summaryrefslogtreecommitdiff
path: root/src/compiler/scala/tools/nsc/typechecker/Typers.scala
blob: 85ca9950c4b2e1c74a943a4a0d0fd261900fe11a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
/* NSC -- new Scala compiler
 * Copyright 2005-2013 LAMP/EPFL
 * @author  Martin Odersky
 */

// Added: Sat Oct 7 16:08:21 2006
//todo: use inherited type info also for vars and values

// Added: Thu Apr 12 18:23:58 2007
//todo: disallow C#D in superclass
//todo: treat :::= correctly
package scala
package tools.nsc
package typechecker

import scala.collection.{immutable, mutable}
import scala.reflect.internal.util.{ListOfNil, Statistics}
import mutable.ListBuffer
import symtab.Flags._
import Mode._
import scala.reflect.macros.whitebox

// Suggestion check whether we can do without priming scopes with symbols of outer scopes,
// like the IDE does.
/** This trait provides methods to assign types to trees.
 *
 *  @author  Martin Odersky
 *  @version 1.0
 */
trait Typers extends Adaptations with Tags with TypersTracking with PatternTypers {
  self: Analyzer =>

  import global._
  import definitions._
  import TypersStats._

  final def forArgMode(fun: Tree, mode: Mode) =
    if (treeInfo.isSelfOrSuperConstrCall(fun)) mode | SCCmode else mode

  // namer calls typer.computeType(rhs) on DefDef / ValDef when tpt is empty. the result
  // is cached here and re-used in typedDefDef / typedValDef
  // Also used to cache imports type-checked by namer.
  val transformed = new mutable.AnyRefMap[Tree, Tree]

  final val shortenImports = false

  // allows override of the behavior of the resetTyper method w.r.t comments
  def resetDocComments() = {
    clearDocComments()
  }

  def resetTyper() {
    //println("resetTyper called")
    resetContexts()
    resetImplicits()
    resetDocComments()
  }

  sealed abstract class SilentResult[+T] {
    def isEmpty: Boolean
    def nonEmpty = !isEmpty

    @inline final def fold[U](none: => U)(f: T => U): U = this match {
      case SilentResultValue(value) => f(value)
      case _                        => none
    }
    @inline final def map[U](f: T => U): SilentResult[U] = this match {
      case SilentResultValue(value) => SilentResultValue(f(value))
      case x: SilentTypeError       => x
    }
    @inline final def filter(p: T => Boolean): SilentResult[T] = this match {
      case SilentResultValue(value) if !p(value) => SilentTypeError(TypeErrorWrapper(new TypeError(NoPosition, "!p")))
      case _                                     => this
  }
    @inline final def orElse[T1 >: T](f: Seq[AbsTypeError] => T1): T1 = this match {
      case SilentResultValue(value) => value
      case s : SilentTypeError      => f(s.reportableErrors)
    }
  }
  class SilentTypeError private(val errors: List[AbsTypeError], val warnings: List[(Position, String)]) extends SilentResult[Nothing] {
    override def isEmpty = true
    def err: AbsTypeError = errors.head
    def reportableErrors = errors match {
      case (e1: AmbiguousImplicitTypeError) +: _ =>
        List(e1) // DRYer error reporting for neg/t6436b.scala
      case all =>
        all
    }
  }
  object SilentTypeError {
    def apply(errors: AbsTypeError*): SilentTypeError = apply(errors.toList, Nil)
    def apply(errors: List[AbsTypeError], warnings: List[(Position, String)]): SilentTypeError = new SilentTypeError(errors, warnings)
    // todo: this extracts only one error, should be a separate extractor.
    def unapply(error: SilentTypeError): Option[AbsTypeError] = error.errors.headOption
  }

  // todo: should include reporter warnings in SilentResultValue.
  // e.g. tryTypedApply could print warnings on arguments when the typing succeeds.
  case class SilentResultValue[+T](value: T) extends SilentResult[T] { override def isEmpty = false }

  def newTyper(context: Context): Typer = new NormalTyper(context)

  private class NormalTyper(context : Context) extends Typer(context)

  // A transient flag to mark members of anonymous classes
  // that are turned private by typedBlock
  private final val SYNTHETIC_PRIVATE = TRANS_FLAG

  private final val InterpolatorCodeRegex  = """\$\{\s*(.*?)\s*\}""".r
  private final val InterpolatorIdentRegex = """\$[$\w]+""".r // note that \w doesn't include $

  abstract class Typer(context0: Context) extends TyperDiagnostics with Adaptation with Tag with PatternTyper with TyperContextErrors {
    import context0.unit
    import typeDebug.ptTree
    import TyperErrorGen._
    val runDefinitions = currentRun.runDefinitions
    import runDefinitions._

    private val transformed: mutable.Map[Tree, Tree] = unit.transformed

    val infer = new Inferencer {
      def context = Typer.this.context
      // See SI-3281 re undoLog
      override def isCoercible(tp: Type, pt: Type) = undoLog undo viewExists(tp, pt)
    }

    /** Overridden to false in scaladoc and/or interactive. */
    def canAdaptConstantTypeToLiteral = true
    def canTranslateEmptyListToNil    = true
    def missingSelectErrorTree(tree: Tree, qual: Tree, name: Name): Tree = tree

    // used to exempt synthetic accessors (i.e. those that are synthesized by the compiler to access a field)
    // from skolemization because there's a weird bug that causes spurious type mismatches
    // (it seems to have something to do with existential abstraction over values
    // https://github.com/scala/scala-dev/issues/165
    // when we're past typer, lazy accessors are synthetic, but before they are user-defined
    // to make this hack less hacky, we could rework our flag assignment to allow for
    // requiring both the ACCESSOR and the SYNTHETIC bits to trigger the exemption
    private def isSyntheticAccessor(sym: Symbol) = sym.isAccessor && (!sym.isLazy || isPastTyper)

    // when type checking during erasure, generate erased types in spots that aren't transformed by erasure
    // (it erases in TypeTrees, but not in, e.g., the type a Function node)
    def phasedAppliedType(sym: Symbol, args: List[Type]) = {
      val tp = appliedType(sym, args)
      if (phase.erasedTypes) erasure.specialScalaErasure(tp) else tp
    }

    def typedDocDef(docDef: DocDef, mode: Mode, pt: Type): Tree =
      typed(docDef.definition, mode, pt)

    /** Find implicit arguments and pass them to given tree.
     */
    def applyImplicitArgs(fun: Tree): Tree = fun.tpe match {
      case MethodType(params, _) =>
        val argResultsBuff = new ListBuffer[SearchResult]()
        val argBuff = new ListBuffer[Tree]()
        // paramFailed cannot be initialized with params.exists(_.tpe.isError) because that would
        // hide some valid errors for params preceding the erroneous one.
        var paramFailed = false
        var mkArg: (Name, Tree) => Tree = (_, tree) => tree

        // DEPMETTODO: instantiate type vars that depend on earlier implicit args (see adapt (4.1))
        //
        // apply the substitutions (undet type param -> type) that were determined
        // by implicit resolution of implicit arguments on the left of this argument
        for(param <- params) {
          var paramTp = param.tpe
          for(ar <- argResultsBuff)
            paramTp = paramTp.subst(ar.subst.from, ar.subst.to)

          val res =
            if (paramFailed || (paramTp.isErroneous && {paramFailed = true; true})) SearchFailure
            else inferImplicitFor(paramTp, fun, context, reportAmbiguous = context.reportErrors)
          argResultsBuff += res

          if (res.isSuccess) {
            argBuff += mkArg(param.name, res.tree)
          } else {
            mkArg = gen.mkNamedArg // don't pass the default argument (if any) here, but start emitting named arguments for the following args
            if (!param.hasDefault && !paramFailed) {
              context.reporter.reportFirstDivergentError(fun, param, paramTp)(context)
              paramFailed = true
            }
            /* else {
             TODO: alternative (to expose implicit search failure more) -->
             resolve argument, do type inference, keep emitting positional args, infer type params based on default value for arg
             for (ar <- argResultsBuff) ar.subst traverse defaultVal
             val targs = exprTypeArgs(context.undetparams, defaultVal.tpe, paramTp)
             substExpr(tree, tparams, targs, pt)
            }*/
          }
        }

        val args = argBuff.toList
        for (ar <- argResultsBuff) {
          ar.subst traverse fun
          for (arg <- args) ar.subst traverse arg
        }

        new ApplyToImplicitArgs(fun, args) setPos fun.pos
      case ErrorType =>
        fun
    }

    def viewExists(from: Type, to: Type): Boolean = (
         !from.isError
      && !to.isError
      && context.implicitsEnabled
      && (inferView(context.tree, from, to, reportAmbiguous = false) != EmptyTree)
      // SI-8230 / SI-8463 We'd like to change this to `saveErrors = false`, but can't.
      // For now, we can at least pass in `context.tree` rather then `EmptyTree` so as
      // to avoid unpositioned type errors.
    )


    /** Infer an implicit conversion (`view`) between two types.
     *  @param tree             The tree which needs to be converted.
     *  @param from             The source type of the conversion
     *  @param to               The target type of the conversion
     *  @param reportAmbiguous  Should ambiguous implicit errors be reported?
     *                          False iff we search for a view to find out
     *                          whether one type is coercible to another.
     *  @param saveErrors       Should ambiguous and divergent implicit errors that were buffered
     *                          during the inference of a view be put into the original buffer.
     *                          False iff we don't care about them.
     */
    def inferView(tree: Tree, from: Type, to: Type, reportAmbiguous: Boolean = true, saveErrors: Boolean = true): Tree =
      if (isPastTyper || from.isInstanceOf[MethodType] || from.isInstanceOf[OverloadedType] || from.isInstanceOf[PolyType]) EmptyTree
      else {
        debuglog(s"Inferring view from $from to $to for $tree (reportAmbiguous= $reportAmbiguous, saveErrors=$saveErrors)")

        val fromNoAnnot = from.withoutAnnotations
        val result = inferImplicitView(fromNoAnnot, to, tree, context, reportAmbiguous, saveErrors) match {
          case fail if fail.isFailure => inferImplicitView(byNameType(fromNoAnnot), to, tree, context, reportAmbiguous, saveErrors)
          case ok => ok
        }

        if (result.subst != EmptyTreeTypeSubstituter) {
          result.subst traverse tree
          notifyUndetparamsInferred(result.subst.from, result.subst.to)
        }
        result.tree
      }

    import infer._

    private var namerCache: Namer = null
    def namer = {
      if ((namerCache eq null) || namerCache.context != context)
        namerCache = newNamer(context)
      namerCache
    }

    var context = context0
    def context1 = context

    // for use with silent type checking to when we can't have results with undetermined type params
    // note that this captures the context var
    val isMonoContext = (_: Any) => context.undetparams.isEmpty

    def dropExistential(tp: Type): Type = tp match {
      case ExistentialType(tparams, tpe) =>
        new SubstWildcardMap(tparams).apply(tp)
      case TypeRef(_, sym, _) if sym.isAliasType =>
        val tp0 = tp.dealias
        if (tp eq tp0) {
          devWarning(s"dropExistential did not progress dealiasing $tp, see SI-7126")
          tp
        } else {
          val tp1 = dropExistential(tp0)
          if (tp1 eq tp0) tp else tp1
        }
      case _ => tp
    }

    private def errorNotClass(tpt: Tree, found: Type)  = { ClassTypeRequiredError(tpt, found); false }
    private def errorNotStable(tpt: Tree, found: Type) = { TypeNotAStablePrefixError(tpt, found); false }

    /** Check that `tpt` refers to a non-refinement class type */
    def checkClassType(tpt: Tree): Boolean = {
      val tpe = unwrapToClass(tpt.tpe)
      isNonRefinementClassType(tpe) || errorNotClass(tpt, tpe)
    }

    /** Check that `tpt` refers to a class type with a stable prefix. */
    def checkStablePrefixClassType(tpt: Tree): Boolean = {
      val tpe = unwrapToStableClass(tpt.tpe)
      def prefixIsStable = {
        def checkPre = tpe match {
          case TypeRef(pre, _, _) => pre.isStable || errorNotStable(tpt, pre)
          case _                  => false
        }
        // A type projection like X#Y can get by the stable check if the
        // prefix is singleton-bounded, so peek at the tree too.
        def checkTree = tpt match {
          case SelectFromTypeTree(qual, _)  => isSingleType(qual.tpe) || errorNotClass(tpt, tpe)
          case _                            => true
        }
        checkPre && checkTree
      }

      (    (isNonRefinementClassType(tpe) || errorNotClass(tpt, tpe))
        && (isPastTyper || prefixIsStable)
      )
    }

    /** Check that type `tp` is not a subtype of itself.
     */
    def checkNonCyclic(pos: Position, tp: Type): Boolean = {
      def checkNotLocked(sym: Symbol) = {
        sym.initialize.lockOK || { CyclicAliasingOrSubtypingError(pos, sym); false }
      }
      tp match {
        case TypeRef(pre, sym, args) =>
          checkNotLocked(sym) &&
          ((!sym.isNonClassType) || checkNonCyclic(pos, appliedType(pre.memberInfo(sym), args), sym))
          // @M! info for a type ref to a type parameter now returns a polytype
          // @M was: checkNonCyclic(pos, pre.memberInfo(sym).subst(sym.typeParams, args), sym)

        case SingleType(pre, sym) =>
          checkNotLocked(sym)
        case st: SubType =>
          checkNonCyclic(pos, st.supertype)
        case ct: CompoundType =>
          ct.parents forall (x => checkNonCyclic(pos, x))
        case _ =>
          true
      }
    }

    def checkNonCyclic(pos: Position, tp: Type, lockedSym: Symbol): Boolean = try {
      if (!lockedSym.lock(CyclicReferenceError(pos, tp, lockedSym))) false
      else checkNonCyclic(pos, tp)
    } finally {
      lockedSym.unlock()
    }

    def checkNonCyclic(sym: Symbol) {
      if (!checkNonCyclic(sym.pos, sym.tpe_*)) sym.setInfo(ErrorType)
    }

    def checkNonCyclic(defn: Tree, tpt: Tree) {
      if (!checkNonCyclic(defn.pos, tpt.tpe, defn.symbol)) {
        tpt setType ErrorType
        defn.symbol.setInfo(ErrorType)
      }
    }

    def checkParamsConvertible(tree: Tree, tpe0: Type) {
      def checkParamsConvertible0(tpe: Type) =
        tpe match {
          case MethodType(formals, restpe) =>
            /*
            if (formals.exists(_.typeSymbol == ByNameParamClass) && formals.length != 1)
              error(pos, "methods with `=>`-parameter can be converted to function values only if they take no other parameters")
            if (formals exists (isRepeatedParamType(_)))
              error(pos, "methods with `*`-parameters cannot be converted to function values");
            */
            if (tpe.isDependentMethodType)
              DependentMethodTpeConversionToFunctionError(tree, tpe)
            checkParamsConvertible(tree, restpe)
          case _ =>
        }
      checkParamsConvertible0(tpe0)
    }

    /** Check that type of given tree does not contain local or private
     *  components.
     */
    object checkNoEscaping extends TypeMap {
      private var owner: Symbol = _
      private var scope: Scope = _
      private var hiddenSymbols: List[Symbol] = _

      /** Check that type `tree` does not refer to private
       *  components unless itself is wrapped in something private
       *  (`owner` tells where the type occurs).
       */
      def privates[T <: Tree](owner: Symbol, tree: T): T =
        check(owner, EmptyScope, WildcardType, tree)

      private def check[T <: Tree](owner: Symbol, scope: Scope, pt: Type, tree: T): T = {
        this.owner = owner
        this.scope = scope
        hiddenSymbols = List()
        val tp1 = apply(tree.tpe)
        if (hiddenSymbols.isEmpty) tree setType tp1
        else if (hiddenSymbols exists (_.isErroneous)) HiddenSymbolWithError(tree)
        else if (isFullyDefined(pt)) tree setType pt
        else if (tp1.typeSymbol.isAnonymousClass)
          check(owner, scope, pt, tree setType tp1.typeSymbol.classBound)
        else if (owner == NoSymbol)
          tree setType packSymbols(hiddenSymbols.reverse, tp1)
        else if (!isPastTyper) { // privates
          val badSymbol = hiddenSymbols.head
          SymbolEscapesScopeError(tree, badSymbol)
        } else tree
      }

      def addHidden(sym: Symbol) =
        if (!(hiddenSymbols contains sym)) hiddenSymbols = sym :: hiddenSymbols

      override def apply(t: Type): Type = {
        def checkNoEscape(sym: Symbol) {
          if (sym.isPrivate && !sym.hasFlag(SYNTHETIC_PRIVATE)) {
            var o = owner
            while (o != NoSymbol && o != sym.owner && o != sym.owner.linkedClassOfClass &&
                   !o.isLocalToBlock && !o.isPrivate &&
                   !o.privateWithin.hasTransOwner(sym.owner))
              o = o.owner
            if (o == sym.owner || o == sym.owner.linkedClassOfClass)
              addHidden(sym)
          } else if (sym.owner.isTerm && !sym.isTypeParameterOrSkolem) {
            var e = scope.lookupEntry(sym.name)
            var found = false
            while (!found && (e ne null) && e.owner == scope) {
              if (e.sym == sym) {
                found = true
                addHidden(sym)
              } else {
                e = scope.lookupNextEntry(e)
              }
            }
          }
        }
        mapOver(
          t match {
            case TypeRef(_, sym, args) =>
              checkNoEscape(sym)
              if (!hiddenSymbols.isEmpty && hiddenSymbols.head == sym &&
                  sym.isAliasType && sameLength(sym.typeParams, args)) {
                hiddenSymbols = hiddenSymbols.tail
                t.dealias
              } else t
            case SingleType(_, sym) =>
              checkNoEscape(sym)
              t
            case _ =>
              t
          })
      }
    }

    def reenterValueParams(vparamss: List[List[ValDef]]) {
      for (vparams <- vparamss)
        for (vparam <- vparams)
          context.scope enter vparam.symbol
    }

    def reenterTypeParams(tparams: List[TypeDef]): List[Symbol] =
      for (tparam <- tparams) yield {
        context.scope enter tparam.symbol
        tparam.symbol.deSkolemize
      }

    /** The qualifying class
     *  of a this or super with prefix `qual`.
     *  packageOk is equal false when qualifying class symbol
     */
    def qualifyingClass(tree: Tree, qual: Name, packageOK: Boolean) =
      context.enclClass.owner.ownerChain.find(o => qual.isEmpty || o.isClass && o.name == qual) match {
        case Some(c) if packageOK || !c.isPackageClass => c
        case _                                         => QualifyingClassError(tree, qual) ; NoSymbol
      }

    /** The typer for an expression, depending on where we are. If we are before a superclass
     *  call, this is a typer over a constructor context; otherwise it is the current typer.
     */
    final def constrTyperIf(inConstr: Boolean): Typer =
      if (inConstr) {
        assert(context.undetparams.isEmpty, context.undetparams)
        newTyper(context.makeConstructorContext)
      } else this

    @inline
    final def withCondConstrTyper[T](inConstr: Boolean)(f: Typer => T): T =
      if (inConstr) {
        assert(context.undetparams.isEmpty, context.undetparams)
        val c = context.makeConstructorContext
        typerWithLocalContext(c)(f)
      } else {
        f(this)
      }

    @inline
    final def typerWithCondLocalContext[T](c: => Context)(cond: Boolean)(f: Typer => T): T =
      if (cond) typerWithLocalContext(c)(f) else f(this)

    @inline
    final def typerWithLocalContext[T](c: Context)(f: Typer => T): T =
      c.reporter.propagatingErrorsTo(context.reporter)(f(newTyper(c)))

    /** The typer for a label definition. If this is part of a template we
     *  first have to enter the label definition.
     */
    def labelTyper(ldef: LabelDef): Typer =
      if (ldef.symbol == NoSymbol) { // labeldef is part of template
        val typer1 = newTyper(context.makeNewScope(ldef, context.owner))
        typer1.enterLabelDef(ldef)
        typer1
      } else this

    /** Is symbol defined and not stale?
     */
    def reallyExists(sym: Symbol) = {
      if (isStale(sym)) sym.setInfo(NoType)
      sym.exists
    }

