package scala.collection.immutable.redblacktree import collection.immutable.{RedBlackTree => RB} import org.scalacheck._ import Prop._ import Gen._ /* Properties of a Red & Black Tree: A node is either red or black. The root is black. (This rule is used in some definitions and not others. Since the root can always be changed from red to black but not necessarily vice-versa this rule has little effect on analysis.) All leaves are black. Both children of every red node are black. Every simple path from a given node to any of its descendant leaves contains the same number of black nodes. */ abstract class RedBlackTreeTest extends Properties("RedBlackTree") { def minimumSize = 0 def maximumSize = 5 import RB._ def nodeAt[A](tree: Tree[String, A], n: Int): Option[(String, A)] = if (n < iterator(tree).size && n >= 0) Some(iterator(tree).drop(n).next) else None def treeContains[A](tree: Tree[String, A], key: String) = iterator(tree).map(_._1) contains key def height(tree: Tree[_, _]): Int = if (tree eq null) 0 else (1 + math.max(height(tree.left), height(tree.right))) def mkTree(level: Int, parentIsBlack: Boolean = false, label: String = ""): Gen[Tree[String, Int]] = if (level == 0) { const(null) } else { for { oddOrEven <- choose(0, 2) tryRed = oddOrEven.sample.get % 2 == 0 // work around arbitrary[Boolean] bug isRed = parentIsBlack && tryRed nextLevel = if (isRed) level else level - 1 left <- mkTree(nextLevel, !isRed, label + "L") right <- mkTree(nextLevel, !isRed, label + "R") } yield { if (isRed) RedTree(label + "N", 0, left, right) else BlackTree(label + "N", 0, left, right) } } def genTree = for { depth <- choose(minimumSize, maximumSize + 1) tree <- mkTree(depth) } yield tree type ModifyParm def genParm(tree: Tree[String, Int]): Gen[ModifyParm] def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] def genInput: Gen[(Tree[String, Int], ModifyParm, Tree[String, Int])] = for { tree <- genTree parm <- genParm(tree) } yield (tree, parm, modify(tree, parm)) } trait RedBlackTreeInvariants { self: RedBlackTreeTest => import RB._ def rootIsBlack[A](t: Tree[String, A]) = isBlack(t) def areAllLeavesBlack[A](t: Tree[String, A]): Boolean = t match { case null => isBlack(t) case ne => List(ne.left, ne.right) forall areAllLeavesBlack } def areRedNodeChildrenBlack[A](t: Tree[String, A]): Boolean = t match { case RedTree(_, _, left, right) => List(left, right) forall (t => isBlack(t) && areRedNodeChildrenBlack(t)) case BlackTree(_, _, left, right) => List(left, right) forall areRedNodeChildrenBlack case null => true } def blackNodesToLeaves[A](t: Tree[String, A]): List[Int] = t match { case null => List(1) case BlackTree(_, _, left, right) => List(left, right) flatMap blackNodesToLeaves map (_ + 1) case RedTree(_, _, left, right) => List(left, right) flatMap blackNodesToLeaves } def areBlackNodesToLeavesEqual[A](t: Tree[String, A]): Boolean = t match { case null => true case ne => ( blackNodesToLeaves(ne).distinct.size == 1 && areBlackNodesToLeavesEqual(ne.left) && areBlackNodesToLeavesEqual(ne.right) ) } def orderIsPreserved[A](t: Tree[String, A]): Boolean = iterator(t) zip iterator(t).drop(1) forall { case (x, y) => x._1 < y._1 } def heightIsBounded(t: Tree[_, _]): Boolean = height(t) <= (2 * (32 - Integer.numberOfLeadingZeros(count(t) + 2)) - 2) def setup(invariant: Tree[String, Int] => Boolean) = forAll(genInput) { case (tree, parm, newTree) => invariant(newTree) } property("root is black") = setup(rootIsBlack) property("all leaves are black") = setup(areAllLeavesBlack) property("children of red nodes are black") = setup(areRedNodeChildrenBlack) property("black nodes are balanced") = setup(areBlackNodesToLeavesEqual) property("ordering of keys is preserved") = setup(orderIsPreserved) property("height is bounded") = setup(heightIsBounded) } object TestInsert extends RedBlackTreeTest with RedBlackTreeInvariants { import RB._ override type ModifyParm = Int override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size + 1) override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = update(tree, generateKey(tree, parm), 0, true) def generateKey(tree: Tree[String, Int], parm: ModifyParm): String = nodeAt(tree, parm) match { case Some((key, _)) => key.init.mkString + "MN" case None => nodeAt(tree, parm - 1) match { case Some((key, _)) => key.init.mkString + "RN" case None => "N" } } property("update adds elements") = forAll(genInput) { case (tree, parm, newTree) => treeContains(newTree, generateKey(tree, parm)) } } object TestModify extends RedBlackTreeTest { import RB._ def newValue = 1 override def minimumSize = 1 override type ModifyParm = Int override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size) override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = nodeAt(tree, parm) map { case (key, _) => update(tree, key, newValue, true) } getOrElse tree property("update modifies values") = forAll(genInput) { case (tree, parm, newTree) => nodeAt(tree,parm) forall { case (key, _) => iterator(newTree) contains (key, newValue) } } } object TestDelete extends RedBlackTreeTest with RedBlackTreeInvariants { import RB._ override def minimumSize = 1 override type ModifyParm = Int override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size) override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = nodeAt(tree, parm) map { case (key, _) => delete(tree, key) } getOrElse tree property("delete removes elements") = forAll(genInput) { case (tree, parm, newTree) => nodeAt(tree, parm) forall { case (key, _) => !treeContains(newTree, key) } } } object TestRange extends RedBlackTreeTest with RedBlackTreeInvariants { import RB._ override type ModifyParm = (Option[Int], Option[Int]) override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = for { from <- choose(0, iterator(tree).size) to <- choose(0, iterator(tree).size) suchThat (from <=) optionalFrom <- oneOf(Some(from), None, Some(from)) // Double Some(n) to get around a bug optionalTo <- oneOf(Some(to), None, Some(to)) // Double Some(n) to get around a bug } yield (optionalFrom, optionalTo) override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = { val from = parm._1 flatMap (nodeAt(tree, _) map (_._1)) val to = parm._2 flatMap (nodeAt(tree, _) map (_._1)) rangeImpl(tree, from, to) } property("range boundaries respected") = forAll(genInput) { case (tree, parm, newTree) => val from = parm._1 flatMap (nodeAt(tree, _) map (_._1)) val to = parm._2 flatMap (nodeAt(tree, _) map (_._1)) ("lower boundary" |: (from forall ( key => keysIterator(newTree) forall (key <=)))) && ("upper boundary" |: (to forall ( key => keysIterator(newTree) forall (key >)))) } property("range returns all elements") = forAll(genInput) { case (tree, parm, newTree) => val from = parm._1 flatMap (nodeAt(tree, _) map (_._1)) val to = parm._2 flatMap (nodeAt(tree, _) map (_._1)) val filteredTree = (keysIterator(tree) .filter(key => from forall (key >=)) .filter(key => to forall (key <)) .toList) filteredTree == keysIterator(newTree).toList } } object TestDrop extends RedBlackTreeTest with RedBlackTreeInvariants { import RB._ override type ModifyParm = Int override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size) override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = drop(tree, parm) property("drop") = forAll(genInput) { case (tree, parm, newTree) => iterator(tree).drop(parm).toList == iterator(newTree).toList } } object TestTake extends RedBlackTreeTest with RedBlackTreeInvariants { import RB._ override type ModifyParm = Int override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = choose(0, iterator(tree).size) override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = take(tree, parm) property("take") = forAll(genInput) { case (tree, parm, newTree) => iterator(tree).take(parm).toList == iterator(newTree).toList } } object TestSlice extends RedBlackTreeTest with RedBlackTreeInvariants { import RB._ override type ModifyParm = (Int, Int) override def genParm(tree: Tree[String, Int]): Gen[ModifyParm] = for { from <- choose(0, iterator(tree).size) to <- choose(from, iterator(tree).size) } yield (from, to) override def modify(tree: Tree[String, Int], parm: ModifyParm): Tree[String, Int] = slice(tree, parm._1, parm._2) property("slice") = forAll(genInput) { case (tree, parm, newTree) => iterator(tree).slice(parm._1, parm._2).toList == iterator(newTree).toList } }