summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/ast/TreeGen.scala
blob: a2c37b59fb660ba9a8a6d5f8f9eeccbfc2dc9fc4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

package scala.tools.nsc
package ast

import scala.collection.mutable.ListBuffer
import symtab.Flags._
import scala.language.postfixOps

/** XXX to resolve: TreeGen only assumes global is a SymbolTable, but
 *  TreeDSL at the moment expects a Global.  Can we get by with SymbolTable?
 */
abstract class TreeGen extends scala.reflect.internal.TreeGen with TreeDSL {
  val global: Global

  import global._
  import definitions._

  /** Builds a fully attributed, synthetic wildcard import node.
   */
  def mkWildcardImport(pkg: Symbol): Import =
    mkImportFromSelector(pkg, ImportSelector.wildList)

  /** Builds a fully attributed, synthetic import node.
    * import `qualSym`.{`name` => `toName`}
    */
  def mkImport(qualSym: Symbol, name: Name, toName: Name): Import =
    mkImportFromSelector(qualSym, ImportSelector(name, 0, toName, 0) :: Nil)

  private def mkImportFromSelector(qualSym: Symbol, selector: List[ImportSelector]): Import = {
    assert(qualSym ne null, this)
    val qual = gen.mkAttributedStableRef(qualSym)
    val importSym = (
      NoSymbol
        newImport NoPosition
          setFlag SYNTHETIC
          setInfo ImportType(qual)
    )
    val importTree = (
      Import(qual, selector)
        setSymbol importSym
          setType NoType
    )
    importTree
  }

  // wrap the given expression in a SoftReference so it can be gc-ed
  def mkSoftRef(expr: Tree): Tree = atPos(expr.pos) {
    val constructor = SoftReferenceClass.info.nonPrivateMember(nme.CONSTRUCTOR).suchThat(_.paramss.flatten.size == 1)
    NewFromConstructor(constructor, expr)
  }

  // Builds a tree of the form "{ lhs = rhs ; lhs  }"
  def mkAssignAndReturn(lhs: Symbol, rhs: Tree): Tree = {
    def lhsRef = if (lhs.owner.isClass) Select(This(lhs.owner), lhs) else Ident(lhs)
    Block(Assign(lhsRef, rhs) :: Nil, lhsRef)
  }

  def newModule(accessor: Symbol, tpe: Type) = {
    val ps = tpe.typeSymbol.primaryConstructor.info.paramTypes
    if (ps.isEmpty) New(tpe)
    else New(tpe, This(accessor.owner.enclClass))
  }

  def mkRuntimeCall(meth: Name, args: List[Tree]): Tree =
    mkRuntimeCall(meth, Nil, args)

  def mkRuntimeCall(meth: Name, targs: List[Type], args: List[Tree]): Tree =
    mkMethodCall(ScalaRunTimeModule, meth, targs, args)

  def mkSysErrorCall(message: String): Tree =
    mkMethodCall(Sys_error, List(Literal(Constant(message))))

  /** A creator for a call to a scala.reflect.Manifest or ClassManifest factory method.
   *
   *  @param    full          full or partial manifest (target will be Manifest or ClassManifest)
   *  @param    constructor   name of the factory method (e.g. "classType")
   *  @param    tparg         the type argument
   *  @param    args          value arguments
   *  @return   the tree
   */
  def mkManifestFactoryCall(full: Boolean, constructor: String, tparg: Type, args: List[Tree]): Tree =
    mkMethodCall(
      if (full) FullManifestModule else PartialManifestModule,
      newTermName(constructor),
      List(tparg),
      args
    )

  /** Make a synchronized block on 'monitor'. */
  def mkSynchronized(monitor: Tree)(body: Tree): Tree =
    Apply(Select(monitor, Object_synchronized), List(body))

  def mkAppliedTypeForCase(clazz: Symbol): Tree = {
    val numParams = clazz.typeParams.size
    if (clazz.typeParams.isEmpty) Ident(clazz)
    else AppliedTypeTree(Ident(clazz), 1 to numParams map (_ => Bind(tpnme.WILDCARD, EmptyTree)) toList)
  }
  def mkBindForCase(patVar: Symbol, clazz: Symbol, targs: List[Type]): Tree = {
    Bind(patVar, Typed(Ident(nme.WILDCARD),
      if (targs.isEmpty) mkAppliedTypeForCase(clazz)
      else AppliedTypeTree(Ident(clazz), targs map TypeTree)
    ))
  }

  def wildcardStar(tree: Tree) =
    atPos(tree.pos) { Typed(tree, Ident(tpnme.WILDCARD_STAR)) }

  def paramToArg(vparam: Symbol): Tree =
    paramToArg(Ident(vparam), isRepeatedParamType(vparam.tpe))

  def paramToArg(vparam: ValDef): Tree =
    paramToArg(Ident(vparam.name), treeInfo.isRepeatedParamType(vparam.tpt))

  def paramToArg(arg: Ident, isRepeatedParam: Boolean): Tree  =
    if (isRepeatedParam) wildcardStar(arg) else arg