    /** A symbol is stale if it is toplevel, to be loaded from a classfile, and
     *  the classfile is produced from a sourcefile which is compiled in the current run.
     */
    def isStale(sym: Symbol): Boolean = {
      sym.rawInfo.isInstanceOf[loaders.ClassfileLoader] && {
        sym.rawInfo.load(sym)
        (sym.sourceFile ne null) &&
        (currentRun.compiledFiles contains sym.sourceFile.path)
      }
    }

    /** Does the context of tree `tree` require a stable type?
     */
    private def isStableContext(tree: Tree, mode: Mode, pt: Type) = {
      def ptSym = pt.typeSymbol
      def expectsStable = (
           pt.isStable
        || mode.inQualMode && !tree.symbol.isConstant
        || !(tree.tpe <:< pt) && (ptSym.isAbstractType && pt.bounds.lo.isStable || ptSym.isRefinementClass)
      )

      (    isNarrowable(tree.tpe)
        && mode.typingExprNotLhs
        && expectsStable
      )
    }

    /** Make symbol accessible. This means:
     *  If symbol refers to package object, insert `.package` as second to last selector.
     *  (exception for some symbols in scala package which are dealiased immediately)
     *  Call checkAccessible, which sets tree's attributes.
     *  Also note that checkAccessible looks up sym on pre without checking that pre is well-formed
     *  (illegal type applications in pre will be skipped -- that's why typedSelect wraps the resulting tree in a TreeWithDeferredChecks)
     *  @return modified tree and new prefix type
     */
    private def makeAccessible(tree: Tree, sym: Symbol, pre: Type, site: Tree): (Tree, Type) =
      if (context.isInPackageObject(sym, pre.typeSymbol)) {
        if (pre.typeSymbol == ScalaPackageClass && sym.isTerm) {
          // short cut some aliases. It seems pattern matching needs this
          // to notice exhaustiveness and to generate good code when
          // List extractors are mixed with :: patterns. See Test5 in lists.scala.
          //
          // TODO SI-6609 Eliminate this special case once the old pattern matcher is removed.
          def dealias(sym: Symbol) =
            (atPos(tree.pos.makeTransparent) {gen.mkAttributedRef(sym)} setPos tree.pos, sym.owner.thisType)
          sym.name match {
            case nme.List => return dealias(ListModule)
            case nme.Seq  => return dealias(SeqModule)
            case nme.Nil  => return dealias(NilModule)
            case _ =>
          }
        }
        val qual = typedQualifier { atPos(tree.pos.makeTransparent) {
          tree match {
            case Ident(_) =>
              val packageObject =
                if (!sym.isOverloaded && sym.owner.isModuleClass) sym.owner.sourceModule // historical optimization, perhaps no longer needed
                else pre.typeSymbol.packageObject
              Ident(packageObject)
            case Select(qual, _) => Select(qual, nme.PACKAGEkw)
            case SelectFromTypeTree(qual, _) => Select(qual, nme.PACKAGEkw)
          }
        }}
        val tree1 = atPos(tree.pos) {
          tree match {
            case Ident(name) => Select(qual, name)
            case Select(_, name) => Select(qual, name)
            case SelectFromTypeTree(_, name) => SelectFromTypeTree(qual, name)
          }
        }
        (checkAccessible(tree1, sym, qual.tpe, qual), qual.tpe)
      } else {
        (checkAccessible(tree, sym, pre, site), pre)
      }

    /** Post-process an identifier or selection node, performing the following:
     *  1. Check that non-function pattern expressions are stable (ignoring volatility concerns -- SI-6815)
     *       (and narrow the type of modules: a module reference in a pattern has type Foo.type, not "object Foo")
     *  2. Check that packages and static modules are not used as values
     *  3. Turn tree type into stable type if possible and required by context.
     *  4. Give getClass calls a more precise type based on the type of the target of the call.
     */
    protected def stabilize(tree: Tree, pre: Type, mode: Mode, pt: Type): Tree = {

      // Side effect time! Don't be an idiot like me and think you
      // can move "val sym = tree.symbol" before this line, because
      // inferExprAlternative side-effects the tree's symbol.
      if (tree.symbol.isOverloaded && !mode.inFunMode)
        inferExprAlternative(tree, pt)

      val sym = tree.symbol
      val isStableIdPattern = mode.typingPatternNotConstructor && tree.isTerm

      def isModuleTypedExpr = (
           treeInfo.admitsTypeSelection(tree)
        && (isStableContext(tree, mode, pt) || sym.isModuleNotMethod)
      )
      def isStableValueRequired = (
           isStableIdPattern
        || mode.in(all = EXPRmode, none = QUALmode) && !phase.erasedTypes
      )
      // To fully benefit from special casing the return type of
      // getClass, we have to catch it immediately so expressions like
      // x.getClass().newInstance() are typed with the type of x. TODO: If the
      // type of the qualifier is inaccessible, we can cause private types to
      // escape scope here, e.g. pos/t1107. I'm not sure how to properly handle
      // this so for now it requires the type symbol be public.
      def isGetClassCall = isGetClass(sym) && pre.typeSymbol.isPublic

      def narrowIf(tree: Tree, condition: Boolean) =
        if (condition) tree setType singleType(pre, sym) else tree

      def checkStable(tree: Tree): Tree =
        if (treeInfo.isStableIdentifierPattern(tree)) tree
        else UnstableTreeError(tree)

      if (tree.isErrorTyped)
        tree
      else if (!sym.isValue && isStableValueRequired) // (2)
        NotAValueError(tree, sym)
      else if (isStableIdPattern)                     // (1)
        // A module reference in a pattern has type Foo.type, not "object Foo"
        narrowIf(checkStable(tree), sym.isModuleNotMethod)
      else if (isModuleTypedExpr)                     // (3)
        narrowIf(tree, true)
      else if (isGetClassCall)                        // (4)
        tree setType MethodType(Nil, getClassReturnType(pre))
      else
        tree
    }

    private def isNarrowable(tpe: Type): Boolean = unwrapWrapperTypes(tpe) match {
      case TypeRef(_, _, _) | RefinedType(_, _) => true
      case _                                    => !phase.erasedTypes
    }

    def stabilizeFun(tree: Tree, mode: Mode, pt: Type): Tree = {
      val sym = tree.symbol
      val pre = tree match {
        case Select(qual, _) => qual.tpe
        case _               => NoPrefix
      }
      def stabilizable = (
           pre.isStable
        && sym.tpe.params.isEmpty
        && (isStableContext(tree, mode, pt) || sym.isModule)
      )
      tree.tpe match {
        case MethodType(_, _) if stabilizable => tree setType MethodType(Nil, singleType(pre, sym)) // TODO: should this be a NullaryMethodType?
        case _                                => tree
      }
    }

    /** The member with given name of given qualifier tree */
    def member(qual: Tree, name: Name) = {
      def callSiteWithinClass(clazz: Symbol) = context.enclClass.owner hasTransOwner clazz
      val includeLocals = qual.tpe match {
        case ThisType(clazz) if callSiteWithinClass(clazz)                => true
        case SuperType(clazz, _) if callSiteWithinClass(clazz.typeSymbol) => true
        case _                                                            => phase.next.erasedTypes
      }
      if (includeLocals) qual.tpe member name
      else qual.tpe nonLocalMember name
    }

    def silent[T](op: Typer => T,
                  reportAmbiguousErrors: Boolean = context.ambiguousErrors,
                  newtree: Tree = context.tree): SilentResult[T] = {
      val rawTypeStart = if (Statistics.canEnable) Statistics.startCounter(rawTypeFailed) else null
      val findMemberStart = if (Statistics.canEnable) Statistics.startCounter(findMemberFailed) else null
      val subtypeStart = if (Statistics.canEnable) Statistics.startCounter(subtypeFailed) else null
      val failedSilentStart = if (Statistics.canEnable) Statistics.startTimer(failedSilentNanos) else null
      def stopStats() = {
        if (Statistics.canEnable) Statistics.stopCounter(rawTypeFailed, rawTypeStart)
        if (Statistics.canEnable) Statistics.stopCounter(findMemberFailed, findMemberStart)
        if (Statistics.canEnable) Statistics.stopCounter(subtypeFailed, subtypeStart)
        if (Statistics.canEnable) Statistics.stopTimer(failedSilentNanos, failedSilentStart)
      }
      @inline def wrapResult(reporter: ContextReporter, result: T) =
        if (reporter.hasErrors) {
          stopStats()
          SilentTypeError(reporter.errors.toList, reporter.warnings.toList)
        } else SilentResultValue(result)

      try {
        if (context.reportErrors ||
            reportAmbiguousErrors != context.ambiguousErrors ||
            newtree != context.tree) {
          val context1 = context.makeSilent(reportAmbiguousErrors, newtree)
          context1.undetparams = context.undetparams
          context1.savedTypeBounds = context.savedTypeBounds
          context1.namedApplyBlockInfo = context.namedApplyBlockInfo
          val typer1 = newTyper(context1)
          val result = op(typer1)
          context.undetparams = context1.undetparams
          context.savedTypeBounds = context1.savedTypeBounds
          context.namedApplyBlockInfo = context1.namedApplyBlockInfo

          // If we have a successful result, emit any warnings it created.
          if (!context1.reporter.hasErrors)
            context1.reporter.emitWarnings()

          wrapResult(context1.reporter, result)
        } else {
          assert(context.bufferErrors || isPastTyper, "silent mode is not available past typer")

          context.reporter.withFreshErrorBuffer {
            wrapResult(context.reporter, op(this))
          }
        }
      } catch {
        case ex: CyclicReference => throw ex
        case ex: TypeError =>
          // fallback in case TypeError is still thrown
          // @H this happens for example in cps annotation checker
          stopStats()
          SilentTypeError(TypeErrorWrapper(ex))
      }
    }

    /** Check whether feature given by `featureTrait` is enabled.
     *  If it is not, issue an error or a warning depending on whether the feature is required.
     *  @param  construct  A string expression that is substituted for "#" in the feature description string
     *  @param  immediate  When set, feature check is run immediately, otherwise it is run
     *                     at the end of the typechecking run for the enclosing unit. This
     *                     is done to avoid potential cyclic reference errors by implicits
     *                     that are forced too early.
     *  @return if feature check is run immediately: true if feature is enabled, false otherwise
     *          if feature check is delayed or suppressed because we are past typer: true
     */
    def checkFeature(pos: Position, featureTrait: Symbol, construct: => String = "", immediate: Boolean = false): Boolean =
      if (isPastTyper) true
      else {
        val nestedOwners =
          featureTrait.owner.ownerChain.takeWhile(_ != languageFeatureModule.moduleClass).reverse
        val featureName = (nestedOwners map (_.name + ".")).mkString + featureTrait.name
        def action(): Boolean = {
          def hasImport = inferImplicitByType(featureTrait.tpe, context).isSuccess
          def hasOption = settings.language contains featureName
          val OK = hasImport || hasOption
          if (!OK) {
            val Some(AnnotationInfo(_, List(Literal(Constant(featureDesc: String)), Literal(Constant(required: Boolean))), _)) =
              featureTrait getAnnotation LanguageFeatureAnnot
            context.featureWarning(pos, featureName, featureDesc, featureTrait, construct, required)
          }
          OK
        }
        if (immediate) {
          action()
        } else {
          unit.toCheck += action
          true
        }
      }

    def checkExistentialsFeature(pos: Position, tpe: Type, prefix: String) = tpe match {
      case extp: ExistentialType if !extp.isRepresentableWithWildcards =>
        checkFeature(pos, ExistentialsFeature, prefix+" "+tpe)
      case _ =>
    }

    /**
     * Convert a SAM type to the corresponding FunctionType,
     * extrapolating BoundedWildcardTypes in the process
     * (no type precision is lost by the extrapolation,
     *  but this facilitates dealing with the types arising from Java's use-site variance).
     */
    def samToFunctionType(tp: Type, sam: Symbol = NoSymbol): Type = {
      val samSym = sam orElse samOf(tp)

      def correspondingFunctionSymbol = {
        val numVparams = samSym.info.params.length
        if (numVparams > definitions.MaxFunctionArity) NoSymbol
        else FunctionClass(numVparams)
      }

      if (samSym.exists && tp.typeSymbol != correspondingFunctionSymbol) // don't treat Functions as SAMs
        wildcardExtrapolation(normalize(tp memberInfo samSym))
      else NoType
    }

    /** Perform the following adaptations of expression, pattern or type `tree` wrt to
     *  given mode `mode` and given prototype `pt`:
     *  (-1) For expressions with annotated types, let AnnotationCheckers decide what to do
     *  (0) Convert expressions with constant types to literals (unless in interactive/scaladoc mode)
     *  (1) Resolve overloading, unless mode contains FUNmode
     *  (2) Apply parameterless functions
     *  (3) Apply polymorphic types to fresh instances of their type parameters and
     *      store these instances in context.undetparams,
     *      unless followed by explicit type application.
     *  (4) Do the following to unapplied methods used as values:
     *  (4.1) If the method has only implicit parameters pass implicit arguments
     *  (4.2) otherwise, if `pt` is a function type and method is not a constructor,
     *        convert to function by eta-expansion,
     *  (4.3) otherwise, if the method is nullary with a result type compatible to `pt`
     *        and it is not a constructor, apply it to ()
     *  otherwise issue an error
     *  (5) Convert constructors in a pattern as follows:
     *  (5.1) If constructor refers to a case class factory, set tree's type to the unique
     *        instance of its primary constructor that is a subtype of the expected type.
     *  (5.2) If constructor refers to an extractor, convert to application of
     *        unapply or unapplySeq method.
     *
     *  (6) Convert all other types to TypeTree nodes.
     *  (7) When in TYPEmode but not FUNmode or HKmode, check that types are fully parameterized
     *      (7.1) In HKmode, higher-kinded types are allowed, but they must have the expected kind-arity
     *  (8) When in both EXPRmode and FUNmode, add apply method calls to values of object type.
     *  (9) If there are undetermined type variables and not POLYmode, infer expression instance
     *  Then, if tree's type is not a subtype of expected type, try the following adaptations:
     *  (10) If the expected type is Byte, Short or Char, and the expression
     *      is an integer fitting in the range of that type, convert it to that type.
     *  (11) Widen numeric literals to their expected type, if necessary
     *  (12) When in mode EXPRmode, convert E to { E; () } if expected type is scala.Unit.
     *  (13) When in mode EXPRmode, apply AnnotationChecker conversion if expected type is annotated.
     *  (14) When in mode EXPRmode, do SAM conversion
     *  (15) When in mode EXPRmode, apply a view
     *  If all this fails, error
     */
    protected def adapt(tree: Tree, mode: Mode, pt: Type, original: Tree = EmptyTree): Tree = {
      def hasUndets           = context.undetparams.nonEmpty
      def hasUndetsInMonoMode = hasUndets && !mode.inPolyMode

      def adaptToImplicitMethod(mt: MethodType): Tree = {
        if (hasUndets) { // (9) -- should revisit dropped condition `hasUndetsInMonoMode`
          // dropped so that type args of implicit method are inferred even if polymorphic expressions are allowed
          // needed for implicits in 2.8 collection library -- maybe once #3346 is fixed, we can reinstate the condition?
            context.undetparams = inferExprInstance(tree, context.extractUndetparams(), pt,
              // approximate types that depend on arguments since dependency on implicit argument is like dependency on type parameter
              mt.approximate,
              keepNothings = false,
              useWeaklyCompatible = true) // #3808
        }

        // avoid throwing spurious DivergentImplicit errors
        if (context.reporter.hasErrors)
          setError(tree)
        else
          withCondConstrTyper(treeInfo.isSelfOrSuperConstrCall(tree))(typer1 =>
            if (original != EmptyTree && pt != WildcardType) (
              typer1 silent { tpr =>
                val withImplicitArgs = tpr.applyImplicitArgs(tree)
                if (tpr.context.reporter.hasErrors) tree // silent will wrap it in SilentTypeError anyway
                else tpr.typed(withImplicitArgs, mode, pt)
              }
              orElse { _ =>
                val resetTree = resetAttrs(original)
                resetTree match {
                  case treeInfo.Applied(fun, targs, args) =>
                    if (fun.symbol != null && fun.symbol.isError)
                      // SI-9041 Without this, we leak error symbols past the typer!
                      // because the fallback typechecking notices the error-symbol,
                      // refuses to re-attempt typechecking, and presumes that someone
                      // else was responsible for issuing the related type error!
                      fun.setSymbol(NoSymbol)
                  case _ =>
                }
                debuglog(s"fallback on implicits: ${tree}/$resetTree")
                // SO-10066 Need to patch the enclosing tree in the context to make translation of Dynamic
                //          work during fallback typechecking below.
                val resetContext: Context = {
                  object substResetForOriginal extends Transformer {
                    override def transform(tree: Tree): Tree = {
                      if (tree eq original) resetTree
                      else super.transform(tree)
                    }
                  }
                  context.make(substResetForOriginal.transform(context.tree))
                }
                typerWithLocalContext(resetContext) { typer1 =>
                  val tree1 = typer1.typed(resetTree, mode)
                  // Q: `typed` already calls `pluginsTyped` and `adapt`. the only difference here is that
                  // we pass `EmptyTree` as the `original`. intended? added in 2009 (53d98e7d42) by martin.
                  tree1 setType pluginsTyped(tree1.tpe, typer1, tree1, mode, pt)
                  if (tree1.isEmpty) tree1 else typer1.adapt(tree1, mode, pt, EmptyTree)
                }
              }
            )
            else
              typer1.typed(typer1.applyImplicitArgs(tree), mode, pt)
          )
      }

      def instantiateToMethodType(mt: MethodType): Tree = {
        val meth = tree match {
          // a partial named application is a block (see comment in EtaExpansion)
          case Block(_, tree1) => tree1.symbol
          case _               => tree.symbol
        }

        def cantAdapt =
          if (context.implicitsEnabled) MissingArgsForMethodTpeError(tree, meth)
          else setError(tree)

        // constructors do not eta-expand
        if (meth.isConstructor) cantAdapt
        // (4.2) eta-expand method value when function or sam type is expected
        else if (isFunctionType(pt) || (!mt.params.isEmpty && samOf(pt).exists)) {
          // SI-9536 `!mt.params.isEmpty &&`: for backwards compatibility with 2.11,
          // we don't adapt a zero-arg method value to a SAM
          // In 2.13, we won't do any eta-expansion for zero-arg method values, but we should deprecate first

          debuglog(s"eta-expanding $tree: ${tree.tpe} to $pt")
          checkParamsConvertible(tree, tree.tpe)

          // SI-7187 eta-expansion of zero-arg method value is deprecated, switch order of (4.3) and (4.2) in 2.13
          def isExplicitEtaExpansion = original match {
            case Typed(_, Function(Nil, EmptyTree)) => true // tree shape for `f _`
            case _ => false
          }
          if (mt.params.isEmpty && !isExplicitEtaExpansion) {
            currentRun.reporting.deprecationWarning(tree.pos, NoSymbol,
              s"Eta-expansion of zero-argument method values is deprecated. Did you intend to write ${Apply(tree, Nil)}?", "2.12.0")
          }

          val tree0 = etaExpand(context.unit, tree, this)

          // #2624: need to infer type arguments for eta expansion of a polymorphic method
          // context.undetparams contains clones of meth.typeParams (fresh ones were generated in etaExpand)
          // need to run typer on tree0, since etaExpansion sets the tpe's of its subtrees to null
          // can't type with the expected type, as we can't recreate the setup in (3) without calling typed
          // (note that (3) does not call typed to do the polymorphic type instantiation --
          //  it is called after the tree has been typed with a polymorphic expected result type)
          if (hasUndets)
            instantiate(typed(tree0, mode), mode, pt)
          else
            typed(tree0, mode, pt)
        }
        // (4.3) apply to empty argument list -- TODO 2.13: move this one case up to avoid eta-expanding at arity 0
        else if (mt.params.isEmpty) adapt(typed(Apply(tree, Nil) setPos tree.pos), mode, pt, original)
        else cantAdapt
      }

      def adaptType(): Tree = {
        // @M When not typing a type constructor (!context.inTypeConstructorAllowed)
        // or raw type, types must be of kind *,
        // and thus parameterized types must be applied to their type arguments
        // @M TODO: why do kind-* tree's have symbols, while higher-kinded ones don't?
        def properTypeRequired = (
             tree.hasSymbolField
          && !context.inTypeConstructorAllowed
          && !context.unit.isJava
        )
        // @M: don't check tree.tpe.symbol.typeParams. check tree.tpe.typeParams!!!
        // (e.g., m[Int] --> tree.tpe.symbol.typeParams.length == 1, tree.tpe.typeParams.length == 0!)
        // @M: removed check for tree.hasSymbolField and replace tree.symbol by tree.tpe.symbol
        // (TypeTree's must also be checked here, and they don't directly have a symbol)
        def kindArityMismatch = (
             context.inTypeConstructorAllowed
          && !sameLength(tree.tpe.typeParams, pt.typeParams)
        )
        // Note that we treat Any and Nothing as kind-polymorphic.
        // We can't perform this check when typing type arguments to an overloaded method before the overload is resolved
        // (or in the case of an error type) -- this is indicated by pt == WildcardType (see case TypeApply in typed1).
        def kindArityMismatchOk = tree.tpe.typeSymbol match {
          case NothingClass | AnyClass => true
          case _                       => pt == WildcardType
        }

