List[List[ValDef]], tpt: Tree, rhs: Tree) = new DefDef(mods, name.toTermName, tparams, vparamss, tpt, rhs).copyAttrs(tree) def TypeDef(tree: Tree, mods: Modifiers, name: Name, tparams: List[TypeDef], rhs: Tree) = new TypeDef(mods, name.toTypeName, tparams, rhs).copyAttrs(tree) def LabelDef(tree: Tree, name: Name, params: List[Ident], rhs: Tree) = new LabelDef(name.toTermName, params, rhs).copyAttrs(tree) def Import(tree: Tree, expr: Tree, selectors: List[ImportSelector]) = new Import(expr, selectors).copyAttrs(tree) def Template(tree: Tree, parents: List[Tree], self: ValDef, body: List[Tree]) = new Template(parents, self, body).copyAttrs(tree) def Block(tree: Tree, stats: List[Tree], expr: Tree) = new Block(stats, expr).copyAttrs(tree) def CaseDef(tree: Tree, pat: Tree, guard: Tree, body: Tree) = new CaseDef(pat, guard, body).copyAttrs(tree) def Alternative(tree: Tree, trees: List[Tree]) = new Alternative(trees).copyAttrs(tree) def Star(tree: Tree, elem: Tree) = new Star(elem).copyAttrs(tree) def Bind(tree: Tree, name: Name, body: Tree) = new Bind(name, body).copyAttrs(tree) def UnApply(tree: Tree, fun: Tree, args: List[Tree]) = new UnApply(fun, args).copyAttrs(tree) def ArrayValue(tree: Tree, elemtpt: Tree, trees: List[Tree]) = new ArrayValue(elemtpt, trees).copyAttrs(tree) def Function(tree: Tree, vparams: List[ValDef], body: Tree) = new Function(vparams, body).copyAttrs(tree) def Assign(tree: Tree, lhs: Tree, rhs: Tree) = new Assign(lhs, rhs).copyAttrs(tree) def AssignOrNamedArg(tree: Tree, lhs: Tree, rhs: Tree) = new AssignOrNamedArg(lhs, rhs).copyAttrs(tree) def If(tree: Tree, cond: Tree, thenp: Tree, elsep: Tree) = new If(cond, thenp, elsep).copyAttrs(tree) def Match(tree: Tree, selector: Tree, cases: List[CaseDef]) = new Match(selector, cases).copyAttrs(tree) def Return(tree: Tree, expr: Tree) = new Return(expr).copyAttrs(tree) def Try(tree: Tree, block: Tree, catches: List[CaseDef], finalizer: Tree) = new Try(block, catches, finalizer).copyAttrs(tree) def Throw(tree: Tree, expr: Tree) = new Throw(expr).copyAttrs(tree) def New(tree: Tree, tpt: Tree) = new New(tpt).copyAttrs(tree) def Typed(tree: Tree, expr: Tree, tpt: Tree) = new Typed(expr, tpt).copyAttrs(tree) def TypeApply(tree: Tree, fun: Tree, args: List[Tree]) = new TypeApply(fun, args).copyAttrs(tree) def Apply(tree: Tree, fun: Tree, args: List[Tree]) = (tree match { // TODO: use a tree attachment to track whether this is an apply to implicit args or a view case _: ApplyToImplicitArgs => new ApplyToImplicitArgs(fun, args) case _: ApplyImplicitView => new ApplyImplicitView(fun, args) // TODO: ApplyConstructor ??? case self.pendingSuperCall => self.pendingSuperCall case _ => new Apply(fun, args) }).copyAttrs(tree) def ApplyDynamic(tree: Tree, qual: Tree, args: List[Tree]) = new ApplyDynamic(qual, args).copyAttrs(tree) def Super(tree: Tree, qual: Tree, mix: TypeName) = new Super(qual, mix).copyAttrs(tree) def This(tree: Tree, qual: Name) = new This(qual.toTypeName).copyAttrs(tree) def Select(tree: Tree, qualifier: Tree, selector: Name) = new Select(qualifier, selector).copyAttrs(tree) def Ident(tree: Tree, name: Name) = new Ident(name) copyAttrs tree def RefTree(tree: Tree, qualifier: Tree, selector: Name) = self.RefTree(qualifier, selector) copyAttrs tree def ReferenceToBoxed(tree: Tree, idt: Ident) = new ReferenceToBoxed(idt).copyAttrs(tree) def Literal(tree: Tree, value: Constant) = new Literal(value).copyAttrs(tree) def TypeTree(tree: Tree) = new TypeTree().copyAttrs(tree) def Annotated(tree: Tree, annot: Tree, arg: Tree) = new Annotated(annot, arg).copyAttrs(tree) def SingletonTypeTree(tree: Tree, ref: Tree) = new SingletonTypeTree(ref).copyAttrs(tree) def SelectFromTypeTree(tree: Tree, qualifier: Tree, selector: Name) = new SelectFromTypeTree(qualifier, selector.toTypeName).copyAttrs(tree) def CompoundTypeTree(tree: Tree, templ: Template) = new CompoundTypeTree(templ).copyAttrs(tree) def AppliedTypeTree(tree: Tree, tpt: Tree, args: List[Tree]) = new AppliedTypeTree(tpt, args).copyAttrs(tree) def TypeBoundsTree(tree: Tree, lo: Tree, hi: Tree) = new TypeBoundsTree(lo, hi).copyAttrs(tree) def ExistentialTypeTree(tree: Tree, tpt: Tree, whereClauses: List[MemberDef]) = new ExistentialTypeTree(tpt, whereClauses).copyAttrs(tree) } class LazyTreeCopier extends InternalTreeCopierOps { val treeCopy: TreeCopier = newStrictTreeCopier def ClassDef(tree: Tree, mods: Modifiers, name: Name, tparams: List[TypeDef], impl: Template) = tree match { case t @ ClassDef(mods0, name0, tparams0, impl0) if (mods0 == mods) && (name0 == name) && (tparams0 == tparams) && (impl0 == impl) => t case _ => treeCopy.ClassDef(tree, mods, name, tparams, impl) } def PackageDef(tree: Tree, pid: RefTree, stats: List[Tree]) = tree match { case t @ PackageDef(pid0, stats0) if (pid0 == pid) && (stats0 == stats) => t case _ => treeCopy.PackageDef(tree, pid, stats) } def ModuleDef(tree: Tree, mods: Modifiers, name: Name, impl: Template) = tree match { case t @ ModuleDef(mods0, name0, impl0) if (mods0 == mods) && (name0 == name) && (impl0 == impl) => t case _ => treeCopy.ModuleDef(tree, mods, name, impl) } def ValDef(tree: Tree, mods: Modifiers, name: Name, tpt: Tree, rhs: Tree) = tree match { case t @ ValDef(mods0, name0, tpt0, rhs0) if (mods0 == mods) && (name0 == name) && (tpt0 == tpt) && (rhs0 == rhs) => t case _ => treeCopy.ValDef(tree, mods, name, tpt, rhs) } def DefDef(tree: Tree, mods: Modifiers, name: Name, tparams: List[TypeDef], vparamss: List[List[ValDef]], tpt: Tree, rhs: Tree) = tree match { case t @ DefDef(mods0, name0, tparams0, vparamss0, tpt0, rhs0) if (mods0 == mods) && (name0 == name) && (tparams0 == tparams) && (vparamss0 == vparamss) && (tpt0 == tpt) && (rhs == rhs0) => t case _ => treeCopy.DefDef(tree, mods, name, tparams, vparamss, tpt, rhs) } def TypeDef(tree: Tree, mods: Modifiers, name: Name, tparams: List[TypeDef], rhs: Tree) = tree match { case t @ TypeDef(mods0, name0, tparams0, rhs0) if (mods0 == mods) && (name0 == name) && (tparams0 == tparams) && (rhs0 == rhs) => t case _ => treeCopy.TypeDef(tree, mods, name, tparams, rhs) } def LabelDef(tree: Tree, name: Name, params: List[Ident], rhs: Tree) = tree match { case t @ LabelDef(name0, params0, rhs0) if (name0 == name) && (params0 == params) && (rhs0 == rhs) => t case _ => treeCopy.LabelDef(tree, name, params, rhs) } def Import(tree: Tree, expr: Tree, selectors: List[ImportSelector]) = tree match { case t @ Import(expr0, selectors0) if (expr0 == expr) && (selectors0 == selectors) => t case _ => treeCopy.Import(tree, expr, selectors) } def Template(tree: Tree, parents: List[Tree], self: ValDef, body: List[Tree]) = tree match { case t @ Template(parents0, self0, body0) if (parents0 == parents) && (self0 == self) && (body0 == body) => t case _ => treeCopy.Template(tree, parents, self, body) } def Block(tree: Tree, stats: List[Tree], expr: Tree) = tree match { case t @ Block(stats0, expr0) if ((stats0 == stats) && (expr0 == expr)) => t case _ => treeCopy.Block(tree, stats, expr) } def CaseDef(tree: Tree, pat: Tree, guard: Tree, body: Tree) = tree match { case t @ CaseDef(pat0, guard0, body0) if (pat0 == pat) && (guard0 == guard) && (body0 == body) => t case _ => treeCopy.CaseDef(tree, pat, guard, body) } def Alternative(tree: Tree, trees: List[Tree]) = tree match { case t @ Alternative(trees0) if trees0 == trees => t case _ => treeCopy.Alternative(tree, trees) } def Star(tree: Tree, elem: Tree) = tree match { case t @ Star(elem0) if elem0 == elem => t case _ => treeCopy.Star(tree, elem) } def Bind(tree: Tree, name: Name, body: Tree) = tree match { case t @ Bind(name0, body0) if (name0 == name) && (body0 == body) => t case _ => treeCopy.Bind(tree, name, body) } def UnApply(tree: Tree, fun: Tree, args: List[Tree]) = tree match { case t @ UnApply(fun0, args0) if (fun0 == fun) && (args0 == args) => t case _ => treeCopy.UnApply(tree, fun, args) } def ArrayValue(tree: Tree, elemtpt: Tree, trees: List[Tree]) = tree match { case t @ ArrayValue(elemtpt0, trees0) if (elemtpt0 == elemtpt) && (trees0 == trees) => t case _ => treeCopy.ArrayValue(tree, elemtpt, trees) } def Function(tree: Tree, vparams: List[ValDef], body: Tree) = tree match { case t @ Function(vparams0, body0) if (vparams0 == vparams) && (body0 == body) => t case _ => treeCopy.Function(tree, vparams, body) } def Assign(tree: Tree, lhs: Tree, rhs: Tree) = tree match { case t @ Assign(lhs0, rhs0) if (lhs0 == lhs) && (rhs0 == rhs) => t case _ => treeCopy.Assign(tree, lhs, rhs) } def AssignOrNamedArg(tree: Tree, lhs: Tree, rhs: Tree) = tree match { case t @ AssignOrNamedArg(lhs0, rhs0) if (lhs0 == lhs) && (rhs0 == rhs) => t case _ => treeCopy.AssignOrNamedArg(tree, lhs, rhs) } def If(tree: Tree, cond: Tree, thenp: Tree, elsep: Tree) = tree match { case t @ If(cond0, thenp0, elsep0) if (cond0 == cond) && (thenp0 == thenp) && (elsep0 == elsep) => t case _ => treeCopy.If(tree, cond, thenp, elsep) } def Match(tree: Tree, selector: Tree, cases: List[CaseDef]) = tree match { case t @ Match(selector0, cases0) if (selector0 == selector) && (cases0 == cases) => t case _ => treeCopy.Match(tree, selector, cases) } def Return(tree: Tree, expr: Tree) = tree match { case t @ Return(expr0) if expr0 == expr => t case _ => treeCopy.Return(tree, expr) } def Try(tree: Tree, block: Tree, catches: List[CaseDef], finalizer: Tree) = tree match { case t @ Try(block0, catches0, finalizer0) if (block0 == block) && (catches0 == catches) && (finalizer0 == finalizer) => t case _ => treeCopy.Try(tree, block, catches, finalizer) } def Throw(tree: Tree, expr: Tree) = tree match { case t @ Throw(expr0) if expr0 == expr => t case _ => treeCopy.Throw(tree, expr) } def New(tree: Tree, tpt: Tree) = tree match { case t @ New(tpt0) if tpt0 == tpt => t case _ => treeCopy.New(tree, tpt) } def Typed(tree: Tree, expr: Tree, tpt: Tree) = tree match { case t @ Typed(expr0, tpt0) if (expr0 == expr) && (tpt0 == tpt) => t case _ => treeCopy.Typed(tree, expr, tpt) } def TypeApply(tree: Tree, fun: Tree, args: List[Tree]) = tree match { case t @ TypeApply(fun0, args0) if (fun0 == fun) && (args0 == args) => t case _ => treeCopy.TypeApply(tree, fun, args) } def Apply(tree: Tree, fun: Tree, args: List[Tree]) = tree match { case t @ Apply(fun0, args0) if (fun0 == fun) && (args0 == args) => t case _ => treeCopy.Apply(tree, fun, args) } def ApplyDynamic(tree: Tree, qual: Tree, args: List[Tree]) = tree match { case t @ ApplyDynamic(qual0, args0) if (qual0 == qual) && (args0 == args) => t case _ => treeCopy.ApplyDynamic(tree, qual, args) } def Super(tree: Tree, qual: Tree, mix: TypeName) = tree match { case t @ Super(qual0, mix0) if (qual0 == qual) && (mix0 == mix) => t case _ => treeCopy.Super(tree, qual, mix) } def This(tree: Tree, qual: Name) = tree match { case t @ This(qual0) if qual0 == qual => t case _ => treeCopy.This(tree, qual) } def Select(tree: Tree, qualifier: Tree, selector: Name) = tree match { case t @ Select(qualifier0, selector0) if (qualifier0 == qualifier) && (selector0 == selector) => t case _ => treeCopy.Select(tree, qualifier, selector) } def Ident(tree: Tree, name: Name) = tree match { case t @ Ident(name0) if name0 == name => t case _ => treeCopy.Ident(tree, name) } def RefTree(tree: Tree, qualifier: Tree, selector: Name) = tree match { case t @ Select(qualifier0, selector0) if (qualifier0 == qualifier) && (selector0 == selector) => t