  /** Make forwarder to method `target`, passing all parameters in `params` */
  def mkForwarder(target: Tree, vparamss: List[List[Symbol]]) =
    (target /: vparamss)((fn, vparams) => Apply(fn, vparams map paramToArg))

  /** Applies a wrapArray call to an array, making it a WrappedArray.
   *  Don't let a reference type parameter be inferred, in case it's a singleton:
   *  apply the element type directly.
   */
  def mkWrapArray(tree: Tree, elemtp: Type) = {
    mkMethodCall(
      PredefModule,
      wrapArrayMethodName(elemtp),
      if (isPrimitiveValueType(elemtp)) Nil else List(elemtp),
      List(tree)
    )
  }

  /** Cast `tree` to type `pt` by creating
   *  one of the calls of the form
   *
   *    x.asInstanceOf[`pt`]     up to phase uncurry
   *    x.asInstanceOf[`pt`]()   if after uncurry but before erasure
   *    x.$asInstanceOf[`pt`]()  if at or after erasure
   */
  override def mkCast(tree: Tree, pt: Type): Tree = {
    debuglog("casting " + tree + ":" + tree.tpe + " to " + pt + " at phase: " + phase)
    assert(!tree.tpe.isInstanceOf[MethodType], tree)
    assert(!pt.isInstanceOf[MethodType], tree)
    assert(pt eq pt.normalize, tree +" : "+ debugString(pt) +" ~>"+ debugString(pt.normalize))
    atPos(tree.pos) {
      mkAsInstanceOf(tree, pt, any = !phase.next.erasedTypes, wrapInApply = isAtPhaseAfter(currentRun.uncurryPhase))
    }
  }

  // drop annotations generated by CPS plugin etc, since its annotationchecker rejects T @cps[U] <: Any
  // let's assume for now annotations don't affect casts, drop them there, and bring them back using the outer Typed tree
  def mkCastPreservingAnnotations(tree: Tree, pt: Type) =
    Typed(mkCast(tree, pt.withoutAnnotations.dealias), TypeTree(pt))

  /** Generate a cast for tree Tree representing Array with
   *  elem type elemtp to expected type pt.
   */
  def mkCastArray(tree: Tree, elemtp: Type, pt: Type) =
    if (elemtp.typeSymbol == AnyClass && isPrimitiveValueType(tree.tpe.typeArgs.head))
      mkCast(mkRuntimeCall(nme.toObjectArray, List(tree)), pt)
    else
      mkCast(tree, pt)

  /** Translate names in Select/Ident nodes to type names.
   */
  def convertToTypeName(tree: Tree): Option[RefTree] = tree match {
    case Select(qual, name) => Some(Select(qual, name.toTypeName))
    case Ident(name)        => Some(Ident(name.toTypeName))
    case _                  => None
  }

  /** Try to convert Select(qual, name) to a SelectFromTypeTree.
   */
  def convertToSelectFromType(qual: Tree, origName: Name) = convertToTypeName(qual) match {
    case Some(qual1)  => SelectFromTypeTree(qual1 setPos qual.pos, origName.toTypeName)
    case _            => EmptyTree
  }

  /** Create a ValDef initialized to the given expression, setting the
   *  symbol to its packed type, and an function for creating Idents
   *  which refer to it.
   */
  private def mkPackedValDef(expr: Tree, owner: Symbol, name: Name): (ValDef, () => Ident) = {
    val packedType = typer.packedType(expr, owner)
    val sym = owner.newValue(name.toTermName, expr.pos.makeTransparent, SYNTHETIC) setInfo packedType