        // todo. It would make sense when mode.inFunMode to instead use
        //    tree setType tree.tpe.normalize
        // when typechecking, say, TypeApply(Ident(`some abstract type symbol`), List(...))
        // because otherwise Ident will have its tpe set to a TypeRef, not to a PolyType, and `typedTypeApply` will fail
        // but this needs additional investigation, because it crashes t5228, gadts1 and maybe something else
        if (mode.inFunMode)
          tree
        else if (properTypeRequired && tree.symbol.typeParams.nonEmpty)  // (7)
          MissingTypeParametersError(tree)
        else if (kindArityMismatch && !kindArityMismatchOk)  // (7.1) @M: check kind-arity
          KindArityMismatchError(tree, pt)
        else tree match { // (6)
          case TypeTree() => tree
          case _          => TypeTree(tree.tpe) setOriginal tree
        }
      }

      def insertApply(): Tree = {
        assert(!context.inTypeConstructorAllowed, mode) //@M
        val adapted = adaptToName(tree, nme.apply)
        val qual = gen.stabilize(adapted)
        typedPos(tree.pos, mode, pt) {
          Select(qual setPos tree.pos.makeTransparent, nme.apply)
        }
      }
      def adaptConstant(value: Constant): Tree = {
        val sym = tree.symbol
        if (sym != null && sym.isDeprecated)
          context.deprecationWarning(tree.pos, sym)

        treeCopy.Literal(tree, value)
      }

      // Ignore type errors raised in later phases that are due to mismatching types with existential skolems
      // We have lift crashing in 2.9 with an adapt failure in the pattern matcher.
      // Here's my hypothesis why this happens. The pattern matcher defines a variable of type
      //
      //   val x: T = expr
      //
      // where T is the type of expr, but T contains existential skolems ts.
      // In that case, this value definition does not typecheck.
      // The value definition
      //
      //   val x: T forSome { ts } = expr
      //
      // would typecheck. Or one can simply leave out the type of the `val`:
      //
      //   val x = expr
      //
      // SI-6029 shows another case where we also fail (in uncurry), but this time the expected
      // type is an existential type.
      //
      // The reason for both failures have to do with the way we (don't) transform
      // skolem types along with the trees that contain them. We'd need a
      // radically different approach to do it. But before investing a lot of time to
      // to do this (I have already sunk 3 full days with in the end futile attempts
      // to consistently transform skolems and fix 6029), I'd like to
      // investigate ways to avoid skolems completely.
      //
      // upd. The same problem happens when we try to typecheck the result of macro expansion against its expected type
      // (which is the return type of the macro definition instantiated in the context of expandee):
      //
      //   Test.scala:2: error: type mismatch;
      //     found   : $u.Expr[Class[_ <: Object]]
      //     required: reflect.runtime.universe.Expr[Class[?0(in value <local Test>)]] where type ?0(in value <local Test>) <: Object
      //     scala.reflect.runtime.universe.reify(new Object().getClass)
      //                                         ^
      // Therefore following Martin's advice I use this logic to recover from skolem errors after macro expansions
      // (by adding the ` || tree.attachments.get[MacroExpansionAttachment].isDefined` clause to the conditional above).
      //
      def adaptMismatchedSkolems() = {
        def canIgnoreMismatch = (
             !context.reportErrors && isPastTyper
          || tree.hasAttachment[MacroExpansionAttachment]
        )
        def bound = pt match {
          case ExistentialType(qs, _) => qs
          case _                      => Nil
        }
        def msg = sm"""
          |Recovering from existential or skolem type error in
          |  $tree
          |with type: ${tree.tpe}
          |       pt: $pt
          |  context: ${context.tree}
          |  adapted
          """.trim

        val boundOrSkolems = if (canIgnoreMismatch) bound ++ pt.skolemsExceptMethodTypeParams else Nil
        boundOrSkolems match {
          case Nil => AdaptTypeError(tree, tree.tpe, pt) ; setError(tree)
          case _   => logResult(msg)(adapt(tree, mode, deriveTypeWithWildcards(boundOrSkolems)(pt)))
        }
      }

      def adaptExprNotFunMode(): Tree = {
        def lastTry(err: AbsTypeError = null): Tree = {
          debuglog("error tree = " + tree)
          if (settings.debug && settings.explaintypes) explainTypes(tree.tpe, pt)
          if (err ne null) context.issue(err)
          if (tree.tpe.isErroneous || pt.isErroneous) setError(tree)
          else adaptMismatchedSkolems()
        }

        // TODO: should we even get to fallbackAfterVanillaAdapt for an ill-typed tree?
        if (mode.typingExprNotFun && !tree.tpe.isErroneous) {
          @inline def tpdPos(transformed: Tree) = typedPos(tree.pos, mode, pt)(transformed)
          @inline def tpd(transformed: Tree)    = typed(transformed, mode, pt)

          @inline def warnValueDiscard(): Unit = if (!isPastTyper && settings.warnValueDiscard) {
            def isThisTypeResult = (tree, tree.tpe) match {
              case (Apply(Select(receiver, _), _), SingleType(_, sym)) => sym == receiver.symbol
              case _ => false
            }
            if (!isThisTypeResult) context.warning(tree.pos, "discarded non-Unit value")
          }
          @inline def warnNumericWiden(): Unit =
            if (!isPastTyper && settings.warnNumericWiden) context.warning(tree.pos, "implicit numeric widening")

          // The <: Any requirement inhibits attempts to adapt continuation types to non-continuation types.
          val anyTyped = tree.tpe <:< AnyTpe

          pt.dealias match {
            case TypeRef(_, UnitClass, _) if anyTyped => // (12)
              warnValueDiscard() ; tpdPos(gen.mkUnitBlock(tree))
            case TypeRef(_, numValueCls, _) if anyTyped && isNumericValueClass(numValueCls) && isNumericSubType(tree.tpe, pt) => // (10) (11)
              warnNumericWiden() ; tpdPos(Select(tree, s"to${numValueCls.name}"))
            case dealiased if dealiased.annotations.nonEmpty && canAdaptAnnotations(tree, this, mode, pt) => // (13)
              tpd(adaptAnnotations(tree, this, mode, pt))
            case _ =>
              if (hasUndets) instantiate(tree, mode, pt)
              else {
                // (14) sam conversion
                // TODO: figure out how to avoid partially duplicating typedFunction (samMatchingFunction)
                // Could we infer the SAM type, assign it to the tree and add the attachment,
                // all in one fell swoop at the end of typedFunction?
                val samAttach = inferSamType(tree, pt, mode)

                if (samAttach.samTp ne NoType) tree.setType(samAttach.samTp).updateAttachment(samAttach)
                else {  // (15) implicit view application
                  val coercion =
                    if (context.implicitsEnabled) inferView(tree, tree.tpe, pt)
                    else EmptyTree
                  if (coercion ne EmptyTree) {
                    def msg = s"inferred view from ${tree.tpe} to $pt via $coercion: ${coercion.tpe}"
                    if (settings.logImplicitConv) context.echo(tree.pos, msg)
                    else debuglog(msg)

                    val viewApplied = new ApplyImplicitView(coercion, List(tree)) setPos tree.pos
                    val silentContext = context.makeImplicit(context.ambiguousErrors)
                    val typedView = newTyper(silentContext).typed(viewApplied, mode, pt)

                    silentContext.reporter.firstError match {
                      case None => typedView
                      case Some(err) => lastTry(err)
                    }
                  } else lastTry()
                }
              }
          }
        } else lastTry()
      }


      def vanillaAdapt(tree: Tree) = {
        def applyPossible = {
          def applyMeth = member(adaptToName(tree, nme.apply), nme.apply)
          def hasPolymorphicApply = applyMeth.alternatives exists (_.tpe.typeParams.nonEmpty)
          def hasMonomorphicApply = applyMeth.alternatives exists (_.tpe.paramSectionCount > 0)

          dyna.acceptsApplyDynamic(tree.tpe) || (
            if (mode.inTappMode)
              tree.tpe.typeParams.isEmpty && hasPolymorphicApply
            else
              hasMonomorphicApply
          )
        }
        def shouldInsertApply(tree: Tree) = mode.typingExprFun && {
          tree.tpe match {
            case _: MethodType | _: OverloadedType | _: PolyType => false
            case _                                               => applyPossible
          }
        }
        if (tree.isType)
          adaptType()
        else if (mode.typingExprNotFun && treeInfo.isMacroApplication(tree) && !isMacroExpansionSuppressed(tree))
          macroExpand(this, tree, mode, pt)
        else if (mode.typingConstructorPattern)
          typedConstructorPattern(tree, pt)
        else if (shouldInsertApply(tree))
          insertApply()
        else if (hasUndetsInMonoMode) { // (9)
          assert(!context.inTypeConstructorAllowed, context) //@M
          instantiatePossiblyExpectingUnit(tree, mode, pt)
        }
        else if (tree.tpe <:< pt)
          tree
        else if (mode.inPatternMode && { inferModulePattern(tree, pt); isPopulated(tree.tpe, approximateAbstracts(pt)) })
          tree
        else {
          val constFolded = constfold(tree, pt)
          if (constFolded.tpe <:< pt) adapt(constFolded, mode, pt, original) // set stage for (0)
          else adaptExprNotFunMode() // (10) -- (15)
        }
      }

      // begin adapt
      if (isMacroImplRef(tree)) {
        if (treeInfo.isMacroApplication(tree)) adapt(unmarkMacroImplRef(tree), mode, pt, original)
        else tree
      } else tree.tpe match {
        case atp @ AnnotatedType(_, _) if canAdaptAnnotations(tree, this, mode, pt) => // (-1)
          adaptAnnotations(tree, this, mode, pt)
        case ct @ ConstantType(value) if mode.inNone(TYPEmode | FUNmode) && (ct <:< pt) && canAdaptConstantTypeToLiteral => // (0)
          adaptConstant(value)
        case OverloadedType(pre, alts) if !mode.inFunMode => // (1)
          inferExprAlternative(tree, pt)
          adaptAfterOverloadResolution(tree, mode, pt, original)
        case NullaryMethodType(restpe) => // (2)
          adapt(tree setType restpe, mode, pt, original)
        case TypeRef(_, ByNameParamClass, arg :: Nil) if mode.inExprMode => // (2)
          adapt(tree setType arg, mode, pt, original)
        case tp if mode.typingExprNotLhs && isExistentialType(tp) && !isSyntheticAccessor(context.owner) =>
          adapt(tree setType tp.dealias.skolemizeExistential(context.owner, tree), mode, pt, original)
        case PolyType(tparams, restpe) if mode.inNone(TAPPmode | PATTERNmode) && !context.inTypeConstructorAllowed => // (3)
          // assert((mode & HKmode) == 0) //@M a PolyType in HKmode represents an anonymous type function,
          // we're in HKmode since a higher-kinded type is expected --> hence, don't implicitly apply it to type params!
          // ticket #2197 triggered turning the assert into a guard
          // I guess this assert wasn't violated before because type aliases weren't expanded as eagerly
          //  (the only way to get a PolyType for an anonymous type function is by normalisation, which applies eta-expansion)
          // -- are we sure we want to expand aliases this early?
          // -- what caused this change in behaviour??
          val tparams1 = cloneSymbols(tparams)
          val tree1 = (
            if (tree.isType) tree
            else TypeApply(tree, tparams1 map (tparam => TypeTree(tparam.tpeHK) setPos tree.pos.focus)) setPos tree.pos
          )
          context.undetparams ++= tparams1
          notifyUndetparamsAdded(tparams1)
          adapt(tree1 setType restpe.substSym(tparams, tparams1), mode, pt, original)

        case mt: MethodType if mode.typingExprNotFunNotLhs && mt.isImplicit => // (4.1)
          adaptToImplicitMethod(mt)
        case mt: MethodType if mode.typingExprNotFunNotLhs && !hasUndetsInMonoMode && !treeInfo.isMacroApplicationOrBlock(tree) =>
          instantiateToMethodType(mt)
        case _ =>
          vanillaAdapt(tree)
      }
    }

    // This just exists to help keep track of the spots where we have to adapt a tree after
    // overload resolution. These proved hard to find during the fix for SI-8267.
    def adaptAfterOverloadResolution(tree: Tree, mode: Mode, pt: Type = WildcardType, original: Tree = EmptyTree): Tree = {
      adapt(tree, mode, pt, original)
    }

    def instantiate(tree: Tree, mode: Mode, pt: Type): Tree = {
      inferExprInstance(tree, context.extractUndetparams(), pt)
      adapt(tree, mode, pt)
    }
    /** If the expected type is Unit: try instantiating type arguments
     *  with expected type Unit, but if that fails, try again with pt = WildcardType
     *  and discard the expression.
     */
    def instantiateExpectingUnit(tree: Tree, mode: Mode): Tree = {
      val savedUndetparams = context.undetparams
      silent(_.instantiate(tree, mode, UnitTpe)) orElse { _ =>
        context.undetparams = savedUndetparams
        val valueDiscard = atPos(tree.pos)(gen.mkUnitBlock(instantiate(tree, mode, WildcardType)))
        typed(valueDiscard, mode, UnitTpe)
      }
    }

    def instantiatePossiblyExpectingUnit(tree: Tree, mode: Mode, pt: Type): Tree = {
      if (mode.typingExprNotFun && pt.typeSymbol == UnitClass && !tree.tpe.isInstanceOf[MethodType])
        instantiateExpectingUnit(tree, mode)
      else
        instantiate(tree, mode, pt)
    }

    private def isAdaptableWithView(qual: Tree) = {
      val qtpe = qual.tpe.widen
      (    !isPastTyper
        && qual.isTerm
        && !qual.isInstanceOf[Super]
        && ((qual.symbol eq null) || !qual.symbol.isTerm || qual.symbol.isValue)
        && !qtpe.isError
        && !qtpe.typeSymbol.isBottomClass
        && qtpe != WildcardType
        && !qual.isInstanceOf[ApplyImplicitView] // don't chain views
        && (context.implicitsEnabled || context.enrichmentEnabled)
        // Elaborating `context.implicitsEnabled`:
        // don't try to adapt a top-level type that's the subject of an implicit search
        // this happens because, if isView, typedImplicit tries to apply the "current" implicit value to
        // a value that needs to be coerced, so we check whether the implicit value has an `apply` method.
        // (If we allow this, we get divergence, e.g., starting at `conforms` during ant quick.bin)
        // Note: implicit arguments are still inferred (this kind of "chaining" is allowed)
      )
    }

    def adaptToMember(qual: Tree, searchTemplate: Type, reportAmbiguous: Boolean = true, saveErrors: Boolean = true): Tree = {
      if (isAdaptableWithView(qual)) {
        qual.tpe.dealiasWiden match {
          case et: ExistentialType =>
            qual setType et.skolemizeExistential(context.owner, qual) // open the existential
          case _ =>
        }
        inferView(qual, qual.tpe, searchTemplate, reportAmbiguous, saveErrors) match {
          case EmptyTree  => qual
          case coercion   =>
            if (settings.logImplicitConv)
              context.echo(qual.pos,
                "applied implicit conversion from %s to %s = %s".format(
                  qual.tpe, searchTemplate, coercion.symbol.defString))

            typedQualifier(atPos(qual.pos)(new ApplyImplicitView(coercion, List(qual))))
        }
      }
      else qual
    }

    /** Try to apply an implicit conversion to `qual` to that it contains
     *  a method `name` which can be applied to arguments `args` with expected type `pt`.
     *  If `pt` is defined, there is a fallback to try again with pt = ?.
     *  This helps avoiding propagating result information too far and solves
     *  #1756.
     *  If no conversion is found, return `qual` unchanged.
     *
     */
    def adaptToArguments(qual: Tree, name: Name, args: List[Tree], pt: Type, reportAmbiguous: Boolean = true, saveErrors: Boolean = true): Tree = {
      def doAdapt(restpe: Type) =
        //util.trace("adaptToArgs "+qual+", name = "+name+", argtpes = "+(args map (_.tpe))+", pt = "+pt+" = ")
        adaptToMember(qual, HasMethodMatching(name, args map (_.tpe), restpe), reportAmbiguous, saveErrors)

      if (pt == WildcardType)
        doAdapt(pt)
      else silent(_ => doAdapt(pt)) filter (_ != qual) orElse (_ =>
        logResult(s"fallback on implicits in adaptToArguments: $qual.$name")(doAdapt(WildcardType))
      )
    }

    /** Try to apply an implicit conversion to `qual` so that it contains
     *  a method `name`. If that's ambiguous try taking arguments into
     *  account using `adaptToArguments`.
     */
    def adaptToMemberWithArgs(tree: Tree, qual: Tree, name: Name, mode: Mode, reportAmbiguous: Boolean = true, saveErrors: Boolean = true): Tree = {
      def onError(reportError: => Tree): Tree = context.tree match {
        case Apply(tree1, args) if (tree1 eq tree) && args.nonEmpty =>
          ( silent   (_.typedArgs(args.map(_.duplicate), mode))
              filter (xs => !(xs exists (_.isErrorTyped)))
                 map (xs => adaptToArguments(qual, name, xs, WildcardType, reportAmbiguous, saveErrors))
              orElse ( _ => reportError)
          )
        case _            =>
          reportError
      }

      silent(_.adaptToMember(qual, HasMember(name), reportAmbiguous = false)) orElse (errs =>
        onError {
          if (reportAmbiguous) errs foreach (context issue _)
          setError(tree)
        }
      )
    }