case _ => treeCopy.RefTree(tree, qualifier, selector) } def ReferenceToBoxed(tree: Tree, idt: Ident) = tree match { case t @ ReferenceToBoxed(idt0) if (idt0 == idt) => t case _ => this.treeCopy.ReferenceToBoxed(tree, idt) } def Literal(tree: Tree, value: Constant) = tree match { case t @ Literal(value0) if value0 == value => t case _ => treeCopy.Literal(tree, value) } def TypeTree(tree: Tree) = tree match { case t @ TypeTree() => t case _ => treeCopy.TypeTree(tree) } def Annotated(tree: Tree, annot: Tree, arg: Tree) = tree match { case t @ Annotated(annot0, arg0) if (annot0==annot && arg0==arg) => t case _ => treeCopy.Annotated(tree, annot, arg) } def SingletonTypeTree(tree: Tree, ref: Tree) = tree match { case t @ SingletonTypeTree(ref0) if ref0 == ref => t case _ => treeCopy.SingletonTypeTree(tree, ref) } def SelectFromTypeTree(tree: Tree, qualifier: Tree, selector: Name) = tree match { case t @ SelectFromTypeTree(qualifier0, selector0) if (qualifier0 == qualifier) && (selector0 == selector) => t case _ => treeCopy.SelectFromTypeTree(tree, qualifier, selector) } def CompoundTypeTree(tree: Tree, templ: Template) = tree match { case t @ CompoundTypeTree(templ0) if templ0 == templ => t case _ => treeCopy.CompoundTypeTree(tree, templ) } def AppliedTypeTree(tree: Tree, tpt: Tree, args: List[Tree]) = tree match { case t @ AppliedTypeTree(tpt0, args0) if (tpt0 == tpt) && (args0 == args) => t case _ => treeCopy.AppliedTypeTree(tree, tpt, args) } def TypeBoundsTree(tree: Tree, lo: Tree, hi: Tree) = tree match { case t @ TypeBoundsTree(lo0, hi0) if (lo0 == lo) && (hi0 == hi) => t case _ => treeCopy.TypeBoundsTree(tree, lo, hi) } def ExistentialTypeTree(tree: Tree, tpt: Tree, whereClauses: List[MemberDef]) = tree match { case t @ ExistentialTypeTree(tpt0, whereClauses0) if (tpt0 == tpt) && (whereClauses0 == whereClauses) => t case _ => treeCopy.ExistentialTypeTree(tree, tpt, whereClauses) } } // Belongs in TreeInfo but then I can't reach it from Printers. def isReferenceToScalaMember(t: Tree, Id: Name) = t match { case Ident(Id) => true case Select(Ident(nme.scala_), Id) => true case Select(Select(Ident(nme.ROOTPKG), nme.scala_), Id) => true case _ => false } /** Is the tree Predef, scala.Predef, or _root_.scala.Predef? */ def isReferenceToPredef(t: Tree) = isReferenceToScalaMember(t, nme.Predef) // --- modifiers implementation --------------------------------------- /** @param privateWithin the qualifier for a private (a type name) * or tpnme.EMPTY, if none is given. * @param annotations the annotations for the definition. * '''Note:''' the typechecker drops these annotations, * use the AnnotationInfo's (Symbol.annotations) in later phases. */ case class Modifiers(flags: Long, privateWithin: Name, annotations: List[Tree]) extends ModifiersApi with HasFlags { var positions: Map[Long, Position] = Map() def setPositions(poss: Map[Long, Position]): this.type = { positions = poss; this } /* Abstract types from HasFlags. */ type AccessBoundaryType = Name type AnnotationType = Tree def hasAnnotationNamed(name: TypeName) = { annotations exists { case Apply(Select(New(Ident(`name`)), _), _) => true case Apply(Select(New(Select(_, `name`)), _), _) => true case _ => false } } def hasAccessBoundary = privateWithin != tpnme.EMPTY def hasAllFlags(mask: Long): Boolean = (flags & mask) == mask def hasFlag(flag: Long) = (flag & flags) != 0L def & (flag: Long): Modifiers = { val flags1 = flags & flag if (flags1 == flags) this else Modifiers(flags1, privateWithin, annotations) setPositions positions } def &~ (flag: Long): Modifiers = { val flags1 = flags & (~flag) if (flags1 == flags) this else Modifiers(flags1, privateWithin, annotations) setPositions positions } def | (flag: Int): Modifiers = this | flag.toLong def | (flag: Long): Modifiers = { val flags1 = flags | flag if (flags1 == flags) this else Modifiers(flags1, privateWithin, annotations) setPositions positions } def withAnnotations(annots: List[Tree]) = if (annots.isEmpty) this else copy(annotations = annotations ::: annots) setPositions positions def withPosition(flag: Long, position: Position) = copy() setPositions positions + (flag -> position) override def mapAnnotations(f: List[Tree] => List[Tree]): Modifiers = { val newAnns = f(annotations) if (annotations == newAnns) this else Modifiers(flags, privateWithin, newAnns) setPositions positions } override def toString = "Modifiers(%s, %s, %s)".format(flagString, annotations mkString ", ", positions) } object Modifiers extends ModifiersExtractor implicit val ModifiersTag = ClassTag[Modifiers](classOf[Modifiers]) // ---- values and creators --------------------------------------- /** @param sym the template's symbol * @param body trees that constitute the body of the template * @return the template */ def Template(sym: Symbol, body: List[Tree]): Template = { atPos(sym.pos) { Template(sym.info.parents map TypeTree, if (sym.thisSym == sym) noSelfType else ValDef(sym), body) } } trait CannotHaveAttrs extends Tree { super.setPos(NoPosition) super.setType(NoType) override def canHaveAttrs = false override def setPos(pos: Position) = { requireLegal(pos, NoPosition, "pos"); this } override def pos_=(pos: Position) = setPos(pos) override def setType(t: Type) = { requireLegal(t, NoType, "tpe"); this } override def tpe_=(t: Type) = setType(t) // We silently ignore attempts to add attachments to `EmptyTree`. See SI-8947 for an // example of a bug in macro expansion that this solves. override def setAttachments(attachments: Attachments {type Pos = Position}): this.type = attachmentWarning() override def updateAttachment[T: ClassTag](attachment: T): this.type = attachmentWarning() override def