    (ValDef(sym, expr), () => Ident(sym) setPos sym.pos.focus setType expr.tpe)
  }

  /** Used in situations where you need to access value of an expression several times
   */
  def evalOnce(expr: Tree, owner: Symbol, unit: CompilationUnit)(within: (() => Tree) => Tree): Tree = {
    var used = false
    if (treeInfo.isExprSafeToInline(expr)) {
      within(() => if (used) expr.duplicate else { used = true; expr })
    }
    else {
      val (valDef, identFn) = mkPackedValDef(expr, owner, unit.freshTermName("ev$"))
      val containing = within(identFn)
      ensureNonOverlapping(containing, List(expr))
      Block(List(valDef), containing) setPos (containing.pos union expr.pos)
    }
  }

  def evalOnceAll(exprs: List[Tree], owner: Symbol, unit: CompilationUnit)(within: (List[() => Tree]) => Tree): Tree = {
    val vdefs = new ListBuffer[ValDef]
    val exprs1 = new ListBuffer[() => Tree]
    val used = new Array[Boolean](exprs.length)
    var i = 0
    for (expr <- exprs) {
      if (treeInfo.isExprSafeToInline(expr)) {
        exprs1 += {
          val idx = i
          () => if (used(idx)) expr.duplicate else { used(idx) = true; expr }
        }
      }
      else {
        val (valDef, identFn) = mkPackedValDef(expr, owner, unit.freshTermName("ev$"))
        vdefs += valDef
        exprs1 += identFn
      }
      i += 1
    }
    val prefix = vdefs.toList
    val containing = within(exprs1.toList)
    ensureNonOverlapping(containing, exprs)
    if (prefix.isEmpty) containing
    else Block(prefix, containing) setPos (prefix.head.pos union containing.pos)
  }

  /** Creates a tree representing new Object { stats }.
   *  To make sure an anonymous subclass of Object is created,
   *  if there are no stats, a () is added.
   */
  def mkAnonymousNew(stats: List[Tree]): Tree = {
    val stats1 = if (stats.isEmpty) List(Literal(Constant(()))) else stats
    mkNew(Nil, noSelfType, stats1, NoPosition, NoPosition)
  }


  // Construct a method to implement `fun`'s single abstract method (`apply`, when `fun.tpe` is a built-in function type)
  def mkMethodFromFunction(localTyper: analyzer.Typer)(owner: Symbol, fun: Function) = {
    // TODO: treat FunctionN like any other SAM -- drop `&& !isFunctionType(fun.tpe)`
    val sam = if (!isFunctionType(fun.tpe)) samOf(fun.tpe) else NoSymbol
    if (!sam.exists) mkMethodForFunctionBody(localTyper)(owner, fun, nme.apply)()
    else {
      val samMethType = fun.tpe memberInfo sam
      mkMethodForFunctionBody(localTyper)(owner, fun, sam.name.toTermName)(methParamProtos = samMethType.params, resTp = samMethType.resultType)
    }
  }

  // used to create the lifted method that holds a function's body
  def mkLiftedFunctionBodyMethod(localTyper: global.analyzer.Typer)(owner: global.Symbol, fun: global.Function) = {
    def nonLocalEnclosingMember(sym: Symbol): Symbol = {
      if (sym.isLocalDummy) sym.enclClass.primaryConstructor
      else if (sym.isLocalToBlock) nonLocalEnclosingMember(sym.originalOwner)
      else sym
    }
    val ownerName = nonLocalEnclosingMember(fun.symbol.originalOwner).name match {
      case nme.CONSTRUCTOR => nme.NEWkw // do as javac does for the suffix, prefer "new" to "$lessinit$greater$1"
      case x => x.dropLocal
    }
    val newName = nme.ANON_FUN_NAME.append(nme.NAME_JOIN_STRING).append(ownerName)
    mkMethodForFunctionBody(localTyper)(owner, fun, newName)(additionalFlags = ARTIFACT)
  }


  // the result type of a function or corresponding SAM type
  private def functionResultType(tp: Type): Type = {
    val dealiased = tp.dealiasWiden
    if (isFunctionTypeDirect(dealiased)) dealiased.typeArgs.last
    else samOf(tp) match {
      case samSym if samSym.exists => tp.memberInfo(samSym).resultType.deconst
      case _ => NoType
    }
  }

  /**
    * Lift a Function's body to a method. For use during Uncurry, where Function nodes have type FunctionN[T1, ..., Tn, R]
    *
    * It creates a method definition with value params derived from the original lambda
    * or `methParamProtos` (used to create the correct override for sam methods).
    *
    * Replace the `fun.vparams` symbols by the newly created method params,
    * changes owner of `fun.body` from `fun.symbol` to resulting method's symbol.
    *
    * @param owner The owner for the new method
    * @param fun  the function to take the body from
    * @param name name for the new method
    * @param additionalFlags flags to be put on the method in addition to FINAL
    */
  private def mkMethodForFunctionBody(localTyper: analyzer.Typer)
                                     (owner: Symbol, fun: Function, name: TermName)
                                     (methParamProtos: List[Symbol] = fun.vparams.map(_.symbol),
                                      resTp: Type = functionResultType(fun.tpe),
                                      additionalFlags: FlagSet = NoFlags): DefDef = {
    val methSym = owner.newMethod(name, fun.pos, FINAL | additionalFlags)
    // for sams, methParamProtos is the parameter symbols for the sam's method, so that we generate the correct override (based on parmeter types)
    val methParamSyms = methParamProtos.map { param => methSym.newSyntheticValueParam(param.tpe, param.name.toTermName) }
    methSym setInfo MethodType(methParamSyms, resTp)