    /** Try to apply an implicit conversion to `qual` to that it contains a
     *  member `name` of arbitrary type.
     *  If no conversion is found, return `qual` unchanged.
     */
    def adaptToName(qual: Tree, name: Name) =
      if (member(qual, name) != NoSymbol) qual
      else adaptToMember(qual, HasMember(name))

    private def validateNoCaseAncestor(clazz: Symbol) = {
      if (!phase.erasedTypes) {
        for (ancestor <- clazz.ancestors find (_.isCase)) {
          context.error(clazz.pos, (
            "case %s has case ancestor %s, but case-to-case inheritance is prohibited."+
            " To overcome this limitation, use extractors to pattern match on non-leaf nodes."
          ).format(clazz, ancestor.fullName))
        }
      }
    }

    private def checkEphemeral(clazz: Symbol, body: List[Tree]) = {
      // NOTE: Code appears to be messy in this method for good reason: it clearly
      // communicates the fact that it implements rather ad-hoc, arbitrary and
      // non-regular set of rules that identify features that interact badly with
      // value classes. This code can be cleaned up a lot once implementation
      // restrictions are addressed.
      val isValueClass = !clazz.isTrait
      def where = if (isValueClass) "value class" else "universal trait extending from class Any"
      def implRestriction(tree: Tree, what: String) =
        context.error(tree.pos, s"implementation restriction: $what is not allowed in $where" +
           "\nThis restriction is planned to be removed in subsequent releases.")
      /**
       * Deeply traverses the tree in search of constructs that are not allowed
       * in value classes (at any nesting level).
       *
       * All restrictions this object imposes are probably not fundamental but require
       * fair amount of work and testing. We are conservative for now when it comes
       * to allowing language features to interact with value classes.
       *  */
      object checkEphemeralDeep extends Traverser {
        override def traverse(tree: Tree): Unit = if (isValueClass) {
          tree match {
            case _: ModuleDef =>
              //see https://issues.scala-lang.org/browse/SI-6359
              implRestriction(tree, "nested object")
            //see https://issues.scala-lang.org/browse/SI-6444
            //see https://issues.scala-lang.org/browse/SI-6463
            case cd: ClassDef if !cd.symbol.isAnonymousClass => // Don't warn about partial functions, etc. SI-7571
              implRestriction(tree, "nested class") // avoiding Type Tests that might check the $outer pointer.
            case Select(sup @ Super(qual, mix), selector) if selector != nme.CONSTRUCTOR && qual.symbol == clazz && mix != tpnme.EMPTY =>
              //see https://issues.scala-lang.org/browse/SI-6483
              implRestriction(sup, "qualified super reference")
            case _ =>
          }
          super.traverse(tree)
        }
      }
      for (stat <- body) {
        def notAllowed(what: String) = context.error(stat.pos, s"$what is not allowed in $where")
        stat match {
          // see https://issues.scala-lang.org/browse/SI-6444
          // see https://issues.scala-lang.org/browse/SI-6463
          case ClassDef(mods, _, _, _) if isValueClass =>
            implRestriction(stat, s"nested ${ if (mods.isTrait) "trait" else "class" }")
          case _: Import | _: ClassDef | _: TypeDef | EmptyTree => // OK
          case DefDef(_, name, _, _, _, rhs) =>
            if (stat.symbol.isAuxiliaryConstructor)
              notAllowed("secondary constructor")
            else if (isValueClass && (name == nme.equals_ || name == nme.hashCode_) && !stat.symbol.isSynthetic)
              notAllowed(s"redefinition of $name method. See SIP-15, criterion 4.")
            else if (stat.symbol != null && stat.symbol.isParamAccessor)
              notAllowed("additional parameter")
            checkEphemeralDeep.traverse(rhs)
          case _: ValDef =>
            notAllowed("field definition")
          case _: ModuleDef =>
            //see https://issues.scala-lang.org/browse/SI-6359
            implRestriction(stat, "nested object")
          case _ =>
            notAllowed("this statement")
        }
      }
    }

    private def validateDerivedValueClass(clazz: Symbol, body: List[Tree]) = {
      if (clazz.isTrait)
        context.error(clazz.pos, "only classes (not traits) are allowed to extend AnyVal")
      if (!clazz.isStatic)
        context.error(clazz.pos, "value class may not be a "+
          (if (clazz.owner.isTerm) "local class" else "member of another class"))
      if (!clazz.isPrimitiveValueClass) {
        clazz.primaryConstructor.paramss match {
          case List(List(param)) =>
            val decls = clazz.info.decls
            val paramAccessor = clazz.constrParamAccessors.head
            if (paramAccessor.isMutable)
              context.error(paramAccessor.pos, "value class parameter must not be a var")
            val accessor = decls.toList.find(x => x.isMethod && x.accessedOrSelf == paramAccessor)
            accessor match {
              case None =>
                context.error(paramAccessor.pos, "value class parameter must be a val and not be private[this]")
              case Some(acc) if acc.isProtectedLocal =>
                context.error(paramAccessor.pos, "value class parameter must not be protected[this]")
              case Some(acc) =>
                if (acc.tpe.typeSymbol.isDerivedValueClass)
                  context.error(acc.pos, "value class may not wrap another user-defined value class")
                checkEphemeral(clazz, body filterNot (stat => stat.symbol != null && stat.symbol.accessedOrSelf == paramAccessor))
            }
          case _ =>
            context.error(clazz.pos, "value class needs to have exactly one val parameter")
        }
      }

      for (tparam <- clazz.typeParams)
        if (tparam hasAnnotation definitions.SpecializedClass)
          context.error(tparam.pos, "type parameter of value class may not be specialized")
    }

    /** Typechecks a parent type reference.
     *
     *  This typecheck is harder than it might look, because it should honor early
     *  definitions and also perform type argument inference with the help of super call
     *  arguments provided in `encodedtpt`.
     *
     *  The method is called in batches (batch = 1 time per each parent type referenced),
     *  two batches per definition: once from namer, when entering a ClassDef or a ModuleDef
     *  and once from typer, when typechecking the definition.
     *
     *  ***Arguments***
     *
     *  `encodedtpt` represents the parent type reference wrapped in an `Apply` node
     *  which indicates value arguments (i.e. type macro arguments or super constructor call arguments)
     *  If no value arguments are provided by the user, the `Apply` node is still
     *  there, but its `args` will be set to `Nil`.
     *  This argument is synthesized by `tools.nsc.ast.Parsers.templateParents`.
     *
     *  `templ` is an enclosing template, which contains a primary constructor synthesized by the parser.
     *  Such a constructor is a DefDef which contains early initializers and maybe a super constructor call
     *  (I wrote "maybe" because trait constructors don't call super constructors).
     *  This argument is synthesized by `tools.nsc.ast.Trees.Template`.
     *
     *  `inMixinPosition` indicates whether the reference is not the first in the
     *  list of parents (and therefore cannot be a class) or the opposite.
     *
     *  ***Return value and side effects***
     *
     *  Returns a `TypeTree` representing a resolved parent type.
     *  If the typechecked parent reference implies non-nullary and non-empty argument list,
     *  this argument list is attached to the returned value in SuperArgsAttachment.
     *  The attachment is necessary for the subsequent typecheck to fixup a super constructor call
     *  in the body of the primary constructor (see `typedTemplate` for details).
     *
     *  This method might invoke `typedPrimaryConstrBody`, hence it might cause the side effects
     *  described in the docs of that method. It might also attribute the Super(_, _) reference
     *  (if present) inside the primary constructor of `templ`.
     *
     *  ***Example***
     *
     *  For the following definition:
     *
     *    class D extends {
     *      val x = 2
     *      val y = 4
     *    } with B(x)(3) with C(y) with T
     *
     *  this method will be called six times:
     *
     *    (3 times from the namer)
     *    typedParentType(Apply(Apply(Ident(B), List(Ident(x))), List(3)), templ, inMixinPosition = false)
     *    typedParentType(Apply(Ident(C), List(Ident(y))), templ, inMixinPosition = true)
     *    typedParentType(Apply(Ident(T), List()), templ, inMixinPosition = true)
     *
     *    (3 times from the typer)
     *    <the same three calls>
     */
    private def typedParentType(encodedtpt: Tree, templ: Template, inMixinPosition: Boolean): Tree = {
      val app = treeInfo.dissectApplied(encodedtpt)
      val (treeInfo.Applied(core, _, argss), decodedtpt) = ((app, app.callee))
      val argssAreTrivial = argss == Nil || argss == ListOfNil

      // we cannot avoid cyclic references with `initialize` here, because when type macros arrive,
      // we'll have to check the probe for isTypeMacro anyways.
      // therefore I think it's reasonable to trade a more specific "inherits itself" error
      // for a generic, yet understandable "cyclic reference" error
      var probe = typedTypeConstructor(core.duplicate).tpe.typeSymbol
      if (probe == null) probe = NoSymbol
      probe.initialize

      if (probe.isTrait || inMixinPosition) {
        if (!argssAreTrivial) {
          if (probe.isTrait) ConstrArgsInParentWhichIsTraitError(encodedtpt, probe)
          else () // a class in a mixin position - this warrants an error in `validateParentClasses`
                  // therefore here we do nothing, e.g. don't check that the # of ctor arguments
                  // matches the # of ctor parameters or stuff like that
        }
        typedType(decodedtpt)
      } else {
        val supertpt = typedTypeConstructor(decodedtpt)
        val supertparams = if (supertpt.hasSymbolField) supertpt.symbol.typeParams else Nil
        def inferParentTypeArgs: Tree = {
          typedPrimaryConstrBody(templ) {
            val supertpe = PolyType(supertparams, appliedType(supertpt.tpe, supertparams map (_.tpeHK)))
            val supercall = New(supertpe, mmap(argss)(_.duplicate))
            val treeInfo.Applied(Select(ctor, nme.CONSTRUCTOR), _, _) = supercall
            ctor setType supertpe // this is an essential hack, otherwise it will occasionally fail to typecheck
            atPos(supertpt.pos.focus)(supercall)
          } match {
            case EmptyTree => MissingTypeArgumentsParentTpeError(supertpt); supertpt
            case tpt       => TypeTree(tpt.tpe) setPos supertpt.pos  // SI-7224: don't .focus positions of the TypeTree of a parent that exists in source
          }
        }

        val supertptWithTargs = if (supertparams.isEmpty || context.unit.isJava) supertpt else inferParentTypeArgs

        // this is the place where we tell the typer what argss should be used for the super call
        // if argss are nullary or empty, then (see the docs for `typedPrimaryConstrBody`)
        // the super call dummy is already good enough, so we don't need to do anything
        if (argssAreTrivial) supertptWithTargs else supertptWithTargs updateAttachment SuperArgsAttachment(argss)
      }
    }

    /** Typechecks the mishmash of trees that happen to be stuffed into the primary constructor of a given template.
     *  Before commencing the typecheck, replaces the `pendingSuperCall` dummy with the result of `actualSuperCall`.
     *  `actualSuperCall` can return `EmptyTree`, in which case the dummy is replaced with a literal unit.
     *
     *  ***Return value and side effects***
     *
     *  If a super call is present in the primary constructor and is not erased by the transform, returns it typechecked.
     *  Otherwise (e.g. if the primary constructor is missing or the super call isn't there) returns `EmptyTree`.
     *
     *  As a side effect, this method attributes the underlying fields of early vals.
     *  Early vals aren't typechecked anywhere else, so it's essential to call `typedPrimaryConstrBody`
     *  at least once per definition. It'd be great to disentangle this logic at some point.
     *
     *  ***Example***
     *
     *  For the following definition:
     *
     *    class D extends {
     *      val x = 2
     *      val y = 4
     *    } with B(x)(3) with C(y) with T
     *
     *  the primary constructor of `templ` will be:
     *
     *    Block(List(
     *      ValDef(NoMods, x, TypeTree(), 2)
     *      ValDef(NoMods, y, TypeTree(), 4)
     *      global.pendingSuperCall,
     *      Literal(Constant(())))
     *
     *  Note the `pendingSuperCall` part. This is the representation of a fill-me-in-later supercall dummy,
     *  which encodes the fact that supercall argss are unknown during parsing and need to be transplanted
     *  from one of the parent types. Read more about why the argss are unknown in `tools.nsc.ast.Trees.Template`.
     */
    private def typedPrimaryConstrBody(templ: Template)(actualSuperCall: => Tree): Tree =
        treeInfo.firstConstructor(templ.body) match {
        case ctor @ DefDef(_, _, _, vparamss, _, cbody @ Block(cstats, cunit)) =>
            val (preSuperStats, superCall) = {
              val (stats, rest) = cstats span (x => !treeInfo.isSuperConstrCall(x))
              (stats map (_.duplicate), if (rest.isEmpty) EmptyTree else rest.head.duplicate)
            }
          val superCall1 = (superCall match {
            case global.pendingSuperCall => actualSuperCall
            case EmptyTree => EmptyTree
          }) orElse cunit
          val cbody1 = treeCopy.Block(cbody, preSuperStats, superCall1)
          val clazz = context.owner
            assert(clazz != NoSymbol, templ)
          // SI-9086 The position of this symbol is material: implicit search will avoid triggering
          //         cyclic errors in an implicit search in argument to the super constructor call on
          //         account of the "ignore symbols without complete info that succeed the implicit search"
          //         in this source file. See `ImplicitSearch#isValid` and `ImplicitInfo#isCyclicOrErroneous`.
          val dummy = context.outer.owner.newLocalDummy(context.owner.pos)
          val cscope = context.outer.makeNewScope(ctor, dummy)
          if (dummy.isTopLevel) currentRun.symSource(dummy) = currentUnit.source.file
          val cbody2 = { // called both during completion AND typing.
            val typer1 = newTyper(cscope)
            // XXX: see about using the class's symbol....
            clazz.unsafeTypeParams foreach (sym => typer1.context.scope.enter(sym))
            typer1.namer.enterValueParams(vparamss map (_.map(_.duplicate)))
            typer1.typed(cbody1)
            }

            val preSuperVals = treeInfo.preSuperFields(templ.body)
            if (preSuperVals.isEmpty && preSuperStats.nonEmpty)
            devWarning("Wanted to zip empty presuper val list with " + preSuperStats)
            else
            map2(preSuperStats, preSuperVals)((ldef, gdef) => gdef.tpt setType ldef.symbol.tpe)

          if (superCall1 == cunit) EmptyTree
          else cbody2 match {
            case Block(_, expr) => expr
            case tree => tree
          }
          case _ =>
          EmptyTree
        }

    /** Makes sure that the first type tree in the list of parent types is always a class.
     *  If the first parent is a trait, prepend its supertype to the list until it's a class.
     */
    private def normalizeFirstParent(parents: List[Tree]): List[Tree] = {
      @annotation.tailrec
      def explode0(parents: List[Tree]): List[Tree] = {
        val supertpt :: rest = parents // parents is always non-empty here - it only grows
        if (supertpt.tpe.typeSymbol == AnyClass) {
          supertpt setType AnyRefTpe
          parents
        } else if (treeInfo isTraitRef supertpt) {
          val supertpt1  = typedType(supertpt)
          def supersuper = TypeTree(supertpt1.tpe.firstParent) setPos supertpt.pos.focus
          if (supertpt1.isErrorTyped) rest
          else explode0(supersuper :: supertpt1 :: rest)
        } else parents
      }

      def explode(parents: List[Tree]) =
        if (treeInfo isTraitRef parents.head) explode0(parents)
        else parents

      if (parents.isEmpty) Nil else explode(parents)
    }

    /** Certain parents are added in the parser before it is known whether
     *  that class also declared them as parents. For instance, this is an
     *  error unless we take corrective action here:
     *
     *    case class Foo() extends Serializable
     *
     *  So we strip the duplicates before typer.
     */
    private def fixDuplicateSyntheticParents(parents: List[Tree]): List[Tree] = parents match {
      case Nil      => Nil
      case x :: xs  =>
        val sym = x.symbol
        x :: fixDuplicateSyntheticParents(
          if (isPossibleSyntheticParent(sym)) xs filterNot (_.symbol == sym)
          else xs
        )
    }

    def typedParentTypes(templ: Template): List[Tree] = templ.parents match {
      case Nil => List(atPos(templ.pos)(TypeTree(AnyRefTpe)))
      case first :: rest =>
        try {
          val supertpts = fixDuplicateSyntheticParents(normalizeFirstParent(
            typedParentType(first, templ, inMixinPosition = false) +:
            (rest map (typedParentType(_, templ, inMixinPosition = true)))))

          // if that is required to infer the targs of a super call
          // typedParentType calls typedPrimaryConstrBody to do the inferring typecheck
          // as a side effect, that typecheck also assigns types to the fields underlying early vals
          // however if inference is not required, the typecheck doesn't happen
          // and therefore early fields have their type trees not assigned
          // here we detect this situation and take preventive measures
          if (treeInfo.hasUntypedPreSuperFields(templ.body))
            typedPrimaryConstrBody(templ)(EmptyTree)

          supertpts mapConserve (tpt => checkNoEscaping.privates(context.owner, tpt))
        }
        catch {
          case ex: TypeError if !global.propagateCyclicReferences =>
            // fallback in case of cyclic errors
            // @H none of the tests enter here but I couldn't rule it out
            // upd. @E when a definition inherits itself, we end up here
            // because `typedParentType` triggers `initialize` for parent types symbols
            log("Type error calculating parents in template " + templ)
            log("Error: " + ex)
            ParentTypesError(templ, ex)
            List(TypeTree(AnyRefTpe))
        }
    }

    /** <p>Check that</p>
     *  <ul>
     *    <li>all parents are class types,</li>
     *    <li>first parent class is not a mixin; following classes are mixins,</li>
     *    <li>final classes are not inherited,</li>
     *    <li>
     *      sealed classes are only inherited by classes which are
     *      nested within definition of base class, or that occur within same
     *      statement sequence,
     *    </li>
     *    <li>self-type of current class is a subtype of self-type of each parent class.</li>
     *    <li>no two parents define same symbol.</li>
     *  </ul>
     */
    def validateParentClasses(parents: List[Tree], selfType: Type) {
      val pending = ListBuffer[AbsTypeError]()
      def validateDynamicParent(parent: Symbol, parentPos: Position) =
        if (parent == DynamicClass) checkFeature(parentPos, DynamicsFeature)

      def validateParentClass(parent: Tree, superclazz: Symbol) =
        if (!parent.isErrorTyped) {
          val psym = parent.tpe.typeSymbol.initialize

          checkStablePrefixClassType(parent)

          if (psym != superclazz) {
            if (psym.isTrait) {
              val ps = psym.info.parents
              if (!ps.isEmpty && !superclazz.isSubClass(ps.head.typeSymbol))
                pending += ParentSuperSubclassError(parent, superclazz, ps.head.typeSymbol, psym)
            } else {
              pending += ParentNotATraitMixinError(parent, psym)
            }
          }

          if (psym.isFinal)
            pending += ParentFinalInheritanceError(parent, psym)

          val sameSourceFile = context.unit.source.file == psym.sourceFile

          if (!isPastTyper && psym.hasDeprecatedInheritanceAnnotation &&
            !sameSourceFile && !context.owner.ownerChain.exists(x => x.isDeprecated || x.hasBridgeAnnotation)) {
            val version = psym.deprecatedInheritanceVersion.getOrElse("")
            val since   = if (version.isEmpty) version else s" (since $version)"
            val message = psym.deprecatedInheritanceMessage.map(msg => s": $msg").getOrElse("")
            val report  = s"inheritance from ${psym.fullLocationString} is deprecated$since$message"
            context.deprecationWarning(parent.pos, psym, report, version)
          }

          val parentTypeOfThis = parent.tpe.dealias.typeOfThis

          if (!(selfType <:< parentTypeOfThis) &&
              !phase.erasedTypes &&
              !context.owner.isSynthetic &&   // don't check synthetic concrete classes for virtuals (part of DEVIRTUALIZE)
              !selfType.isErroneous &&
              !parent.tpe.isErroneous)
          {
            pending += ParentSelfTypeConformanceError(parent, selfType)
            if (settings.explaintypes) explainTypes(selfType, parentTypeOfThis)
          }

          if (parents exists (p => p != parent && p.tpe.typeSymbol == psym && !psym.isError))
            pending += ParentInheritedTwiceError(parent, psym)

          validateDynamicParent(psym, parent.pos)
        }

      if (!parents.isEmpty && parents.forall(!_.isErrorTyped)) {
        val superclazz = parents.head.tpe.typeSymbol
        for (p <- parents) validateParentClass(p, superclazz)
      }

      pending.foreach(ErrorUtils.issueTypeError)
    }

    def checkFinitary(classinfo: ClassInfoType) {
      val clazz = classinfo.typeSymbol

      for (tparam <- clazz.typeParams) {
        if (classinfo.expansiveRefs(tparam) contains tparam) {
          val newinfo = ClassInfoType(
            classinfo.parents map (_.instantiateTypeParams(List(tparam), List(AnyRefTpe))),
            classinfo.decls,
            clazz)
          updatePolyClassInfo(clazz, newinfo)
          FinitaryError(tparam)
        }
      }
    }

    private def updatePolyClassInfo(clazz: Symbol, newinfo: ClassInfoType): clazz.type = {
      clazz.setInfo {
        clazz.info match {
          case PolyType(tparams, _) => PolyType(tparams, newinfo)
          case _ => newinfo
        }
      }
    }

    def typedClassDef(cdef: ClassDef): Tree = {
      val clazz = cdef.symbol
      val typedMods = typedModifiers(cdef.mods)
      assert(clazz != NoSymbol, cdef)
      reenterTypeParams(cdef.tparams)
      val tparams1 = cdef.tparams mapConserve (typedTypeDef)
      val impl1 = newTyper(context.make(cdef.impl, clazz, newScope)).typedTemplate(cdef.impl, typedParentTypes(cdef.impl))
      val impl2 = finishMethodSynthesis(impl1, clazz, context)
      if (clazz.isTrait && clazz.info.parents.nonEmpty && clazz.info.firstParent.typeSymbol == AnyClass)
        checkEphemeral(clazz, impl2.body)