removeAttachment[T: ClassTag]: this.type = attachmentWarning() private def attachmentWarning(): this.type = {devWarning(s"Attempt to mutate attachments on $self ignored"); this} private def requireLegal(value: Any, allowed: Any, what: String) = ( if (value != allowed) { log(s"can't set $what for $self to value other than $allowed") if (settings.debug && settings.developer) (new Throwable).printStackTrace } ) } case object EmptyTree extends TermTree with CannotHaveAttrs { override def isEmpty = true; val asList = List(this) } object noSelfType extends ValDef(Modifiers(PRIVATE), nme.WILDCARD, TypeTree(NoType), EmptyTree) with CannotHaveAttrs object pendingSuperCall extends Apply(Select(Super(This(tpnme.EMPTY), tpnme.EMPTY), nme.CONSTRUCTOR), List()) with CannotHaveAttrs @deprecated("use `noSelfType` instead", "2.11.0") lazy val emptyValDef = noSelfType def newValDef(sym: Symbol, rhs: Tree)( mods: Modifiers = Modifiers(sym.flags), name: TermName = sym.name.toTermName, tpt: Tree = TypeTreeMemberType(sym) ): ValDef = ( atPos(sym.pos)(ValDef(mods, name, tpt, rhs)) setSymbol sym ) def newDefDef(sym: Symbol, rhs: Tree)( mods: Modifiers = Modifiers(sym.flags), name: TermName = sym.name.toTermName, tparams: List[TypeDef] = sym.typeParams map TypeDef.apply, vparamss: List[List[ValDef]] = mapParamss(sym)(ValDef.apply), tpt: Tree = TypeTreeMemberType(sym) ): DefDef = ( atPos(sym.pos)(DefDef(mods, name, tparams, vparamss, tpt, rhs)) setSymbol sym ) def newTypeDef(sym: Symbol, rhs: Tree)( mods: Modifiers = Modifiers(sym.flags), name: TypeName = sym.name.toTypeName, tparams: List[TypeDef] = sym.typeParams map TypeDef.apply ): TypeDef = ( atPos(sym.pos)(TypeDef(mods, name, tparams, rhs)) setSymbol sym ) /** casedef shorthand */ def CaseDef(pat: Tree, body: Tree): CaseDef = CaseDef(pat, EmptyTree, body) def Bind(sym: Symbol, body: Tree): Bind = Bind(sym.name, body) setSymbol sym def Try(body: Tree, cases: (Tree, Tree)*): Try = Try(body, cases.toList map { case (pat, rhs) => CaseDef(pat, EmptyTree, rhs) }, EmptyTree) def Throw(tpe: Type, args: Tree*): Throw = Throw(New(tpe, args: _*)) def Apply(sym: Symbol, args: Tree*): Tree = Apply(Ident(sym), args.toList) /** Factory method for object creation `new tpt(args_1)...(args_n)` * A `New(t, as)` is expanded to: `(new t).(as)` */ def New(tpt: Tree, argss: List[List[Tree]]): Tree = argss match { case Nil => ApplyConstructor(tpt, Nil) case xs :: rest => rest.foldLeft(ApplyConstructor(tpt, xs): Tree)(Apply.apply) } /** 0-1 argument list new, based on a type. */ def New(tpe: Type, args: Tree*): Tree = ApplyConstructor(TypeTree(tpe), args.toList) def New(tpe: Type, argss: List[List[Tree]]): Tree = New(TypeTree(tpe), argss) def New(sym: Symbol, args: Tree*): Tree = New(sym.tpe, args: _*) def Super(sym: Symbol, mix: TypeName): Tree = Super(This(sym), mix) /** Selection of a method in an arbitrary ancestor */ def SuperSelect(clazz: Symbol, sym: Symbol): Tree = Select(Super(clazz, tpnme.EMPTY), sym) def This(sym: Symbol): Tree = This(sym.name.toTypeName) setSymbol sym def Select(qualifier: Tree, name: String): Select = Select(qualifier, newTermName(name)) def Select(qualifier: Tree, sym: Symbol): Select = Select(qualifier, sym.name) setSymbol sym def Ident(name: String): Ident = Ident(newTermName(name)) def Ident(sym: Symbol): Ident = Ident(sym.name) setSymbol sym /** Block factory that flattens directly nested blocks. */ def Block(stats: Tree*): Block = { if (stats.isEmpty) Block(Nil, Literal(Constant(()))) else stats match { case Seq(b @ Block(_, _)) => b case Seq(stat) => Block(stats.toList, Literal(Constant(()))) case Seq(_, rest @ _*) => Block(stats.init.toList, stats.last) } } /** Delegate for a TypeTree symbol. This operation is unsafe because * it may trigger type checking when forcing the type symbol of the * underlying type. */ protected def typeTreeSymbol(tree: TypeTree): Symbol = if (tree.tpe == null) null else tree.tpe.typeSymbol // --- generic traversers and transformers override protected def itraverse(traverser: Traverser, tree: Tree): Unit = { import traverser._ def traverseMemberDef(md: MemberDef, owner: Symbol): Unit = atOwner(owner) { traverseModifiers(md.mods) traverseName(md.name) md match { case ClassDef(_, _, tparams, impl) => traverseParams(tparams) ; traverse(impl) case ModuleDef(_, _, impl) => traverse(impl) case ValDef(_, _, tpt, rhs) => traverseTypeAscription(tpt) ; traverse(rhs) case TypeDef(_, _, tparams, rhs) => traverseParams(tparams) ; traverse(rhs) case DefDef(_, _, tparams, vparamss, tpt, rhs) => traverseParams(tparams) traverseParamss(vparamss) traverseTypeAscription(tpt) traverse(rhs) } } def traverseComponents(): Unit = tree match { case LabelDef(name, params, rhs) => traverseName(name) traverseParams(params) traverse(rhs) case Import(expr, selectors) => traverse(expr) selectors foreach traverseImportSelector case Annotated(annot, arg) => traverse(annot) traverse(arg) case Template(parents, self, body) => traverseParents(parents) traverseSelfType(self) traverseStats(body, tree.symbol) case Block(stats, expr) => traverseTrees(stats) traverse(expr) case CaseDef(pat, guard, body) => traversePattern(pat) traverseGuard(guard) traverse(body) case Alternative(trees) => traverseTrees(trees) case Star(elem) => traverse(elem) case Bind(name, body) => traverseName(name) traverse(body) case UnApply(fun, args) => traverse(fun) traverseTrees(args) case ArrayValue(elemtpt, trees) => traverse(elemtpt) traverseTrees(trees) case Assign(lhs, rhs) => traverse(lhs) traverse(rhs) case AssignOrNamedArg(lhs, rhs) => traverse(lhs) traverse(rhs) case If(cond, thenp, elsep) => traverse(cond) traverse(thenp) traverse(elsep) case