    // we must rewire reference to the function's param symbols -- and not methParamProtos -- to methParamSyms
    val useMethodParams = new TreeSymSubstituter(fun.vparams.map(_.symbol), methParamSyms)
    // we're now owned by the method that holds the body, and not the function
    val moveToMethod = new ChangeOwnerTraverser(fun.symbol, methSym)

    newDefDef(methSym, moveToMethod(useMethodParams(fun.body)))(tpt = TypeTree(resTp))
  }

  /**
    * Create a new `DefDef` based on `orig` with an explicit self parameter.
    *
    * Details:
    *   - Must by run after erasure
    *   - If `maybeClone` is the identity function, this runs "in place"
    *     and mutates the symbol of `orig`. `orig` should be discarded
    *   - Symbol owners and returns are substituted, as are parameter symbols
    *   - Recursive calls are not rewritten. This is correct if we assume
    *     that we either:
    *       - are in "in-place" mode, but can guarantee that no recursive calls exists
    *       - are associating the RHS with a cloned symbol, but intend for the original
    *         method to remain and for recursive calls to target it.
    */
  final def mkStatic(orig: DefDef, newName: Name, maybeClone: Symbol => Symbol): DefDef = {
    assert(phase.erasedTypes, phase)
    assert(!orig.symbol.hasFlag(SYNCHRONIZED), orig.symbol.defString)
    val origSym = orig.symbol
    val origParams = orig.symbol.info.params
    val newSym = maybeClone(orig.symbol)
    newSym.setName(newName)
    newSym.setFlag(STATIC)
    // Add an explicit self parameter
    val selfParamSym = newSym.newSyntheticValueParam(newSym.owner.typeConstructor, nme.SELF).setFlag(ARTIFACT)
    newSym.updateInfo(newSym.info match {
      case mt @ MethodType(params, res) => copyMethodType(mt, selfParamSym :: params, res)
    })
    val selfParam = ValDef(selfParamSym)
    val rhs = orig.rhs.substituteThis(newSym.owner, gen.mkAttributedIdent(selfParamSym)) // SD-186 intentionally leaving Ident($this) is unpositioned
      .substituteSymbols(origParams, newSym.info.params.drop(1)).changeOwner(origSym -> newSym)
    treeCopy.DefDef(orig, orig.mods, orig.name, orig.tparams, (selfParam :: orig.vparamss.head) :: Nil, orig.tpt, rhs).setSymbol(newSym)
  }

  def expandFunction(localTyper: analyzer.Typer)(fun: Function, inConstructorFlag: Long): Tree = {
    val anonClass = fun.symbol.owner newAnonymousFunctionClass(fun.pos, inConstructorFlag)
    val parents = if (isFunctionType(fun.tpe)) {
      anonClass addAnnotation SerialVersionUIDAnnotation
      addSerializable(abstractFunctionType(fun.vparams.map(_.symbol.tpe), fun.body.tpe.deconst))
    } else {
      if (fun.tpe.typeSymbol.isSubClass(JavaSerializableClass))
        anonClass addAnnotation SerialVersionUIDAnnotation
      fun.tpe :: Nil
    }
    anonClass setInfo ClassInfoType(parents, newScope, anonClass)

    // The original owner is used in the backend for the EnclosingMethod attribute. If fun is
    // nested in a value-class method, its owner was already changed to the extension method.
    // Saving the original owner allows getting the source structure from the class symbol.
    defineOriginalOwner(anonClass, fun.symbol.originalOwner)

    val samDef = mkMethodFromFunction(localTyper)(anonClass, fun)
    anonClass.info.decls enter samDef.symbol

    localTyper.typedPos(fun.pos) {
      Block(
        ClassDef(anonClass, NoMods, ListOfNil, List(samDef), fun.pos),
        Typed(New(anonClass.tpe), TypeTree(fun.tpe)))
    }
  }

  override def isPatVarWarnable = settings.warnUnusedPatVars
}