      if ((clazz isNonBottomSubClass ClassfileAnnotationClass) && (clazz != ClassfileAnnotationClass)) {
        if (!clazz.owner.isPackageClass)
          context.error(clazz.pos, "inner classes cannot be classfile annotations")
        // Ignore @SerialVersionUID, because it is special-cased and handled completely differently.
        // It only extends ClassfileAnnotationClass instead of StaticAnnotation to get the enforcement
        // of constant argument values "for free". Related to SI-7041.
        else if (clazz != SerialVersionUIDAttr) restrictionWarning(cdef.pos, unit,
          """|subclassing Classfile does not
             |make your annotation visible at runtime.  If that is what
             |you want, you must write the annotation class in Java.""".stripMargin)
      }

      warnTypeParameterShadow(tparams1, clazz)

      if (!isPastTyper) {
        for (ann <- clazz.getAnnotation(DeprecatedAttr)) {
          val m = companionSymbolOf(clazz, context)
          if (m != NoSymbol)
            m.moduleClass.addAnnotation(AnnotationInfo(ann.atp, ann.args, List()))
        }
      }
      treeCopy.ClassDef(cdef, typedMods, cdef.name, tparams1, impl2)
        .setType(NoType)
    }

    def typedModuleDef(mdef: ModuleDef): Tree = {
      // initialize all constructors of the linked class: the type completer (Namer.methodSig)
      // might add default getters to this object. example: "object T; class T(x: Int = 1)"
      val linkedClass = companionSymbolOf(mdef.symbol, context)
      if (linkedClass != NoSymbol)
        linkedClass.info.decl(nme.CONSTRUCTOR).alternatives foreach (_.initialize)

      val clazz     = mdef.symbol.moduleClass
      val typedMods = typedModifiers(mdef.mods)
      assert(clazz != NoSymbol, mdef)
      val noSerializable = (
           (linkedClass eq NoSymbol)
        || linkedClass.isErroneous
        || !linkedClass.isSerializable
        || clazz.isSerializable
      )
      val impl1 = newTyper(context.make(mdef.impl, clazz, newScope)).typedTemplate(mdef.impl, {
        typedParentTypes(mdef.impl) ++ (
          if (noSerializable) Nil
          else {
            clazz.makeSerializable()
            List(TypeTree(SerializableTpe) setPos clazz.pos.focus)
          }
        )
      })

      val impl2  = finishMethodSynthesis(impl1, clazz, context)

      if (settings.isScala211  && mdef.symbol == PredefModule)
        ensurePredefParentsAreInSameSourceFile(impl2)

      treeCopy.ModuleDef(mdef, typedMods, mdef.name, impl2) setType NoType
    }

    private def ensurePredefParentsAreInSameSourceFile(template: Template) = {
      val parentSyms = template.parents map (_.symbol) filterNot (_ == AnyRefClass)
      if (parentSyms exists (_.associatedFile != PredefModule.associatedFile))
        context.error(template.pos, s"All parents of Predef must be defined in ${PredefModule.associatedFile}.")
    }
    /** In order to override this in the TreeCheckers Typer so synthetics aren't re-added
     *  all the time, it is exposed here the module/class typing methods go through it.
     *  ...but it turns out it's also the ideal spot for namer/typer coordination for
     *  the tricky method synthesis scenarios, so we'll make it that.
     */
    protected def finishMethodSynthesis(templ: Template, clazz: Symbol, context: Context): Template = {
      addSyntheticMethods(templ, clazz, context)
    }
    /** For flatMapping a list of trees when you want the DocDefs and Annotated
     *  to be transparent.
     */
    def rewrappingWrapperTrees(f: Tree => List[Tree]): Tree => List[Tree] = {
      case dd @ DocDef(comment, defn) => f(defn) map (stat => DocDef(comment, stat) setPos dd.pos)
      case Annotated(annot, defn)     => f(defn) map (stat => Annotated(annot, stat))
      case tree                       => f(tree)
    }

    protected def enterSyms(txt: Context, trees: List[Tree]) = {
      var txt0 = txt
      for (tree <- trees) txt0 = enterSym(txt0, tree)
    }

    protected def enterSym(txt: Context, tree: Tree): Context =
      if (txt eq context) namer enterSym tree
      else newNamer(txt) enterSym tree

    /** <!-- 2 --> Check that inner classes do not inherit from Annotation
     */
    def typedTemplate(templ0: Template, parents1: List[Tree]): Template = {
      val templ = templ0
      // please FIXME: uncommenting this line breaks everything
      // val templ = treeCopy.Template(templ0, templ0.body, templ0.self, templ0.parents)
      val clazz = context.owner

      val parentTypes = parents1.map(_.tpe)

      // The parents may have been normalized by typedParentTypes.
      // We must update the info as well, or we won't find the super constructor for our now-first parent class
      // Consider `class C ; trait T extends C ; trait U extends T`
      // `U`'s info will start with parent `T`, but `typedParentTypes` will return `List(C, T)` (`== parents1`)
      // now, the super call in the primary ctor will fail to find `C`'s ctor, since it bases its search on
      // `U`'s info, not the trees.
      //
      // For correctness and performance, we restrict this rewrite to anonymous classes,
      // as others have their parents in order already (it seems!), and we certainly
      // don't want to accidentally rewire superclasses for e.g. the primitive value classes.
      //
      // TODO: Find an example of a named class needing this rewrite, I tried but couldn't find one.
      if (clazz.isAnonymousClass && clazz.info.parents != parentTypes) {
//        println(s"updating parents of $clazz from ${clazz.info.parents} to $parentTypes")
        updatePolyClassInfo(clazz, ClassInfoType(parentTypes, clazz.info.decls, clazz))
      }

      clazz.annotations.map(_.completeInfo())
      if (templ.symbol == NoSymbol)
        templ setSymbol clazz.newLocalDummy(templ.pos)
      val self1 = (templ.self: @unchecked) match {
        case vd @ ValDef(_, _, tpt, EmptyTree) =>
          val tpt1 = checkNoEscaping.privates(
            clazz.thisSym,
            treeCopy.TypeTree(tpt).setOriginal(tpt) setType vd.symbol.tpe
          )
          copyValDef(vd)(tpt = tpt1, rhs = EmptyTree) setType NoType
      }
      // was:
      //          val tpt1 = checkNoEscaping.privates(clazz.thisSym, typedType(tpt))
      //          treeCopy.ValDef(vd, mods, name, tpt1, EmptyTree) setType NoType
      // but this leads to cycles for existential self types ==> #2545
      if (self1.name != nme.WILDCARD)
        context.scope enter self1.symbol

      val selfType = (
        if (clazz.isAnonymousClass && !phase.erasedTypes)
          intersectionType(clazz.info.parents, clazz.owner)
        else
          clazz.typeOfThis
      )
      // the following is necessary for templates generated later
      assert(clazz.info.decls != EmptyScope, clazz)
      val body1 = pluginsEnterStats(this, templ.body)
      enterSyms(context.outer.make(templ, clazz, clazz.info.decls), body1)
      if (!templ.isErrorTyped) // if `parentTypes` has invalidated the template, don't validate it anymore
      validateParentClasses(parents1, selfType)
      if (clazz.isCase)
        validateNoCaseAncestor(clazz)
      if (clazz.isTrait && hasSuperArgs(parents1.head))
        ConstrArgsInParentOfTraitError(parents1.head, clazz)

      if ((clazz isSubClass ClassfileAnnotationClass) && !clazz.isTopLevel)
        context.error(clazz.pos, "inner classes cannot be classfile annotations")

      if (!phase.erasedTypes && !clazz.info.resultType.isError) // @S: prevent crash for duplicated type members
        checkFinitary(clazz.info.resultType.asInstanceOf[ClassInfoType])

      val bodyWithPrimaryCtor = {
        val primaryCtor = treeInfo.firstConstructor(body1)
        val primaryCtor1 = primaryCtor match {
          case DefDef(_, _, _, _, _, Block(earlyVals :+ global.pendingSuperCall, unit)) =>
            val argss = superArgs(parents1.head) getOrElse Nil
            val pos = wrappingPos(parents1.head.pos, primaryCtor :: argss.flatten).makeTransparent
            val superCall = atPos(pos)(PrimarySuperCall(argss))
            deriveDefDef(primaryCtor)(block => Block(earlyVals :+ superCall, unit) setPos pos) setPos pos
          case _ => primaryCtor
        }
        body1 mapConserve { case `primaryCtor` => primaryCtor1; case stat => stat }
      }

      val body3 = typedStats(bodyWithPrimaryCtor, templ.symbol)

      if (clazz.info.firstParent.typeSymbol == AnyValClass)
        validateDerivedValueClass(clazz, body3)

      if (clazz.isTrait) {
        for (decl <- clazz.info.decls if decl.isTerm && decl.isEarlyInitialized) {
          context.warning(decl.pos, "Implementation restriction: early definitions in traits are not initialized before the super class is initialized.")
        }
      }

      treeCopy.Template(templ, parents1, self1, body3) setType clazz.tpe_*
    }

    /** Remove definition annotations from modifiers (they have been saved
     *  into the symbol's `annotations` in the type completer / namer)
     *
     *  However reification does need annotation definitions to proceed.
     *  Unfortunately, AnnotationInfo doesn't provide enough info to reify it in general case.
     *  The biggest problem is with the "atp: Type" field, which cannot be reified in some situations
     *  that involve locally defined annotations. See more about that in Reifiers.scala.
     *
     *  That's why the original tree gets saved into `original` field of AnnotationInfo (happens elsewhere).
     *  The field doesn't get pickled/unpickled and exists only during a single compilation run.
     *  This simultaneously allows us to reify annotations and to preserve backward compatibility.
     */
    def typedModifiers(mods: Modifiers): Modifiers =
      mods.copy(annotations = Nil) setPositions mods.positions

    def typedValDef(vdef: ValDef): ValDef = {
      val sym = vdef.symbol
      val valDefTyper = {
        val maybeConstrCtx =
          if ((sym.isParameter || sym.isEarlyInitialized) && sym.owner.isConstructor) context.makeConstructorContext
          else context
        newTyper(maybeConstrCtx.makeNewScope(vdef, sym))
      }
      valDefTyper.typedValDefImpl(vdef)
    }

    // use typedValDef instead. this version is called after creating a new context for the ValDef
    private def typedValDefImpl(vdef: ValDef) = {
      val sym = vdef.symbol.initialize
      val typedMods = if (nme.isLocalName(sym.name) && sym.isPrivateThis && !vdef.mods.isPrivateLocal) {
        // SI-10009 This tree has been given a field symbol by `enterGetterSetter`, patch up the
        // modifiers accordingly so that we can survive resetAttrs and retypechecking.
        // Similarly, we use `sym.name` rather than `vdef.name` below to use the local name.
        typedModifiers(vdef.mods.copy(flags = sym.flags, privateWithin = tpnme.EMPTY))
      } else typedModifiers(vdef.mods)

      sym.annotations.map(_.completeInfo())
      val tpt1 = checkNoEscaping.privates(sym, typedType(vdef.tpt))
      checkNonCyclic(vdef, tpt1)

      // allow trait accessors: it's the only vehicle we have to hang on to annotations that must be passed down to
      // the field that's mixed into a subclass
      if (sym.hasAnnotation(definitions.VolatileAttr) && !((sym hasFlag MUTABLE | LAZY) || (sym hasFlag ACCESSOR) && sym.owner.isTrait))
        VolatileValueError(vdef)

      val rhs1 =
        if (vdef.rhs.isEmpty) {
          if (sym.isVariable && sym.owner.isTerm && !sym.isLazy && !isPastTyper)
            LocalVarUninitializedError(vdef)
          vdef.rhs
        } else {
          val tpt2 = if (sym.hasDefault) {
            // When typechecking default parameter, replace all type parameters in the expected type by Wildcard.
            // This allows defining "def foo[T](a: T = 1)"
            val tparams = sym.owner.skipConstructor.info.typeParams
            val subst = new SubstTypeMap(tparams, tparams map (_ => WildcardType)) {
              override def matches(sym: Symbol, sym1: Symbol) =
                if (sym.isSkolem) matches(sym.deSkolemize, sym1)
                else if (sym1.isSkolem) matches(sym, sym1.deSkolemize)
                else super.matches(sym, sym1)
            }
            // allow defaults on by-name parameters
            if (sym hasFlag BYNAMEPARAM)
              if (tpt1.tpe.typeArgs.isEmpty) WildcardType // during erasure tpt1 is Function0
              else subst(tpt1.tpe.typeArgs(0))
            else subst(tpt1.tpe)
          } else tpt1.tpe
          transformedOrTyped(vdef.rhs, EXPRmode | BYVALmode, tpt2)
        }
      treeCopy.ValDef(vdef, typedMods, sym.name, tpt1, checkDead(rhs1)) setType NoType
    }

    /** Enter all aliases of local parameter accessors.
     */
    def computeParamAliases(clazz: Symbol, vparamss: List[List[ValDef]], rhs: Tree) {
      debuglog(s"computing param aliases for $clazz:${clazz.primaryConstructor.tpe}:$rhs")
      val pending = ListBuffer[AbsTypeError]()

      // !!! This method is redundant with other, less buggy ones.
      def decompose(call: Tree): (Tree, List[Tree]) = call match {
        case _ if call.isErrorTyped => // e.g. SI-7636
          (call, Nil)
        case Apply(fn, args) =>
          // an object cannot be allowed to pass a reference to itself to a superconstructor
          // because of initialization issues; SI-473, SI-3913, SI-6928.
          foreachSubTreeBoundTo(args, clazz) { tree =>
            if (tree.symbol.isModule)
              pending += SuperConstrReferenceError(tree)
            tree match {
              case This(qual) =>
                pending += SuperConstrArgsThisReferenceError(tree)
              case _ => ()
            }
          }
          val (superConstr, preArgs) = decompose(fn)
          val params = fn.tpe.params
          // appending a dummy tree to represent Nil for an empty varargs (is this really necessary?)
          val applyArgs = if (args.length < params.length) args :+ EmptyTree else args take params.length

          assert(sameLength(applyArgs, params) || call.isErrorTyped,
            s"arity mismatch but call is not error typed: $clazz (params=$params, args=$applyArgs)")

          (superConstr, preArgs ::: applyArgs)
        case Block(_ :+ superCall, _) =>
          decompose(superCall)
        case _ =>
          (call, Nil)
      }

      // associate superclass paramaccessors with their aliases
      val (superConstr, superArgs) = decompose(rhs)
      if (superConstr.symbol.isPrimaryConstructor) {
        val superClazz = superConstr.symbol.owner
        if (!superClazz.isJavaDefined) {
          val superParamAccessors = superClazz.constrParamAccessors
          if (sameLength(superParamAccessors, superArgs)) {
            for ((superAcc, superArg@Ident(name)) <- superParamAccessors zip superArgs) {
              if (mexists(vparamss)(_.symbol == superArg.symbol)) {
                val alias = (
                  superAcc.initialize.alias
                  orElse (superAcc getterIn superAcc.owner)
                  filter (alias => superClazz.info.nonPrivateMember(alias.name) == alias)
                  )
                if (alias.exists && !alias.accessed.isVariable && !isRepeatedParamType(alias.accessed.info)) {
                  val ownAcc = clazz.info decl name suchThat (_.isParamAccessor) match {
                    case acc if !acc.isDeferred && acc.hasAccessorFlag => acc.accessed
                    case acc => acc
                  }
                  ownAcc match {
                    case acc: TermSymbol if !acc.isVariable && !isByNameParamType(acc.info) =>
                      debuglog(s"$acc has alias ${alias.fullLocationString}")
                      acc setAlias alias
                    case _ =>
                  }
                }
              }
            }
          }
        }
      }

      pending.foreach(ErrorUtils.issueTypeError)
    }

    // Check for SI-4842.
    private def checkSelfConstructorArgs(ddef: DefDef, clazz: Symbol) {
      val pending = ListBuffer[AbsTypeError]()
      ddef.rhs match {
        case Block(stats, expr) =>
          val selfConstructorCall = stats.headOption.getOrElse(expr)
          foreachSubTreeBoundTo(List(selfConstructorCall), clazz) {
            case tree @ This(qual) =>
              pending += SelfConstrArgsThisReferenceError(tree)
            case _ => ()
          }
        case _ =>
      }
      pending.foreach(ErrorUtils.issueTypeError)
    }

    /**
     * Run the provided function for each sub tree of `trees` that
     * are bound to a symbol with `clazz` as a base class.
     *
     * @param f This function can assume that `tree.symbol` is non null
     */
    private def foreachSubTreeBoundTo[A](trees: List[Tree], clazz: Symbol)(f: Tree => Unit): Unit =
      for {
        tree <- trees
        subTree <- tree
      } {
        val sym = subTree.symbol
        if (sym != null && sym.info.baseClasses.contains(clazz))
          f(subTree)
      }

      /** Check if a structurally defined method violates implementation restrictions.
     *  A method cannot be called if it is a non-private member of a refinement type
     *  and if its parameter's types are any of:
     *    - the self-type of the refinement
     *    - a type member of the refinement
     *    - an abstract type declared outside of the refinement.
     *    - an instance of a value class
     *  Furthermore, the result type may not be a value class either
     */
    def checkMethodStructuralCompatible(ddef: DefDef): Unit = {
      val meth = ddef.symbol
      def parentString = meth.owner.parentSymbols filterNot (_ == ObjectClass) match {
        case Nil => ""
        case xs  => xs.map(_.nameString).mkString(" (of ", " with ", ")")
      }
      def fail(pos: Position, msg: String): Boolean = {
        context.error(pos, msg)
        false
      }
      /* Have to examine all parameters in all lists.
       */
      def paramssTypes(tp: Type): List[List[Type]] = tp match {
        case mt @ MethodType(_, restpe) => mt.paramTypes :: paramssTypes(restpe)
        case PolyType(_, restpe)        => paramssTypes(restpe)
        case _                          => Nil
      }
      def resultType = meth.tpe_*.finalResultType
      def nthParamPos(n1: Int, n2: Int) =
        try ddef.vparamss(n1)(n2).pos catch { case _: IndexOutOfBoundsException => meth.pos }

      def failStruct(pos: Position, what: String, where: String = "Parameter type") =
        fail(pos, s"$where in structural refinement may not refer to $what")

      foreachWithIndex(paramssTypes(meth.tpe)) { (paramList, listIdx) =>
        foreachWithIndex(paramList) { (paramType, paramIdx) =>
          val sym = paramType.typeSymbol
          def paramPos = nthParamPos(listIdx, paramIdx)

          /* Not enough to look for abstract types; have to recursively check the bounds
           * of each abstract type for more abstract types. Almost certainly there are other
           * exploitable type soundness bugs which can be seen by bounding a type parameter
           * by an abstract type which itself is bounded by an abstract type.
           */
          def checkAbstract(tp0: Type, what: String): Boolean = {
            def check(sym: Symbol): Boolean = !sym.isAbstractType || {
              log(s"""checking $tp0 in refinement$parentString at ${meth.owner.owner.fullLocationString}""")
              (    (!sym.hasTransOwner(meth.owner) && failStruct(paramPos, "an abstract type defined outside that refinement", what))
                || (!sym.hasTransOwner(meth) && failStruct(paramPos, "a type member of that refinement", what))
                || checkAbstract(sym.info.bounds.hi, "Type bound")
              )
            }
            tp0.dealiasWidenChain forall (t => check(t.typeSymbol))
          }
          checkAbstract(paramType, "Parameter type")

          if (sym.isDerivedValueClass)
            failStruct(paramPos, "a user-defined value class")
          if (paramType.isInstanceOf[ThisType] && sym == meth.owner)
            failStruct(paramPos, "the type of that refinement (self type)")
        }
      }
      if (resultType.typeSymbol.isDerivedValueClass)
        failStruct(ddef.tpt.pos, "a user-defined value class", where = "Result type")
    }

    def typedDefDef(ddef: DefDef): DefDef = {
      // an accessor's type completer may mutate a type inside `ddef` (`== context.unit.synthetics(ddef.symbol)`)
      // concretely: it sets the setter's parameter type or the getter's return type (when derived from a valdef with empty tpt)
      val meth = ddef.symbol.initialize

      reenterTypeParams(ddef.tparams)
      reenterValueParams(ddef.vparamss)