Match(selector, cases) => traverse(selector) traverseCases(cases) case Return(expr) => traverse(expr) case Try(block, catches, finalizer) => traverse(block) traverseCases(catches) traverse(finalizer) case Throw(expr) => traverse(expr) case New(tpt) => traverse(tpt) case Typed(expr, tpt) => traverse(expr) traverseTypeAscription(tpt) case TypeApply(fun, args) => traverse(fun) traverseTypeArgs(args) case Apply(fun, args) => traverse(fun) traverseTrees(args) case ApplyDynamic(qual, args) => traverse(qual) traverseTrees(args) case Super(qual, mix) => traverse(qual) traverseName(mix) case This(qual) => traverseName(qual) case Select(qualifier, selector) => traverse(qualifier) traverseName(selector) case Ident(name) => traverseName(name) case ReferenceToBoxed(idt) => traverse(idt) case Literal(const) => traverseConstant(const) case TypeTree() => ; case SingletonTypeTree(ref) => traverse(ref) case SelectFromTypeTree(qualifier, selector) => traverse(qualifier) traverseName(selector) case CompoundTypeTree(templ) => traverse(templ) case AppliedTypeTree(tpt, args) => traverse(tpt) traverseTypeArgs(args) case TypeBoundsTree(lo, hi) => traverse(lo) traverse(hi) case ExistentialTypeTree(tpt, whereClauses) => traverse(tpt) traverseTrees(whereClauses) case _ => xtraverse(traverser, tree) } if (tree.canHaveAttrs) { tree match { case PackageDef(pid, stats) => traverse(pid) ; traverseStats(stats, mclass(tree.symbol)) case md: ModuleDef => traverseMemberDef(md, mclass(tree.symbol)) case md: MemberDef => traverseMemberDef(md, tree.symbol) case Function(vparams, body) => atOwner(tree.symbol) { traverseParams(vparams) ; traverse(body) } case _ => traverseComponents() } } } //OPT ordered according to frequency to speed it up. override protected def itransform(transformer: Transformer, tree: Tree): Tree = { import transformer._ val treeCopy = transformer.treeCopy // begin itransform tree match { case Ident(name) => treeCopy.Ident(tree, name) case Select(qualifier, selector) => treeCopy.Select(tree, transform(qualifier), selector) case Apply(fun, args) => treeCopy.Apply(tree, transform(fun), transformTrees(args)) case TypeTree() => treeCopy.TypeTree(tree) case Literal(value) => treeCopy.Literal(tree, value) case This(qual) => treeCopy.This(tree, qual) case ValDef(mods, name, tpt, rhs) => atOwner(tree.symbol) { treeCopy.ValDef(tree, transformModifiers(mods), name, transform(tpt), transform(rhs)) } case DefDef(mods, name, tparams, vparamss, tpt, rhs) => atOwner(tree.symbol) { treeCopy.DefDef(tree, transformModifiers(mods), name, transformTypeDefs(tparams), transformValDefss(vparamss), transform(tpt), transform(rhs)) } case Block(stats, expr) => treeCopy.Block(tree, transformStats(stats, currentOwner), transform(expr)) case If(cond, thenp, elsep) => treeCopy.If(tree, transform(cond), transform(thenp), transform(elsep)) case CaseDef(pat, guard, body) => treeCopy.CaseDef(tree, transform(pat), transform(guard), transform(body)) case TypeApply(fun, args) => treeCopy.TypeApply(tree, transform(fun), transformTrees(args)) case AppliedTypeTree(tpt, args) => treeCopy.AppliedTypeTree(tree, transform(tpt), transformTrees(args)) case Bind(name, body) => treeCopy.Bind(tree, name, transform(body)) case Function(vparams, body) => atOwner(tree.symbol) { treeCopy.Function(tree, transformValDefs(vparams), transform(body)) } case Match(selector, cases) => treeCopy.Match(tree, transform(selector), transformCaseDefs(cases)) case New(tpt) => treeCopy.New(tree, transform(tpt)) case Assign(lhs, rhs) => treeCopy.Assign(tree, transform(lhs), transform(rhs)) case AssignOrNamedArg(lhs, rhs) => treeCopy.AssignOrNamedArg(tree, transform(lhs), transform(rhs)) case Try(block, catches, finalizer) => treeCopy.Try(tree, transform(block), transformCaseDefs(catches), transform(finalizer)) case EmptyTree => tree case Throw(expr) => treeCopy.Throw(tree, transform(expr)) case Super(qual, mix) => treeCopy.Super(tree, transform(qual), mix) case TypeBoundsTree(lo, hi) => treeCopy.TypeBoundsTree(tree, transform(lo), transform(hi)) case Typed(expr, tpt) => treeCopy.Typed(tree, transform(expr), transform(tpt)) case Import(expr, selectors) => treeCopy.Import(tree, transform(expr), selectors) case Template(parents, self, body) => treeCopy.Template(tree, transformTrees(parents), transformValDef(self), transformStats(body, tree.symbol)) case ClassDef(mods, name, tparams, impl) => atOwner(tree.symbol) { treeCopy.ClassDef(tree, transformModifiers(mods), name, transformTypeDefs(tparams), transformTemplate(impl)) } case ModuleDef(mods, name, impl) => atOwner(mclass(tree.symbol)) { treeCopy.ModuleDef(tree, transformModifiers(mods), name, transformTemplate(impl)) } case TypeDef(mods, name, tparams, rhs) => atOwner(tree.symbol) { treeCopy.TypeDef(tree, transformModifiers(mods), name, transformTypeDefs(tparams), transform(rhs)) } case LabelDef(name, params, rhs) => treeCopy.LabelDef(tree, name, transformIdents(params), transform(rhs)) //bq: Martin, once, atOwner(...) works, also change `LambdaLifter.proxy' case PackageDef(pid, stats) => treeCopy.PackageDef( tree, transform(pid).asInstanceOf[RefTree], atOwner(mclass(tree.symbol)) { transformStats(stats, currentOwner) } ) case Annotated(annot, arg) => treeCopy.Annotated(tree, transform(annot), transform(arg)) case SingletonTypeTree(ref) => treeCopy.SingletonTypeTree(tree, transform(ref)) case SelectFromTypeTree(qualifier, selector) => treeCopy.SelectFromTypeTree(tree, transform(qualifier), selector) case CompoundTypeTree(templ) => treeCopy.CompoundTypeTree(tree, transformTemplate(templ)) case ExistentialTypeTree(tpt, whereClauses) => treeCopy.ExistentialTypeTree(tree, transform(tpt), transformMemberDefs(whereClauses)) case