      // for `val` and `var` parameter, look at `target` meta-annotation
      if (!isPastTyper && meth.isPrimaryConstructor) {
        for (vparams <- ddef.vparamss; vd <- vparams) {
          if (vd.mods.isParamAccessor) {
            vd.symbol setAnnotations (vd.symbol.annotations filter AnnotationInfo.mkFilter(ParamTargetClass, defaultRetention = true))
          }
        }
      }

      val tparams1 = ddef.tparams mapConserve typedTypeDef
      val vparamss1 = ddef.vparamss mapConserve (_ mapConserve typedValDef)

      warnTypeParameterShadow(tparams1, meth)

      meth.annotations.map(_.completeInfo())

      for (vparams1 <- vparamss1; vparam1 <- vparams1 dropRight 1)
        if (isRepeatedParamType(vparam1.symbol.tpe))
          StarParamNotLastError(vparam1)

      val tpt1 = checkNoEscaping.privates(meth, typedType(ddef.tpt))
      checkNonCyclic(ddef, tpt1)
      ddef.tpt.setType(tpt1.tpe)
      val typedMods = typedModifiers(ddef.mods)
      var rhs1 =
        if (ddef.name == nme.CONSTRUCTOR && !ddef.symbol.hasStaticFlag) { // need this to make it possible to generate static ctors
          if (!meth.isPrimaryConstructor &&
              (!meth.owner.isClass ||
               meth.owner.isModuleClass ||
               meth.owner.isAnonOrRefinementClass))
            InvalidConstructorDefError(ddef)
          typed(ddef.rhs)
        } else if (meth.isMacro) {
          // typechecking macro bodies is sort of unconventional
          // that's why we employ our custom typing scheme orchestrated outside of the typer
          transformedOr(ddef.rhs, typedMacroBody(this, ddef))
        } else {
          transformedOrTyped(ddef.rhs, EXPRmode, tpt1.tpe)
        }

      if (meth.isClassConstructor && !isPastTyper && !meth.owner.isSubClass(AnyValClass) && !meth.isJava) {
        // There are no supercalls for AnyVal or constructors from Java sources, which
        // would blow up in computeParamAliases; there's nothing to be computed for them
        // anyway.
        if (meth.isPrimaryConstructor)
          computeParamAliases(meth.owner, vparamss1, rhs1)
        else
          checkSelfConstructorArgs(ddef, meth.owner)
      }

      if (tpt1.tpe.typeSymbol != NothingClass && !context.returnsSeen && rhs1.tpe.typeSymbol != NothingClass)
        rhs1 = checkDead(rhs1)

      if (!isPastTyper && meth.owner.isClass &&
          meth.paramss.exists(ps => ps.exists(_.hasDefault) && isRepeatedParamType(ps.last.tpe)))
        StarWithDefaultError(meth)

      if (!isPastTyper) {
        val allParams = meth.paramss.flatten
        for (p <- allParams) {
          for (n <- p.deprecatedParamName) {
            if (allParams.exists(p1 => p != p1 && (p1.name == n || p1.deprecatedParamName.exists(_ == n))))
              DeprecatedParamNameError(p, n)
          }
        }
        if (meth.isStructuralRefinementMember)
          checkMethodStructuralCompatible(ddef)

        if (meth.isImplicit && !meth.isSynthetic) meth.info.paramss match {
          case List(param) :: _ if !param.isImplicit =>
            checkFeature(ddef.pos, ImplicitConversionsFeature, meth.toString)
          case _ =>
        }
      }

      treeCopy.DefDef(ddef, typedMods, ddef.name, tparams1, vparamss1, tpt1, rhs1) setType NoType
    }

    def typedTypeDef(tdef: TypeDef): TypeDef =
      typerWithCondLocalContext(context.makeNewScope(tdef, tdef.symbol))(tdef.tparams.nonEmpty) {
        _.typedTypeDefImpl(tdef)
      }

    // use typedTypeDef instead. this version is called after creating a new context for the TypeDef
    private def typedTypeDefImpl(tdef: TypeDef): TypeDef = {
      tdef.symbol.initialize
      reenterTypeParams(tdef.tparams)
      val tparams1 = tdef.tparams mapConserve typedTypeDef
      val typedMods = typedModifiers(tdef.mods)
      tdef.symbol.annotations.map(_.completeInfo())

      warnTypeParameterShadow(tparams1, tdef.symbol)

      // @specialized should not be pickled when compiling with -no-specialize
      if (settings.nospecialization && currentRun.compiles(tdef.symbol)) {
        tdef.symbol.removeAnnotation(definitions.SpecializedClass)
        tdef.symbol.deSkolemize.removeAnnotation(definitions.SpecializedClass)
      }

      val rhs1 = checkNoEscaping.privates(tdef.symbol, typedType(tdef.rhs))
      checkNonCyclic(tdef.symbol)
      if (tdef.symbol.owner.isType)
        rhs1.tpe match {
          case TypeBounds(lo1, hi1) if (!(lo1 <:< hi1)) => LowerBoundError(tdef, lo1, hi1)
          case _                                        => ()
        }

      if (tdef.symbol.isDeferred && tdef.symbol.info.isHigherKinded)
        checkFeature(tdef.pos, HigherKindsFeature)

      treeCopy.TypeDef(tdef, typedMods, tdef.name, tparams1, rhs1) setType NoType
    }

    private def enterLabelDef(stat: Tree) {
      stat match {
        case ldef @ LabelDef(_, _, _) =>
          if (ldef.symbol == NoSymbol)
            ldef.symbol = namer.enterInScope(
              context.owner.newLabel(ldef.name, ldef.pos) setInfo MethodType(List(), UnitTpe))
        case _ =>
      }
    }

    def typedLabelDef(ldef: LabelDef): LabelDef = {
      if (!nme.isLoopHeaderLabel(ldef.symbol.name) || isPastTyper) {
        val restpe = ldef.symbol.tpe.resultType
        val rhs1 = typed(ldef.rhs, restpe)
        ldef.params foreach (param => param setType param.symbol.tpe)
        deriveLabelDef(ldef)(_ => rhs1) setType restpe
      }
      else {
        val initpe = ldef.symbol.tpe.resultType
        val rhs1 = typed(ldef.rhs)
        val restpe = rhs1.tpe
        if (restpe == initpe) { // stable result, no need to check again
          ldef.params foreach (param => param setType param.symbol.tpe)
          treeCopy.LabelDef(ldef, ldef.name, ldef.params, rhs1) setType restpe
        } else {
          context.scope.unlink(ldef.symbol)
          val sym2 = namer.enterInScope(
            context.owner.newLabel(ldef.name, ldef.pos) setInfo MethodType(List(), restpe))
          val LabelDef(_, _, rhs1) = resetAttrs(ldef)
          val rhs2 = typed(brutallyResetAttrs(rhs1), restpe)
          ldef.params foreach (param => param setType param.symbol.tpe)
          deriveLabelDef(ldef)(_ => rhs2) setSymbol sym2 setType restpe
        }
      }
    }

    def typedBlock(block0: Block, mode: Mode, pt: Type): Block = {
      val syntheticPrivates = new ListBuffer[Symbol]
      try {
        namer.enterSyms(block0.stats)
        val block = treeCopy.Block(block0, pluginsEnterStats(this, block0.stats), block0.expr)
        for (stat <- block.stats) enterLabelDef(stat)

        if (phaseId(currentPeriod) <= currentRun.typerPhase.id) {
          // This is very tricky stuff, because we are navigating the Scylla and Charybdis of
          // anonymous classes and what to return from them here. On the one hand, we cannot admit
          // every non-private member of an anonymous class as a part of the structural type of the
          // enclosing block. This runs afoul of the restriction that a structural type may not
          // refer to an enclosing type parameter or abstract types (which in turn is necessitated
          // by what can be done in Java reflection). On the other hand, making every term member
          // private conflicts with private escape checking - see ticket #3174 for an example.
          //
          // The cleanest way forward is if we would find a way to suppress structural type checking
          // for these members and maybe defer type errors to the places where members are called.
          // But that would be a big refactoring and also a big departure from existing code. The
          // probably safest fix for 2.8 is to keep members of an anonymous class that are not
          // mentioned in a parent type private (as before) but to disable escape checking for code
          // that's in the same anonymous class. That's what's done here.
          //
          // We really should go back and think hard whether we find a better way to address the
          // problem of escaping idents on the one hand and well-formed structural types on the
          // other.
          block match {
            case Block(List(classDef @ ClassDef(_, _, _, _)), Apply(Select(New(_), _), _)) =>
              val classDecls = classDef.symbol.info.decls
              val visibleMembers = pt match {
                case WildcardType                           => classDecls.toList
                case BoundedWildcardType(TypeBounds(lo, _)) => lo.members
                case _                                      => pt.members
              }
              def matchesVisibleMember(member: Symbol) = visibleMembers exists { vis =>
                (member.name == vis.name) &&
                (member.tpe <:< vis.tpe.substThis(vis.owner, classDef.symbol))
              }
              // The block is an anonymous class definitions/instantiation pair
              //   -> members that are hidden by the type of the block are made private
              classDecls foreach { toHide =>
                if (toHide.isTerm
                    && toHide.isPossibleInRefinement
                    && toHide.isPublic
                    && !matchesVisibleMember(toHide)) {
                  (toHide
                   resetFlag (PROTECTED | LOCAL)
                   setFlag (PRIVATE | SYNTHETIC_PRIVATE)
                   setPrivateWithin NoSymbol)

                  syntheticPrivates += toHide
                }
              }

            case _ =>
          }
        }
        val statsTyped = typedStats(block.stats, context.owner, warnPure = false)
        val expr1 = typed(block.expr, mode &~ (FUNmode | QUALmode), pt)

        // sanity check block for unintended expr placement
        if (!isPastTyper) {
          val (count, result0, adapted) =
            expr1 match {
              case Block(expr :: Nil, Literal(Constant(()))) => (1, expr, true)
              case Literal(Constant(()))                     => (0, EmptyTree, false)
              case _                                         => (1, EmptyTree, false)
            }
          def checkPure(t: Tree, supple: Boolean): Unit =
            if (treeInfo.isPureExprForWarningPurposes(t)) {
              val msg = "a pure expression does nothing in statement position"
              val parens = if (statsTyped.length + count > 1) "multiline expressions might require enclosing parentheses" else ""
              val discard = if (adapted) "; a value can be silently discarded when Unit is expected" else ""
              val text =
                if (supple) s"${parens}${discard}"
                else if (!parens.isEmpty) s"${msg}; ${parens}" else msg
              context.warning(t.pos, text)
            }
          statsTyped.foreach(checkPure(_, supple = false))
          if (result0.nonEmpty) checkPure(result0, supple = true)
        }

        treeCopy.Block(block, statsTyped, expr1)
          .setType(if (treeInfo.isExprSafeToInline(block)) expr1.tpe else expr1.tpe.deconst)
      } finally {
        // enable escaping privates checking from the outside and recycle
        // transient flag
        syntheticPrivates foreach (_ resetFlag SYNTHETIC_PRIVATE)
      }
    }

    def typedCase(cdef: CaseDef, pattpe: Type, pt: Type): CaseDef = {
      // verify no _* except in last position
      for (Apply(_, xs) <- cdef.pat ; x <- xs dropRight 1 ; if treeInfo isStar x)
        StarPositionInPatternError(x)

      // withoutAnnotations - see continuations-run/z1673.scala
      // This adjustment is awfully specific to continuations, but AFAICS the
      // whole AnnotationChecker framework is.
      val pat1 = typedPattern(cdef.pat, pattpe.withoutAnnotations)
      // When case classes have more than two parameter lists, the pattern ends
      // up typed as a method.  We only pattern match on the first parameter
      // list, so substitute the final result type of the method, i.e. the type
      // of the case class.
      if (pat1.tpe.paramSectionCount > 0)
        pat1 modifyType (_.finalResultType)

      for (bind @ Bind(name, _) <- cdef.pat) {
        val sym = bind.symbol
        if (name.toTermName != nme.WILDCARD && sym != null) {
          if (sym == NoSymbol) {
            if (context.scope.lookup(name) == NoSymbol)
              namer.enterInScope(context.owner.newErrorSymbol(name))
          } else
            namer.enterIfNotThere(sym)
        }
      }

      val guard1: Tree = if (cdef.guard == EmptyTree) EmptyTree
                         else typed(cdef.guard, BooleanTpe)
      var body1: Tree = typed(cdef.body, pt)

      if (context.enclosingCaseDef.savedTypeBounds.nonEmpty) {
        body1 modifyType context.enclosingCaseDef.restoreTypeBounds
        // insert a cast if something typechecked under the GADT constraints,
        // but not in real life (i.e., now that's we've reset the method's type skolems'
        //   infos back to their pre-GADT-constraint state)
        if (isFullyDefined(pt) && !(body1.tpe <:< pt)) {
          log(s"Adding cast to pattern because ${body1.tpe} does not conform to expected type $pt")
          body1 = typedPos(body1.pos)(gen.mkCast(body1, pt.dealiasWiden))
        }
      }

//    body1 = checkNoEscaping.locals(context.scope, pt, body1)
      treeCopy.CaseDef(cdef, pat1, guard1, body1) setType body1.tpe
    }

    def typedCases(cases: List[CaseDef], pattp: Type, pt: Type): List[CaseDef] =
      cases mapConserve { cdef =>
        newTyper(context.makeNewScope(cdef, context.owner)).typedCase(cdef, pattp, pt)
      }

    def adaptCase(cdef: CaseDef, mode: Mode, tpe: Type): CaseDef = deriveCaseDef(cdef)(adapt(_, mode, tpe))

    def packedTypes(trees: List[Tree]): List[Type] = trees map (c => packedType(c, context.owner).deconst)

    // takes untyped sub-trees of a match and type checks them
    def typedMatch(selector: Tree, cases: List[CaseDef], mode: Mode, pt: Type, tree: Tree = EmptyTree): Match = {
      val selector1  = checkDead(typedByValueExpr(selector))
      val selectorTp = packCaptured(selector1.tpe.widen).skolemizeExistential(context.owner, selector)
      val casesTyped = typedCases(cases, selectorTp, pt)

      def finish(cases: List[CaseDef], matchType: Type) =
        treeCopy.Match(tree, selector1, cases) setType matchType

      if (isFullyDefined(pt))
        finish(casesTyped, pt)
      else packedTypes(casesTyped) match {
        case packed if sameWeakLubAsLub(packed) => finish(casesTyped, lub(packed))
        case packed                             =>
          val lub = weakLub(packed)
          finish(casesTyped map (adaptCase(_, mode, lub)), lub)
      }
    }

    // match has been typed -- virtualize it during type checking so the full context is available
    def virtualizedMatch(match_ : Match, mode: Mode, pt: Type) = {
      import patmat.{ vpmName, PureMatchTranslator }

      // TODO: add fallback __match sentinel to predef
      val matchStrategy: Tree =
        if (!(settings.Yvirtpatmat && context.isNameInScope(vpmName._match))) null    // fast path, avoiding the next line if there's no __match to be seen
        else newTyper(context.makeImplicit(reportAmbiguousErrors = false)).silent(_.typed(Ident(vpmName._match)), reportAmbiguousErrors = false) orElse (_ => null)

      if (matchStrategy ne null) // virtualize
        typed((new PureMatchTranslator(this.asInstanceOf[patmat.global.analyzer.Typer] /*TODO*/, matchStrategy)).translateMatch(match_), mode, pt)
      else
        match_ // will be translated in phase `patmat`
    }

    /** synthesize and type check a PartialFunction implementation based on the match in `tree`
     *
     *  `param => sel match { cases }` becomes:
     *
     *  new AbstractPartialFunction[$argTp, $matchResTp] {
     *    def applyOrElse[A1 <: $argTp, B1 >: $matchResTp]($param: A1, default: A1 => B1): B1 =
     *       $selector match { $cases }
     *    def isDefinedAt(x: $argTp): Boolean =
     *       $selector match { $casesTrue }
     *  }
     *
     * TODO: it would be nicer to generate the tree specified above at once and type it as a whole,
     * there are two gotchas:
     *    - matchResTp may not be known until we've typed the match (can only use resTp when it's fully defined),
     *       - if we typed the match in isolation first, you'd know its result type, but would have to re-jig the owner structure
     *       - could we use a type variable for matchResTp and backpatch it?
     *    - occurrences of `this` in `cases` or `sel` must resolve to the this of the class originally enclosing the match,
     *      not of the anonymous partial function subclass
     *
     * an alternative TODO: add partial function AST node or equivalent and get rid of this synthesis --> do everything in uncurry (or later)
     * however, note that pattern matching codegen is designed to run *before* uncurry
     */
    def synthesizePartialFunction(paramName: TermName, paramPos: Position, paramSynthetic: Boolean,
                                  tree: Tree, mode: Mode, pt: Type): Tree = {
      assert(pt.typeSymbol == PartialFunctionClass, s"PartialFunction synthesis for match in $tree requires PartialFunction expected type, but got $pt.")
      val targs = pt.dealiasWiden.typeArgs

      // if targs.head isn't fully defined, we can't translate --> error
      targs match {
        case argTp :: _ if isFullyDefined(argTp) => // ok
        case _ => // uh-oh
          MissingParameterTypeAnonMatchError(tree, pt)
          return setError(tree)
      }

      // NOTE: resTp still might not be fully defined
      val argTp :: resTp :: Nil = targs

      // targs must conform to Any for us to synthesize an applyOrElse (fallback to apply otherwise -- typically for @cps annotated targs)
      val targsValidParams = targs forall (_ <:< AnyTpe)

      val anonClass = context.owner newAnonymousFunctionClass tree.pos addAnnotation SerialVersionUIDAnnotation

      import CODE._

      val Match(sel, cases) = tree

      // need to duplicate the cases before typing them to generate the apply method, or the symbols will be all messed up
      val casesTrue = cases map (c => deriveCaseDef(c)(x => atPos(x.pos.focus)(TRUE)).duplicate.asInstanceOf[CaseDef])

      // must generate a new tree every time
      def selector(paramSym: Symbol): Tree = gen.mkUnchecked(
        if (sel != EmptyTree) sel.duplicate
        else atPos(tree.pos.focusStart)(
          // SI-6925: subsume type of the selector to `argTp`
          // we don't want/need the match to see the `A1` type that we must use for variance reasons in the method signature
          //
          // this failed: replace `selector` by `Typed(selector, TypeTree(argTp))` -- as it's an upcast, this should never fail,
          //   `(x: A1): A` doesn't always type check, even though `A1 <: A`, due to singleton types (test/files/pos/t4269.scala)
          // hence the cast, which will be erased in posterasure
          // (the cast originally caused  extremely weird types to show up
          //  in test/scaladoc/run/SI-5933.scala because `variantToSkolem` was missing `tpSym.initialize`)
          gen.mkCastPreservingAnnotations(Ident(paramSym), argTp)
        ))

      def mkParam(methodSym: Symbol, tp: Type = argTp) =
        methodSym.newValueParameter(paramName, paramPos.focus, SYNTHETIC) setInfo tp

      def mkDefaultCase(body: Tree) =
        atPos(tree.pos.makeTransparent) {
          CaseDef(Bind(nme.DEFAULT_CASE, Ident(nme.WILDCARD)), body)
        }

      // `def applyOrElse[A1 <: $argTp, B1 >: $matchResTp](x: A1, default: A1 => B1): B1 =
      //  ${`$selector match { $cases; case default$ => default(x) }`
      def applyOrElseMethodDef = {
        val methodSym = anonClass.newMethod(nme.applyOrElse, tree.pos, FINAL | OVERRIDE)

        // create the parameter that corresponds to the function's parameter
        val A1 = methodSym newTypeParameter (newTypeName("A1")) setInfo TypeBounds.upper(argTp)
        val x = mkParam(methodSym, A1.tpe)

        // applyOrElse's default parameter:
        val B1 = methodSym newTypeParameter (newTypeName("B1")) setInfo TypeBounds.empty
        val default = methodSym newValueParameter (newTermName("default"), tree.pos.focus, SYNTHETIC) setInfo functionType(List(A1.tpe), B1.tpe)

        val paramSyms = List(x, default)
        methodSym setInfo genPolyType(List(A1, B1), MethodType(paramSyms, B1.tpe))

        val methodBodyTyper = newTyper(context.makeNewScope(context.tree, methodSym))
        if (!paramSynthetic) methodBodyTyper.context.scope enter x