Return(expr) => treeCopy.Return(tree, transform(expr)) case Alternative(trees) => treeCopy.Alternative(tree, transformTrees(trees)) case Star(elem) => treeCopy.Star(tree, transform(elem)) case UnApply(fun, args) => treeCopy.UnApply(tree, transform(fun), transformTrees(args)) // bq: see test/.../unapplyContexts2.scala case ArrayValue(elemtpt, trees) => treeCopy.ArrayValue(tree, transform(elemtpt), transformTrees(trees)) case ApplyDynamic(qual, args) => treeCopy.ApplyDynamic(tree, transform(qual), transformTrees(args)) case ReferenceToBoxed(idt) => treeCopy.ReferenceToBoxed(tree, transform(idt) match { case idt1: Ident => idt1 }) case _ => xtransform(transformer, tree) } } private def mclass(sym: Symbol) = sym map (_.asModule.moduleClass) // --- specific traversers and transformers class ForeachPartialTreeTraverser(pf: PartialFunction[Tree, Tree]) extends Traverser { override def traverse(tree: Tree) { val t = if (pf isDefinedAt tree) pf(tree) else tree super.traverse(t) } } class ChangeOwnerTraverser(val oldowner: Symbol, val newowner: Symbol) extends Traverser { final def change(sym: Symbol) = { if (sym != NoSymbol && sym.owner == oldowner) { sym.owner = newowner if (sym.isModule) sym.moduleClass.owner = newowner } } override def traverse(tree: Tree) { tree match { case _: Return => if (tree.symbol == oldowner) { // SI-5612 if (newowner hasTransOwner oldowner) log("NOT changing owner of %s because %s is nested in %s".format(tree, newowner, oldowner)) else { log("changing owner of %s: %s => %s".format(tree, oldowner, newowner)) tree.symbol = newowner } } case _: DefTree | _: Function => change(tree.symbol) case _ => } super.traverse(tree) } } private class ShallowDuplicator(orig: Tree) extends Transformer { override val treeCopy = newStrictTreeCopier override def transform(tree: Tree) = if (tree eq orig) super.transform(tree) else tree } /** A transformer that replaces tree `from` with tree `to` in a given tree */ class TreeReplacer(from: Tree, to: Tree, positionAware: Boolean) extends Transformer { override def transform(t: Tree): Tree = { if (t == from) to else if (!positionAware || (t.pos includes from.pos) || t.pos.isTransparent) super.transform(t) else t } } // Create a readable string describing a substitution. private def substituterString(fromStr: String, toStr: String, from: List[Any], to: List[Any]): String = { "subst[%s, %s](%s)".format(fromStr, toStr, (from, to).zipped map (_ + " -> " + _) mkString ", ") } // NOTE: calls shallowDuplicate on trees in `to` to avoid problems when symbols in `from` // occur multiple times in the `tree` passed to `transform`, // otherwise, the resulting Tree would be a graph, not a tree... this breaks all sorts of stuff, // notably concerning the mutable aspects of Trees (such as setting their .tpe) class TreeSubstituter(from: List[Symbol], to: List[Tree]) extends Transformer { override def transform(tree: Tree): Tree = tree match { case Ident(_) => def subst(from: List[Symbol], to: List[Tree]): Tree = if (from.isEmpty) tree else if (tree.symbol == from.head) to.head.shallowDuplicate // TODO: does it ever make sense *not* to perform a shallowDuplicate on `to.head`? else subst(from.tail, to.tail) subst(from, to) case _ => super.transform(tree) } override def toString = substituterString("Symbol", "Tree", from, to) } /** Substitute clazz.this with `to`. `to` must be an attributed tree. */ class ThisSubstituter(clazz: Symbol, to: => Tree) extends Transformer { val newtpe = to.tpe override def transform(tree: Tree) = { tree modifyType (_.substThis(clazz, newtpe)) tree match { case This(_) if tree.symbol == clazz => to case _ => super.transform(tree) } } } class TypeMapTreeSubstituter(val typeMap: TypeMap) extends Traverser { override def traverse(tree: Tree) { tree modifyType typeMap if (tree.isDef) tree.symbol modifyInfo typeMap super.traverse(tree) } override def apply[T <: Tree](tree: T): T = super.apply(tree.duplicate) } class TreeTypeSubstituter(val from: List[Symbol], val to: List[Type]) extends TypeMapTreeSubstituter(new SubstTypeMap(from, to)) { def isEmpty = from.isEmpty && to.isEmpty override def toString() = "TreeTypeSubstituter("+from+","+to+")" } lazy val EmptyTreeTypeSubstituter = new TreeTypeSubstituter(List(), List()) class TreeSymSubstTraverser(val from: List[Symbol], val to: List[Symbol]) extends TypeMapTreeSubstituter(new SubstSymMap(from, to)) { override def toString() = "TreeSymSubstTraverser/" + substituterString("Symbol", "Symbol", from, to) } /** Substitute symbols in `from` with symbols in `to`. Returns a new * tree using the new symbols and whose Ident and Select nodes are * name-consistent with the new symbols. * * Note: This is currently a destructive operation on the original Tree. * Trees currently assigned a symbol in `from` will be assigned the new symbols * without copying, and trees that define symbols with an `info` that refer * a symbol in `from` will have a new type assigned. */ class TreeSymSubstituter(from: List[Symbol], to: List[Symbol]) extends Transformer { val symSubst = new SubstSymMap(from, to) private var mutatedSymbols: List[Symbol] = Nil override def transform(tree: Tree): Tree = { def subst(from: List[Symbol], to: List[Symbol]) { if (!from.isEmpty) if (tree.symbol == from.head) tree setSymbol to.head else subst(from.tail, to.tail) } tree modifyType symSubst if (tree.hasSymbolField) { subst(from, to) tree match { case _: DefTree => val newInfo = symSubst(tree.symbol.info) if (!