        // First, type without the default case; only the cases provided
        // by the user are typed. The LUB of these becomes `B`, the lower
        // bound of `B1`, which in turn is the result type of the default
        // case
        val match0 = methodBodyTyper.typedMatch(selector(x), cases, mode, resTp)
        val matchResTp = match0.tpe

        B1 setInfo TypeBounds.lower(matchResTp) // patch info

        // the default uses applyOrElse's first parameter since the scrut's type has been widened
        val match_ = {
          val cdef = mkDefaultCase(methodBodyTyper.typed1(REF(default) APPLY (REF(x)), mode, B1.tpe).setType(B1.tpe))
          val List(defaultCase) = methodBodyTyper.typedCases(List(cdef), argTp, B1.tpe)
          treeCopy.Match(match0, match0.selector, match0.cases :+ defaultCase)
        }
        match_ setType B1.tpe

        // SI-6187 Do you really want to know? Okay, here's what's going on here.
        //
        //         Well behaved trees satisfy the property:
        //
        //         typed(tree) == typed(resetAttrs(typed(tree))
        //
        //         Trees constructed without low-level symbol manipulation get this for free;
        //         references to local symbols are cleared by `ResetAttrs`, but bind to the
        //         corresponding symbol in the re-typechecked tree. But PartialFunction synthesis
        //         doesn't play by these rules.
        //
        //         During typechecking of method bodies, references to method type parameter from
        //         the declared types of the value parameters should bind to a fresh set of skolems,
        //         which have been entered into scope by `Namer#methodSig`. A comment therein:
        //
        //         "since the skolemized tparams are in scope, the TypeRefs in vparamSymss refer to skolemized tparams"
        //
        //         But, if we retypecheck the reset `applyOrElse`, the TypeTree of the `default`
        //         parameter contains no type. Somehow (where?!) it recovers a type that is _almost_ okay:
        //         `A1 => B1`. But it should really be `A1&0 => B1&0`. In the test, run/t6187.scala, this
        //         difference results in a type error, as `default.apply(x)` types as `B1`, which doesn't
        //         conform to the required `B1&0`
        //
        //         I see three courses of action.
        //
        //         1) synthesize a `asInstanceOf[B1]` below (I tried this first. But... ewwww.)
        //         2) install an 'original' TypeTree that will used after ResetAttrs (the solution below)
        //         3) Figure out how the almost-correct type is recovered on re-typechecking, and
        //            substitute in the skolems.
        //
        //         For 2.11, we'll probably shift this transformation back a phase or two, so macros
        //         won't be affected. But in any case, we should satisfy retypecheckability.
        //
        val originals: Map[Symbol, Tree] = {
          def typedIdent(sym: Symbol) = methodBodyTyper.typedType(Ident(sym), mode)
          val A1Tpt = typedIdent(A1)
          val B1Tpt = typedIdent(B1)
          Map(
            x -> A1Tpt,
            default -> gen.scalaFunctionConstr(List(A1Tpt), B1Tpt)
          )
        }
        def newParam(param: Symbol): ValDef = {
          val vd              = ValDef(param, EmptyTree)
          val tt @ TypeTree() = vd.tpt
          tt setOriginal (originals(param) setPos param.pos.focus)
          vd
        }

        val rhs    = methodBodyTyper.virtualizedMatch(match_, mode, B1.tpe)
        val defdef = newDefDef(methodSym, rhs)(vparamss = mapParamss(methodSym)(newParam), tpt = TypeTree(B1.tpe))

        (defdef, matchResTp)
      }

      // `def isDefinedAt(x: $argTp): Boolean = ${`$selector match { $casesTrue; case default$ => false } }`
      def isDefinedAtMethod = {
        val methodSym = anonClass.newMethod(nme.isDefinedAt, tree.pos.makeTransparent, FINAL)
        val paramSym = mkParam(methodSym)

        val methodBodyTyper = newTyper(context.makeNewScope(context.tree, methodSym)) // should use the DefDef for the context's tree, but it doesn't exist yet (we need the typer we're creating to create it)
        if (!paramSynthetic) methodBodyTyper.context.scope enter paramSym
        methodSym setInfo MethodType(List(paramSym), BooleanTpe)

        val defaultCase = mkDefaultCase(FALSE)
        val match_ = methodBodyTyper.typedMatch(selector(paramSym), casesTrue :+ defaultCase, mode, BooleanTpe)

        DefDef(methodSym, methodBodyTyper.virtualizedMatch(match_, mode, BooleanTpe))
      }

      // only used for @cps annotated partial functions
      // `def apply(x: $argTp): $matchResTp = $selector match { $cases }`
      def applyMethod = {
        val methodSym = anonClass.newMethod(nme.apply, tree.pos, FINAL | OVERRIDE)
        val paramSym = mkParam(methodSym)

        methodSym setInfo MethodType(List(paramSym), AnyTpe)

        val methodBodyTyper = newTyper(context.makeNewScope(context.tree, methodSym))
        if (!paramSynthetic) methodBodyTyper.context.scope enter paramSym

        val match_ = methodBodyTyper.typedMatch(selector(paramSym), cases, mode, resTp)

        val matchResTp = match_.tpe
        methodSym setInfo MethodType(List(paramSym), matchResTp) // patch info

        (DefDef(methodSym, methodBodyTyper.virtualizedMatch(match_, mode, matchResTp)), matchResTp)
      }

      def parents(resTp: Type) = addSerializable(appliedType(AbstractPartialFunctionClass.typeConstructor, List(argTp, resTp)))

      val members = {
        val (applyMeth, matchResTp) = {
          // rig the show so we can get started typing the method body -- later we'll correct the infos...
          // targs were type arguments for PartialFunction, so we know they will work for AbstractPartialFunction as well
          anonClass setInfo ClassInfoType(parents(resTp), newScope, anonClass)

          // somehow @cps annotations upset the typer when looking at applyOrElse's signature, but not apply's
          // TODO: figure out the details (T @cps[U] is not a subtype of Any, but then why does it work for the apply method?)
          if (targsValidParams) applyOrElseMethodDef
          else applyMethod
        }

        // patch info to the class's definitive info
        anonClass setInfo ClassInfoType(parents(matchResTp), newScope, anonClass)
        List(applyMeth, isDefinedAtMethod)
      }

      members foreach (m => anonClass.info.decls enter m.symbol)

      val typedBlock = typedPos(tree.pos, mode, pt) {
        Block(ClassDef(anonClass, NoMods, ListOfNil, members, tree.pos.focus), atPos(tree.pos.focus)(
          Apply(Select(New(Ident(anonClass.name).setSymbol(anonClass)), nme.CONSTRUCTOR), List())
        ))
      }

      if (typedBlock.isErrorTyped) typedBlock
      else // Don't leak implementation details into the type, see SI-6575
        typedPos(tree.pos, mode, pt) {
          Typed(typedBlock, TypeTree(typedBlock.tpe baseType PartialFunctionClass))
        }
    }

    /** Synthesize and type check the implementation of a type with a Single Abstract Method.
      *
      * Based on a type checked Function node `{ (p1: T1, ..., pN: TN) => body } : S`
      * where `S` is the expected type that defines a single abstract method (call it `apply` for the example),
      * that has signature `(p1: T1', ..., pN: TN'): T'`, synthesize the instantiation of the following anonymous class
      *
      * ```
      *   new S {
      *    def apply$body(p1: T1, ..., pN: TN): T = body
      *    def apply(p1: T1', ..., pN: TN'): T' = apply$body(p1,..., pN)
      *   }
      * ```
      *
      * The `apply` method is identified by the argument `sam`; `S` corresponds to the argument `pt`,
      * If `pt` is not fully defined, we derive `samClassTpFullyDefined` by inferring any unknown type parameters.
      *
      * The types T1' ... TN' and T' are derived from the method signature of the sam method,
      * as seen from the fully defined `samClassTpFullyDefined`.
      *
      * The function's body is put in a (static) method in the class definition to enforce scoping.
      * S's members should not be in scope in `body`. (Putting it in the block outside the class runs into implementation problems described below)
      *
      * The restriction on implicit arguments (neither S's constructor, nor sam may take an implicit argument list),
      * is to keep the implementation of type inference (the computation of `samClassTpFullyDefined`) simple.
      *
      * Impl notes:
      *   - `fun` has a FunctionType, but the expected type `pt` is some SAM type -- let's remedy that
      *   - `fun` is fully attributed, so we'll have to wrangle some symbols into shape (owner change, vparam syms)
      *   - after experimentation, it works best to type check function literals fully first and then adapt to a sam type,
      *     as opposed to a sam-specific code paths earlier on in type checking (in typedFunction).
      *     For one, we want to emit the same bytecode regardless of whether the expected
      *     function type is a built-in FunctionN or some SAM type
      *
      */
    def inferSamType(fun: Tree, pt: Type, mode: Mode): SAMFunction = {
      val sam =
        if (fun.isInstanceOf[Function] && !isFunctionType(pt)) {
          // TODO: can we ensure there's always a SAMFunction attachment, instead of looking up the sam again???
          // seems like overloading complicates things?
          val sam = samOf(pt)
          if (samMatchesFunctionBasedOnArity(sam, fun.asInstanceOf[Function].vparams)) sam
          else NoSymbol
        } else NoSymbol

      def fullyDefinedMeetsExpectedFunTp(pt: Type): Boolean = isFullyDefined(pt) && {
        val samMethType = pt memberInfo sam
        fun.tpe <:< functionType(samMethType.paramTypes, samMethType.resultType)
      }

      SAMFunction(
        if (!sam.exists) NoType
        else if (fullyDefinedMeetsExpectedFunTp(pt)) pt
        else try {
          val samClassSym = pt.typeSymbol

          // we're trying to fully define the type arguments for this type constructor
          val samTyCon = samClassSym.typeConstructor

          // the unknowns
          val tparams = samClassSym.typeParams
          // ... as typevars
          val tvars = tparams map freshVar

          val ptVars = appliedType(samTyCon, tvars)

          // carry over info from pt
          ptVars <:< pt

          val samInfoWithTVars = ptVars.memberInfo(sam)

          // use function type subtyping, not method type subtyping (the latter is invariant in argument types)
          fun.tpe <:< functionType(samInfoWithTVars.paramTypes, samInfoWithTVars.finalResultType)

          val variances = tparams map varianceInType(sam.info)

          // solve constraints tracked by tvars
          val targs = solvedTypes(tvars, tparams, variances, upper = false, lubDepth(sam.info :: Nil))

          debuglog(s"sam infer: $pt --> ${appliedType(samTyCon, targs)} by ${fun.tpe} <:< $samInfoWithTVars --> $targs for $tparams")

          val ptFullyDefined = appliedType(samTyCon, targs)
          if (ptFullyDefined <:< pt && fullyDefinedMeetsExpectedFunTp(ptFullyDefined)) {
            debuglog(s"sam fully defined expected type: $ptFullyDefined from $pt for ${fun.tpe}")
            ptFullyDefined
          } else {
            debuglog(s"Could not define type $pt using ${fun.tpe} <:< ${pt memberInfo sam} (for $sam)")
            NoType
          }
        } catch {
          case e@(_: NoInstance | _: TypeError) =>
            debuglog(s"Error during SAM synthesis: could not define type $pt using ${fun.tpe} <:< ${pt memberInfo sam} (for $sam)\n$e")
            NoType
        }, sam)
    }

    /** Type check a function literal.
     *
     * Based on the expected type pt, potentially synthesize an instance of
     *   - PartialFunction,
     *   - a type with a Single Abstract Method (under -Xexperimental for now).
     */
    private def typedFunction(fun: Function, mode: Mode, pt: Type): Tree = {
      val vparams = fun.vparams
      val numVparams = vparams.length
      val FunctionSymbol =
        if (numVparams > definitions.MaxFunctionArity) NoSymbol
        else FunctionClass(numVparams)

      val ptSym = pt.typeSymbol

      /* The Single Abstract Member of pt, unless pt is the built-in function type of the expected arity,
       * as `(a => a): Int => Int` should not (yet) get the sam treatment.
       */
      val sam =
        if (ptSym == NoSymbol || ptSym == FunctionSymbol || ptSym == PartialFunctionClass) NoSymbol
        else samOf(pt)

      /* The SAM case comes first so that this works:
       *   abstract class MyFun extends (Int => Int)
       *   (a => a): MyFun
       *
       * Note that the arity of the sam must correspond to the arity of the function.
       * TODO: handle vararg sams?
       */
      val ptNorm =
        if (samMatchesFunctionBasedOnArity(sam, vparams)) samToFunctionType(pt, sam)
        else pt
      val (argpts, respt) =
        ptNorm baseType FunctionSymbol match {
          case TypeRef(_, FunctionSymbol, args :+ res) => (args, res)
          case _                                       => (vparams map (if (pt == ErrorType) (_ => ErrorType) else (_ => NoType)), WildcardType)
        }

      if (!FunctionSymbol.exists) MaxFunctionArityError(fun)
      else if (argpts.lengthCompare(numVparams) != 0) WrongNumberOfParametersError(fun, argpts)
      else {
        val paramsMissingType = mutable.ArrayBuffer.empty[ValDef] //.sizeHint(numVparams) probably useless, since initial size is 16 and max fun arity is 22
        // first, try to define param types from expected function's arg types if needed
        foreach2(vparams, argpts) { (vparam, argpt) =>
          if (vparam.tpt.isEmpty) {
            if (isFullyDefined(argpt)) vparam.tpt setType argpt
            else paramsMissingType += vparam

            if (!vparam.tpt.pos.isDefined) vparam.tpt setPos vparam.pos.focus
          }
        }

        // If we're typing `(a1: T1, ..., aN: TN) => m(a1,..., aN)`, where some Ti are not fully defined,
        // type `m` directly (undoing eta-expansion of method m) to determine the argument types.
        // This tree is the result from one of:
        //   - manual eta-expansion with named arguments (x => f(x));
        //   - wildcard-style eta expansion (`m(_, _,)`);
        //   - instantiateToMethodType adapting a tree of method type to a function type using etaExpand.
        //
        // Note that method values are a separate thing (`m _`): they have the idiosyncratic shape
        // of `Typed(expr, Function(Nil, EmptyTree))`
        val ptUnrollingEtaExpansion =
          if (paramsMissingType.nonEmpty && pt != ErrorType) fun.body match {
            // we can compare arguments and parameters by name because there cannot be a binder between
            // the function's valdefs and the Apply's arguments
            case Apply(meth, args) if (vparams corresponds args) { case (p, Ident(name)) => p.name == name case _ => false } =>
              // We're looking for a method (as indicated by FUNmode in the silent typed below),
              // so let's make sure our expected type is a MethodType
              val methArgs = NoSymbol.newSyntheticValueParams(argpts map { case NoType => WildcardType case tp => tp })
              silent(_.typed(meth, mode.forFunMode, MethodType(methArgs, respt))) filter (isMonoContext) map { methTyped =>
                // if context.undetparams is not empty, the method was polymorphic,
                // so we need the missing arguments to infer its type. See #871
                val funPt = normalize(methTyped.tpe) baseType FunctionClass(numVparams)
                // println(s"typeUnEtaExpanded $meth : ${methTyped.tpe} --> normalized: $funPt")

                // If we are sure this function type provides all the necessary info, so that we won't have
                // any undetermined argument types, go ahead an recurse below (`typedFunction(fun, mode, ptUnrollingEtaExpansion)`)
                // and rest assured we won't end up right back here (and keep recursing)
                if (isFunctionType(funPt) && funPt.typeArgs.iterator.take(numVparams).forall(isFullyDefined)) funPt
                else null
              } orElse { _ => null }
            case _ => null
          } else null


        if (ptUnrollingEtaExpansion ne null) typedFunction(fun, mode, ptUnrollingEtaExpansion)
        else {
          // we ran out of things to try, missing parameter types are an irrevocable error
          var issuedMissingParameterTypeError = false
          paramsMissingType.foreach { vparam =>
            vparam.tpt setType ErrorType
            MissingParameterTypeError(fun, vparam, pt, withTupleAddendum = !issuedMissingParameterTypeError)
            issuedMissingParameterTypeError = true
          }

          fun.body match {
            // translate `x => x match { <cases> }` : PartialFunction to
            // `new PartialFunction { def applyOrElse(x, default) = x match { <cases> } def isDefinedAt(x) = ... }`
            case Match(sel, cases) if (sel ne EmptyTree) && (pt.typeSymbol == PartialFunctionClass) =>
              // go to outer context -- must discard the context that was created for the Function since we're discarding the function
              // thus, its symbol, which serves as the current context.owner, is not the right owner
              // you won't know you're using the wrong owner until lambda lift crashes (unless you know better than to use the wrong owner)
              val outerTyper = newTyper(context.outer)
              val p = vparams.head
              if (p.tpt.tpe == null) p.tpt setType outerTyper.typedType(p.tpt).tpe

              outerTyper.synthesizePartialFunction(p.name, p.pos, paramSynthetic = false, fun.body, mode, pt)

            case _ =>
              val vparamSyms = vparams map { vparam =>
                enterSym(context, vparam)
                if (context.retyping) context.scope enter vparam.symbol
                vparam.symbol
              }
              val vparamsTyped = vparams mapConserve typedValDef
              val formals = vparamSyms map (_.tpe)
              val body1 = typed(fun.body, respt)
              val restpe = packedType(body1, fun.symbol).deconst.resultType
              val funtpe = phasedAppliedType(FunctionSymbol, formals :+ restpe)

              treeCopy.Function(fun, vparamsTyped, body1) setType funtpe
          }
        }
      }
    }

    def typedRefinement(templ: Template) {
      val stats = templ.body
      namer.enterSyms(stats)

      // need to delay rest of typedRefinement to avoid cyclic reference errors
      unit.toCheck += { () =>
        val stats1 = typedStats(stats, NoSymbol)
        // this code kicks in only after typer, so `stats` will never be filled in time
        // as a result, most of compound type trees with non-empty stats will fail to reify
        // todo. investigate whether something can be done about this
        val att = templ.attachments.get[CompoundTypeTreeOriginalAttachment].getOrElse(CompoundTypeTreeOriginalAttachment(Nil, Nil))
        templ.removeAttachment[CompoundTypeTreeOriginalAttachment]
        templ updateAttachment att.copy(stats = stats1)
        for (stat <- stats1 if stat.isDef && stat.symbol.isOverridingSymbol)
          stat.symbol setFlag OVERRIDE
      }
    }

    def typedImport(imp : Import) : Import = (transformed remove imp) match {
      case Some(imp1: Import) => imp1
      case _                  => log("unhandled import: "+imp+" in "+unit); imp
    }

    def typedStats(stats: List[Tree], exprOwner: Symbol, warnPure: Boolean = true): List[Tree] = {
      val inBlock = exprOwner == context.owner
      def includesTargetPos(tree: Tree) =
        tree.pos.isRange && context.unit.exists && (tree.pos includes context.unit.targetPos)
      val localTarget = stats exists includesTargetPos
      def typedStat(stat: Tree): Tree = stat match {
        case s if context.owner.isRefinementClass && !treeInfo.isDeclarationOrTypeDef(s) => OnlyDeclarationsError(s)
        case imp @ Import(_, _) =>
          imp.symbol.initialize
          if (!imp.symbol.isError) {
            context = context.make(imp)
            typedImport(imp)
          } else EmptyTree
        // skip typechecking of statements in a sequence where some other statement includes the targetposition
        case s if localTarget && !includesTargetPos(s) => s
        case _ =>
          val localTyper = if (inBlock || (stat.isDef && !stat.isInstanceOf[LabelDef])) this
                           else newTyper(context.make(stat, exprOwner))
          // XXX this creates a spurious dead code warning if an exception is thrown
          // in a constructor, even if it is the only thing in the constructor.
          val result = checkDead(localTyper.typedByValueExpr(stat))

          if (treeInfo.isSelfOrSuperConstrCall(result)) {
            context.inConstructorSuffix = true
            if (treeInfo.isSelfConstrCall(result)) {
              if (result.symbol == exprOwner.enclMethod)
                ConstructorRecursesError(stat)
              else if (result.symbol.pos.pointOrElse(0) >= exprOwner.enclMethod.pos.pointOrElse(0))
                ConstructorsOrderError(stat)
            }
          }
          if (warnPure && !isPastTyper && treeInfo.isPureExprForWarningPurposes(result)) {
            val msg = "a pure expression does nothing in statement position"
            val clause = if (stats.lengthCompare(1) > 0) "; multiline expressions may require enclosing parentheses" else ""
            context.warning(stat.pos, s"${msg}${clause}")
          }
          result
      }