(newInfo =:= tree.symbol.info)) { debuglog(sm""" |TreeSymSubstituter: updated info of symbol ${tree.symbol} | Old: ${showRaw(tree.symbol.info, printTypes = true, printIds = true)} | New: ${showRaw(newInfo, printTypes = true, printIds = true)}""") mutatedSymbols ::= tree.symbol tree.symbol updateInfo newInfo } case _ => // no special handling is required for Function or Import nodes here. // as they don't have interesting infos attached to their symbols. // Substitution of the referenced symbol of Return nodes is handled // in .ChangeOwnerTraverser } tree match { case Ident(name0) if tree.symbol != NoSymbol => treeCopy.Ident(tree, tree.symbol.name) case Select(qual, name0) if tree.symbol != NoSymbol => treeCopy.Select(tree, transform(qual), tree.symbol.name) case _ => super.transform(tree) } } else super.transform(tree) } def apply[T <: Tree](tree: T): T = { val tree1 = transform(tree) invalidateTreeTpeCaches(tree1, mutatedSymbols) tree1.asInstanceOf[T] } override def toString() = "TreeSymSubstituter/" + substituterString("Symbol", "Symbol", from, to) } class ForeachTreeTraverser(f: Tree => Unit) extends Traverser { override def traverse(t: Tree) { f(t) super.traverse(t) } } class FilterTreeTraverser(p: Tree => Boolean) extends Traverser { val hits = mutable.ListBuffer[Tree]() override def traverse(t: Tree) { if (p(t)) hits += t super.traverse(t) } } class CollectTreeTraverser[T](pf: PartialFunction[Tree, T]) extends Traverser { val results = mutable.ListBuffer[T]() override def traverse(t: Tree) { if (pf.isDefinedAt(t)) results += pf(t) super.traverse(t) } } class FindTreeTraverser(p: Tree => Boolean) extends Traverser { var result: Option[Tree] = None override def traverse(t: Tree) { if (result.isEmpty) { if (p(t)) result = Some(t) super.traverse(t) } } } private lazy val duplicator = new Duplicator(focusPositions = true) private class Duplicator(focusPositions: Boolean) extends Transformer { override val treeCopy = newStrictTreeCopier override def transform(t: Tree) = { val t1 = super.transform(t) if ((t1 ne t) && t1.pos.isRange && focusPositions) t1 setPos t.pos.focus t1 } } trait TreeStackTraverser extends Traverser { import collection.mutable val path: mutable.Stack[Tree] = mutable.Stack() abstract override def traverse(t: Tree) = { path push t try super.traverse(t) finally path.pop() } } /** Tracks the classes currently under construction during a transform */ trait UnderConstructionTransformer extends Transformer { import collection.mutable protected def isUnderConstruction(clazz: Symbol) = selfOrSuperCalls contains clazz /** The stack of class symbols in which a call to this() or to the super * constructor, or early definition is active */ private val selfOrSuperCalls = mutable.Stack[Symbol]() abstract override def transform(tree: Tree) = { if ((treeInfo isSelfOrSuperConstrCall tree) || (treeInfo isEarlyDef tree)) { selfOrSuperCalls push currentOwner.owner try super.transform(tree) finally selfOrSuperCalls.pop() } else super.transform(tree) } } def duplicateAndKeepPositions(tree: Tree) = new Duplicator(focusPositions = false) transform tree // this is necessary to avoid crashes like https://github.com/scalamacros/paradise/issues/1 // when someone tries to c.typecheck a naked MemberDef def wrappingIntoTerm(tree0: Tree)(op: Tree => Tree): Tree = { val neededWrapping = !tree0.isTerm val tree1 = build.SyntacticBlock(tree0 :: Nil) op(tree1) match { case Block(tree2 :: Nil, Literal(Constant(()))) if neededWrapping => tree2 case tree2 => tree2 } } // ------ copiers ------------------------------------------- def copyDefDef(tree: Tree)( mods: Modifiers = null, name: Name = null, tparams: List[TypeDef] = null, vparamss: List[List[ValDef]] = null, tpt: Tree = null, rhs: Tree = null ): DefDef = tree match { case DefDef(mods0, name0, tparams0, vparamss0, tpt0, rhs0) => treeCopy.DefDef(tree, if (mods eq null) mods0 else mods, if (name eq null) name0 else name, if (tparams eq null) tparams0 else tparams, if (vparamss eq null) vparamss0 else vparamss, if (tpt eq null) tpt0 else tpt, if (rhs eq null) rhs0 else rhs ) case t => sys.error("Not a DefDef: " + t + "/" + t.getClass) } def copyValDef(tree: Tree)( mods: Modifiers = null, name: Name = null, tpt: Tree = null, rhs: Tree = null ): ValDef = tree match { case ValDef(mods0, name0, tpt0, rhs0) => treeCopy.ValDef(tree, if (mods eq null) mods0 else mods, if (name eq null) name0 else name, if (tpt eq null) tpt0 else tpt, if (rhs eq null) rhs0 else rhs ) case t => sys.error("Not a ValDef: " + t + "/" + t.getClass) } def copyTypeDef(tree: Tree)( mods: Modifiers = null, name: Name = null, tparams: List[TypeDef] = null, rhs: Tree = null ): TypeDef = tree match { case TypeDef(mods0, name0, tparams0, rhs0) => treeCopy.TypeDef(tree, if (mods eq null) mods0 else mods, if (name eq null) name0 else name, if (tparams eq null) tparams0 else tparams, if (rhs eq null) rhs0 else rhs ) case t => sys.error("Not a TypeDef: " + t + "/" + t.getClass) } def copyClassDef(tree: Tree)( mods: Modifiers = null, name: Name = null, tparams: List[TypeDef] = null, impl: Template = null ): ClassDef = tree match { case ClassDef(mods0, name0, tparams0, impl0) => treeCopy.ClassDef(tree, if (mods eq null) mods0 else mods, if (name eq null) name0 else name, if (tparams eq null) tparams0 else tparams, if (impl eq null) impl0 else impl ) case t => sys.error("Not a ClassDef: " + t + "/" + t.getClass) } def copyModuleDef(tree: Tree)( mods: Modifiers = null, name: Name = null, impl: Template = null ): ModuleDef = tree match { case ModuleDef(mods0, name0, impl0) => treeCopy.ModuleDef(tree, if (mods eq null) mods0 else mods, if (name eq null) name0 else name, if (impl eq null) impl0 else impl ) case t => sys.error("Not a ModuleDef: " + t + "/" + t.getClass) } def deriveDefDef(ddef: Tree)(applyToRhs: Tree => Tree): DefDef = ddef match { case DefDef(mods0, name0, tparams0, vparamss0, tpt0, rhs0) => treeCopy.DefDef(ddef, mods0, name0, tparams0, vparamss0, tpt0, applyToRhs(rhs0)) case t => sys.error("Not a DefDef: " + t + "/" + t.getClass) } def deriveValDef(vdef: Tree)(applyToRhs: Tree => Tree): ValDef = vdef match { case ValDef(mods0, name0, tpt0, rhs0) => treeCopy.ValDef(vdef, mods0, name0, tpt0, applyToRhs(rhs0)) case t => sys.error("Not a ValDef: " + t + "/" + t.getClass) } def deriveTemplate(templ: Tree)(applyToBody: List[Tree] => List[Tree]): Template = templ match { case Template(parents0, self0, body0) => treeCopy.Template(templ, parents0, self0, applyToBody(body0)) case t => sys.error("Not a Template: " + t + "/" + t.getClass) } def deriveClassDef(cdef: Tree)(applyToImpl: Template => Template): ClassDef = cdef match { case ClassDef(mods0, name0, tparams0, impl0) => treeCopy.ClassDef(cdef, mods0, name0, tparams0, applyToImpl(impl0)) case t => sys.error("Not a ClassDef: " + t + "/" + t.getClass) } def deriveModuleDef(mdef: Tree)(applyToImpl: Template => Template): ModuleDef = mdef match { case ModuleDef(mods0, name0, impl0) => treeCopy.ModuleDef(mdef, mods0, name0, applyToImpl(impl0)) case t => sys.error("Not a ModuleDef: " + t + "/" + t.getClass) } def deriveCaseDef(cdef: Tree)(applyToBody: Tree => Tree): CaseDef = cdef match { case CaseDef(pat0, guard0, body0) => treeCopy.CaseDef(cdef, pat0, guard0, applyToBody(body0)) case t => sys.error("Not a CaseDef: " + t + "/" + t.getClass) } def deriveLabelDef(ldef: Tree)(applyToRhs: Tree => Tree): LabelDef = ldef match { case LabelDef(name0, params0, rhs0) => treeCopy.LabelDef(ldef, name0, params0, applyToRhs(rhs0)) case t => sys.error("Not a LabelDef: " + t + "/" + t.getClass) } def deriveFunction(func: Tree)(applyToRhs: Tree => Tree): Function = func match { case Function(params0, rhs0) => treeCopy.Function(func, params0, applyToRhs(rhs0)) case t => sys.error("Not a Function: " + t + "/" + t.getClass) } // -------------- Classtags -------------------------------------------------------- implicit val AlternativeTag = ClassTag[Alternative](classOf[Alternative]) implicit val AnnotatedTag = ClassTag[Annotated](classOf[Annotated]) implicit val AppliedTypeTreeTag = ClassTag[AppliedTypeTree](classOf[AppliedTypeTree]) implicit val ApplyTag = ClassTag[Apply](classOf[Apply]) implicit val AssignOrNamedArgTag = ClassTag[AssignOrNamedArg](classOf[AssignOrNamedArg]) implicit val AssignTag = ClassTag[Assign](classOf[Assign]) implicit val BindTag = ClassTag[Bind](classOf[Bind]) implicit val BlockTag = ClassTag[Block](classOf[Block]) implicit val CaseDefTag = ClassTag[CaseDef](classOf[CaseDef]) implicit val ClassDefTag = ClassTag[ClassDef](classOf[ClassDef]) implicit val CompoundTypeTreeTag = ClassTag[CompoundTypeTree](classOf[CompoundTypeTree]) implicit val DefDefTag = ClassTag[DefDef](classOf[DefDef]) implicit val DefTreeTag = ClassTag[DefTree](classOf[DefTree]) implicit val ExistentialTypeTreeTag = ClassTag[ExistentialTypeTree](classOf[ExistentialTypeTree]) implicit val FunctionTag = ClassTag[Function](classOf[Function]) implicit val GenericApplyTag = ClassTag[GenericApply](classOf[GenericApply]) implicit val IdentTag = ClassTag[Ident](classOf[Ident]) implicit val IfTag = ClassTag[If](classOf[If]) implicit val ImplDefTag = ClassTag[ImplDef](classOf[ImplDef]) implicit val ImportSelectorTag = ClassTag[ImportSelector](classOf[ImportSelector]) implicit val ImportTag = ClassTag[Import](classOf[Import]) implicit val LabelDefTag = ClassTag[LabelDef](classOf[LabelDef]) implicit val LiteralTag = ClassTag[Literal](classOf[Literal]) implicit val MatchTag = ClassTag[Match](classOf[Match]) implicit val MemberDefTag = ClassTag[MemberDef](classOf[MemberDef]) implicit val ModuleDefTag = ClassTag[ModuleDef](classOf[ModuleDef]) implicit val NameTreeTag = ClassTag[NameTree](classOf[NameTree]) implicit val NewTag = ClassTag[New](classOf[New]) implicit val PackageDefTag = ClassTag[PackageDef](classOf[PackageDef]) implicit val ReferenceToBoxedTag = ClassTag[ReferenceToBoxed](classOf[ReferenceToBoxed]) implicit val RefTreeTag = ClassTag[RefTree](classOf[RefTree]) implicit val ReturnTag = ClassTag[Return](classOf[Return]) implicit val SelectFromTypeTreeTag = ClassTag[SelectFromTypeTree](classOf[SelectFromTypeTree]) implicit val SelectTag = ClassTag[Select](classOf[Select]) implicit val SingletonTypeTreeTag = ClassTag[SingletonTypeTree](classOf[SingletonTypeTree]) implicit val StarTag = ClassTag[Star](classOf[Star]) implicit val SuperTag = ClassTag[Super](classOf[Super]) implicit val SymTreeTag = ClassTag[SymTree](classOf[SymTree]) implicit val TemplateTag = ClassTag[Template](classOf[Template]) implicit val TermTreeTag = ClassTag[TermTree](classOf[TermTree]) implicit val ThisTag = ClassTag[This](classOf[This]) implicit val ThrowTag = ClassTag[Throw](classOf[Throw]) implicit val TreeTag = ClassTag[Tree](classOf[Tree]) implicit val TryTag = ClassTag[Try](classOf[Try]) implicit val TypTreeTag = ClassTag[TypTree](classOf[TypTree]) implicit val TypeApplyTag = ClassTag[TypeApply](classOf[TypeApply]) implicit val TypeBoundsTreeTag = ClassTag[TypeBoundsTree](classOf[TypeBoundsTree]) implicit val TypeDefTag = ClassTag[TypeDef](classOf[TypeDef]) implicit val TypeTreeTag = ClassTag[TypeTree](classOf[TypeTree]) implicit val TypedTag = ClassTag[Typed](classOf[Typed]) implicit val UnApplyTag = ClassTag[UnApply](classOf[UnApply]) implicit val ValDefTag = ClassTag[ValDef](classOf[ValDef]) implicit val ValOrDefDefTag = ClassTag[ValOrDefDef](classOf[ValOrDefDef]) val treeNodeCount = Statistics.newView("#created tree nodes")(nodeCount) } object TreesStats { // statistics val nodeByType = Statistics.newByClass("#created tree nodes by type")(Statistics.newCounter("")) }