      // TODO: adapt to new trait field encoding, figure out why this exemption is made
      // 'accessor' and 'accessed' are so similar it becomes very difficult to
      //follow the logic, so I renamed one to something distinct.
      def accesses(looker: Symbol, accessed: Symbol) = accessed.isLocalToThis && (
        (accessed.isParamAccessor)
          || (looker.hasAccessorFlag && !accessed.hasAccessorFlag && accessed.isPrivate)
        )

      def checkNoDoubleDefs: Unit = {
        val scope = if (inBlock) context.scope else context.owner.info.decls
        var e = scope.elems
        while ((e ne null) && e.owner == scope) {
          var e1 = scope.lookupNextEntry(e)
          while ((e1 ne null) && e1.owner == scope) {
            val sym = e.sym
            val sym1 = e1.sym

            /** From the spec (refchecks checks other conditions regarding erasing to the same type and default arguments):
              *
              * A block expression [... its] statement sequence may not contain two definitions or
              * declarations that bind the same name --> `inBlock`
              *
              * It is an error if a template directly defines two matching members.
              *
              * A member definition $M$ _matches_ a member definition $M'$, if $M$ and $M'$ bind the same name,
              * and one of following holds:
              *   1. Neither $M$ nor $M'$ is a method definition.
              *   2. $M$ and $M'$ define both monomorphic methods with equivalent argument types.
              *   3. $M$ defines a parameterless method and $M'$ defines a method with an empty parameter list `()` or _vice versa_.
              *   4. $M$ and $M'$ define both polymorphic methods with equal number of argument types $\overline T$, $\overline T'$
              *      and equal numbers of type parameters $\overline t$, $\overline t'$, say,
              *      and  $\overline T' = [\overline t'/\overline t]\overline T$.
              */
            if (!(accesses(sym, sym1) || accesses(sym1, sym))  // TODO: does this purely defer errors until later?
                && (inBlock || !(sym.isMethod || sym1.isMethod) || (sym.tpe matches sym1.tpe))
                // default getters are defined twice when multiple overloads have defaults.
                // The error for this is deferred until RefChecks.checkDefaultsInOverloaded
                && (!sym.isErroneous && !sym1.isErroneous && !sym.hasDefault &&
                    !sym.hasAnnotation(BridgeClass) && !sym1.hasAnnotation(BridgeClass))) {
              log("Double definition detected:\n  " +
                  ((sym.getClass, sym.info, sym.ownerChain)) + "\n  " +
                  ((sym1.getClass, sym1.info, sym1.ownerChain)))

              DefDefinedTwiceError(sym, sym1)
              scope.unlink(e1) // need to unlink to avoid later problems with lub; see #2779
            }
            e1 = scope.lookupNextEntry(e1)
          }
          e = e.next
        }
      }

      def addSynthetics(stats: List[Tree]): List[Tree] = {
        val scope = if (inBlock) context.scope else context.owner.info.decls
        var newStats = new ListBuffer[Tree]
        var moreToAdd = true
        while (moreToAdd) {
          val initElems = scope.elems
          // SI-5877 The decls of a package include decls of the package object. But we don't want to add
          //         the corresponding synthetics to the package class, only to the package object class.
          // SI-6734 Locality test below is meaningless if we're not even in the correct tree.
          //         For modules that are synthetic case companions, check that case class is defined here.
          def shouldAdd(sym: Symbol): Boolean = {
            def shouldAddAsModule: Boolean =
              sym.moduleClass.attachments.get[ClassForCaseCompanionAttachment] match {
                case Some(att) =>
                  val cdef = att.caseClass
                  stats.exists {
                    case t @ ClassDef(_, _, _, _) => t.symbol == cdef.symbol   // cdef ne t
                    case _ => false
                  }
                case _ => true
              }

            (!sym.isModule || shouldAddAsModule) && (inBlock || !context.isInPackageObject(sym, context.owner))
          }
          for (sym <- scope)
            // OPT: shouldAdd is usually true. Call it here, rather than in the outer loop
            for (tree <- context.unit.synthetics.get(sym) if shouldAdd(sym)) {
              newStats += typedStat(tree) // might add even more synthetics to the scope
              context.unit.synthetics -= sym
            }
          // the type completer of a synthetic might add more synthetics. example: if the
          // factory method of a case class (i.e. the constructor) has a default.
          moreToAdd = scope.elems ne initElems
        }
        if (newStats.isEmpty) stats
        else {
          // put default getters next to the method they belong to,
          // same for companion objects. fixes #2489 and #4036.
          // [Martin] This is pretty ugly. I think we could avoid
          // this code by associating defaults and companion objects
          // with the original tree instead of the new symbol.
          def matches(stat: Tree, synt: Tree) = (stat, synt) match {
            // synt is default arg for stat
            case (DefDef(_, statName, _, _, _, _), DefDef(mods, syntName, _, _, _, _)) =>
              mods.hasDefault && syntName.toString.startsWith(statName.toString)

            // synt is companion module
            case (ClassDef(_, className, _, _), ModuleDef(_, moduleName, _)) =>
              className.toTermName == moduleName

            // synt is implicit def for implicit class (#6278)
            case (ClassDef(cmods, cname, _, _), DefDef(dmods, dname, _, _, _, _)) =>
              cmods.isImplicit && dmods.isImplicit && cname.toTermName == dname

            // ValDef and Accessor
            case (ValDef(_, cname, _, _), DefDef(_, dname, _, _, _, _)) =>
              cname.getterName == dname.getterName

            case _ => false
          }

          def matching(stat: Tree): List[Tree] = {
            val (pos, neg) = newStats.partition(synt => matches(stat, synt))
            newStats = neg
            pos.toList
          }

          (stats foldRight List[Tree]())((stat, res) => {
            stat :: matching(stat) ::: res
          }) ::: newStats.toList
        }
      }

      val stats1 = stats mapConserve typedStat
      if (phase.erasedTypes) stats1
      else {
        // As packages are open, it doesn't make sense to check double definitions here. Furthermore,
        // it is expensive if the package is large. Instead, such double definitions are checked in `Namers.enterInScope`
        if (!context.owner.isPackageClass)
          checkNoDoubleDefs
        addSynthetics(stats1)
      }
    }

    def typedArg(arg: Tree, mode: Mode, newmode: Mode, pt: Type): Tree = {
      val typedMode = mode.onlySticky | newmode
      val t = withCondConstrTyper(mode.inSccMode)(_.typed(arg, typedMode, pt))
      checkDead.inMode(typedMode, t)
    }

    def typedArgs(args: List[Tree], mode: Mode) =
      args mapConserve (arg => typedArg(arg, mode, NOmode, WildcardType))

    /** Does function need to be instantiated, because a missing parameter
     *  in an argument closure overlaps with an uninstantiated formal?
     */
    def needsInstantiation(tparams: List[Symbol], formals: List[Type], args: List[Tree]) = {
      def isLowerBounded(tparam: Symbol) = !tparam.info.bounds.lo.typeSymbol.isBottomClass

      exists2(formals, args) {
        case (formal, Function(vparams, _)) =>
          (vparams exists (_.tpt.isEmpty)) &&
          vparams.length <= MaxFunctionArity &&
          (formal baseType FunctionClass(vparams.length) match {
            case TypeRef(_, _, formalargs) =>
              ( exists2(formalargs, vparams)((formal, vparam) =>
                        vparam.tpt.isEmpty && (tparams exists formal.contains))
                && (tparams forall isLowerBounded)
              )
            case _ =>
              false
          })
        case _ =>
          false
      }
    }

    /** Is `tree` a block created by a named application?
     */
    def isNamedApplyBlock(tree: Tree) =
      context.namedApplyBlockInfo exists (_._1 == tree)

    def callToCompanionConstr(context: Context, calledFun: Symbol) = {
      calledFun.isConstructor && {
        val methCtx = context.enclMethod
        (methCtx != NoContext) && {
          val contextFun = methCtx.tree.symbol
          contextFun.isPrimaryConstructor && contextFun.owner.isModuleClass &&
          companionSymbolOf(calledFun.owner, context).moduleClass == contextFun.owner
        }
      }
    }

    def doTypedApply(tree: Tree, fun0: Tree, args: List[Tree], mode: Mode, pt: Type): Tree = {
      // TODO_NMT: check the assumption that args nonEmpty
      def duplErrTree = setError(treeCopy.Apply(tree, fun0, args))
      def duplErrorTree(err: AbsTypeError) = { context.issue(err); duplErrTree }

      def preSelectOverloaded(fun: Tree): Tree = {
        if (fun.hasSymbolField && fun.symbol.isOverloaded) {
          // remove alternatives with wrong number of parameters without looking at types.
          // less expensive than including them in inferMethodAlternative (see below).
          def shapeType(arg: Tree): Type = arg match {
            case Function(vparams, body) =>
              // No need for phasedAppliedType, as we don't get here during erasure --
              // overloading resolution happens during type checking.
              // During erasure, the condition above (fun.symbol.isOverloaded) is false.
              functionType(vparams map (_ => AnyTpe), shapeType(body))
            case AssignOrNamedArg(Ident(name), rhs) =>
              NamedType(name, shapeType(rhs))
            case _ =>
              NothingTpe
          }
          val argtypes = args map shapeType
          val pre = fun.symbol.tpe.prefix
          var sym = fun.symbol filter { alt =>
            // must use pt as expected type, not WildcardType (a tempting quick fix to #2665)
            // now fixed by using isWeaklyCompatible in exprTypeArgs
            // TODO: understand why exactly -- some types were not inferred anymore (`ant clean quick.bin` failed)
            // (I had expected inferMethodAlternative to pick up the slack introduced by using WildcardType here)
            //
            // @PP responds: I changed it to pass WildcardType instead of pt and only one line in
            // trunk (excluding scalacheck, which had another) failed to compile. It was this line in
            // Types: "refs = Array(Map(), Map())".  I determined that inference fails if there are at
            // least two invariant type parameters. See the test case I checked in to help backstop:
            // pos/isApplicableSafe.scala.
            isApplicableSafe(context.undetparams, followApply(pre memberType alt), argtypes, pt)
          }
          if (sym.isOverloaded) {
              // eliminate functions that would result from tupling transforms
              // keeps alternatives with repeated params
            val sym1 = sym filter (alt =>
                 isApplicableBasedOnArity(pre memberType alt, argtypes.length, varargsStar = false, tuplingAllowed = false)
              || alt.tpe.params.exists(_.hasDefault)
            )
            if (sym1 != NoSymbol) sym = sym1
          }
          if (sym == NoSymbol) fun
          else adaptAfterOverloadResolution(fun setSymbol sym setType pre.memberType(sym), mode.forFunMode)
        } else fun
      }

      val fun = preSelectOverloaded(fun0)
      val argslen = args.length

      fun.tpe match {
        case OverloadedType(pre, alts) =>
          def handleOverloaded = {
            val undetparams = context.undetparams

            def funArgTypes(tpAlts: List[(Type, Symbol)]) = tpAlts.map { case (tp, alt) =>
              val relTp = tp.asSeenFrom(pre, alt.owner)
              val argTps = functionOrSamArgTypes(relTp)
              //println(s"funArgTypes $argTps from $relTp")
              argTps.map(approximateAbstracts)
            }

            def functionProto(argTpWithAlt: List[(Type, Symbol)]): Type =
              try functionType(funArgTypes(argTpWithAlt).transpose.map(lub), WildcardType)
              catch { case _: IllegalArgumentException => WildcardType }

            // To propagate as much information as possible to typedFunction, which uses the expected type to
            // infer missing parameter types for Function trees that we're typing as arguments here,
            // we expand the parameter types for all alternatives to the expected argument length,
            // then transpose to get a list of alternative argument types (push down the overloading to the arguments).
            // Thus, for each `arg` in `args`, the corresponding `argPts` in `altArgPts` is a list of expected types
            // for `arg`. Depending on which overload is picked, only one of those expected types must be met, but
            // we're in the process of figuring that out, so we'll approximate below by normalizing them to function types
            // and lubbing the argument types (we treat SAM and FunctionN types equally, but non-function arguments
            // do not receive special treatment: they are typed under WildcardType.)
            val altArgPts =
              if (settings.isScala212 && args.exists(treeInfo.isFunctionMissingParamType))
                try alts.map(alt => formalTypes(alt.info.paramTypes, argslen).map(ft => (ft, alt))).transpose // do least amount of work up front
                catch { case _: IllegalArgumentException => args.map(_ => Nil) } // fail safe in case formalTypes fails to align to argslen
              else args.map(_ => Nil) // will type under argPt == WildcardType

            val (args1, argTpes) = context.savingUndeterminedTypeParams() {
              val amode = forArgMode(fun, mode)

              map2(args, altArgPts) { (arg, argPtAlts) =>
                def typedArg0(tree: Tree) = {
                  // if we have an overloaded HOF such as `(f: Int => Int)Int <and> (f: Char => Char)Char`,
                  // and we're typing a function like `x => x` for the argument, try to collapse
                  // the overloaded type into a single function type from which `typedFunction`
                  // can derive the argument type for `x` in the function literal above
                  val argPt =
                    if (argPtAlts.nonEmpty && treeInfo.isFunctionMissingParamType(tree)) functionProto(argPtAlts)
                    else WildcardType

                  val argTyped = typedArg(tree, amode, BYVALmode, argPt)
                  (argTyped, argTyped.tpe.deconst)
                }

                arg match {
                  // SI-8197/SI-4592 call for checking whether this named argument could be interpreted as an assign
                  // infer.checkNames must not use UnitType: it may not be a valid assignment, or the setter may return another type from Unit
                  // TODO: just make it an error to refer to a non-existent named arg, as it's far more likely to be
                  //       a typo than an assignment passed as an argument
                  case AssignOrNamedArg(lhs@Ident(name), rhs) =>
                    // named args: only type the righthand sides ("unknown identifier" errors otherwise)
                    // the assign is untyped; that's ok because we call doTypedApply
                    typedArg0(rhs) match {
                      case (rhsTyped, tp) => (treeCopy.AssignOrNamedArg(arg, lhs, rhsTyped), NamedType(name, tp))
                    }
                  case treeInfo.WildcardStarArg(_) =>
                    typedArg0(arg) match {
                      case (argTyped, tp) => (argTyped, RepeatedType(tp))
                    }
                  case _ =>
                    typedArg0(arg)
                }
              }.unzip
            }
            if (context.reporter.hasErrors)
              setError(tree)
            else {
              inferMethodAlternative(fun, undetparams, argTpes, pt)
              doTypedApply(tree, adaptAfterOverloadResolution(fun, mode.forFunMode, WildcardType), args1, mode, pt)
            }
          }
          handleOverloaded

        case _ if isPolymorphicSignature(fun.symbol) =>
          // Mimic's Java's treatment of polymorphic signatures as described in
          // https://docs.oracle.com/javase/specs/jls/se8/html/jls-15.html#jls-15.12.3
          //
          // One can think of these methods as being infinitely overloaded. We create
          // a fictitious new cloned method symbol for each call site that takes on a signature
          // governed by a) the argument types and b) the expected type
          val args1 = typedArgs(args, forArgMode(fun, mode))
          val pts = args1.map(_.tpe.deconst)
          val clone = fun.symbol.cloneSymbol.withoutAnnotations
          val cloneParams = pts map (pt => clone.newValueParameter(currentUnit.freshTermName()).setInfo(pt))
          val resultType = if (isFullyDefined(pt)) pt else ObjectTpe
          clone.modifyInfo(mt => copyMethodType(mt, cloneParams, resultType))
          val fun1 = fun.setSymbol(clone).setType(clone.info)
          doTypedApply(tree, fun1, args1, mode, resultType).setType(resultType)

        case mt @ MethodType(params, _) =>
          val paramTypes = mt.paramTypes
          // repeat vararg as often as needed, remove by-name
          val formals = formalTypes(paramTypes, argslen)

          /* Try packing all arguments into a Tuple and apply `fun` to that.
           * This is the last thing which is tried (after default arguments).
           */
          def tryTupleApply: Tree =
            if (phase.erasedTypes || !eligibleForTupleConversion(paramTypes, argslen)) EmptyTree
            else {
              val tupleArgs = List(atPos(tree.pos.makeTransparent)(gen.mkTuple(args)))
              // expected one argument, but got 0 or >1 ==>  try applying to tuple
              // the inner "doTypedApply" does "extractUndetparams" => restore when it fails
              val savedUndetparams = context.undetparams
              // May warn or error if a Unit or tuple was inserted.
              def validate(t: Tree): Tree = {
                // regardless of typer's mode
                val invalidAdaptation = t.symbol != null && !checkValidAdaptation(t, args)
                // only bail if we're typing an expression (and not inside another application)
                if (invalidAdaptation && mode.typingExprNotFun) EmptyTree else t
              }
              def reset(errors: Seq[AbsTypeError]): Tree = {
                context.undetparams = savedUndetparams
                EmptyTree
              }
              silent(_.doTypedApply(tree, fun, tupleArgs, mode, pt)).map(validate).orElse(reset)
            }

          /* Treats an application which uses named or default arguments.
           * Also works if names + a vararg used: when names are used, the vararg
           * parameter has to be specified exactly once. Note that combining varargs
           * and defaults is ruled out by typedDefDef.
           */
          def tryNamesDefaults: Tree = {
            val lencmp = compareLengths(args, formals)

            def checkNotMacro() = {
              if (treeInfo.isMacroApplication(fun))
                tryTupleApply orElse duplErrorTree(NamedAndDefaultArgumentsNotSupportedForMacros(tree, fun))
            }

            if (mt.isErroneous) duplErrTree
            else if (mode.inPatternMode) {
              // #2064
              duplErrorTree(WrongNumberOfArgsError(tree, fun))
            } else if (lencmp > 0) {
              tryTupleApply orElse duplErrorTree {
                val (namelessArgs, argPos) = removeNames(Typer.this)(args, params)
                TooManyArgsNamesDefaultsError(tree, fun, formals, args, namelessArgs, argPos)
              }
            } else if (lencmp == 0) {
              // we don't need defaults. names were used, so this application is transformed
              // into a block (@see transformNamedApplication in NamesDefaults)
              val (namelessArgs, argPos) = removeNames(Typer.this)(args, params)
              if (namelessArgs exists (_.isErroneous)) {
                duplErrTree
              } else if (!allArgsArePositional(argPos) && !sameLength(formals, params))
                // !allArgsArePositional indicates that named arguments are used to re-order arguments
                duplErrorTree(MultipleVarargError(tree))
              else if (allArgsArePositional(argPos) && !isNamedApplyBlock(fun)) {
                // if there's no re-ordering, and fun is not transformed, no need to transform
                // more than an optimization, e.g. important in "synchronized { x = update-x }"
                checkNotMacro()
                doTypedApply(tree, fun, namelessArgs, mode, pt)
              } else {
                checkNotMacro()
                transformNamedApplication(Typer.this, mode, pt)(
                                          treeCopy.Apply(tree, fun, namelessArgs), argPos)
              }
            } else {
              // defaults are needed. they are added to the argument list in named style as
              // calls to the default getters. Example:
              //  foo[Int](a)()  ==>  foo[Int](a)(b = foo$qual.foo$default$2[Int](a))

              // SI-8111 transformNamedApplication eagerly shuffles around the application to preserve
              //         evaluation order. During this process, it calls `changeOwner` on symbols that
              //         are transplanted underneath synthetic temporary vals.
              //
              //         Here, we keep track of the symbols owned by `context.owner` to enable us to
              //         rollback, so that we don't end up with "orphaned" symbols.
              //
              //         TODO: Find a better way!
              //
              //         Note that duplicating trees would not be enough to fix this problem, we would also need to
              //         clone local symbols in the duplicated tree to truly isolate things (in the spirit of BodyDuplicator),
              //         or, better yet, disentangle the logic in `transformNamedApplication` so that we could
              //         determine whether names/defaults is viable *before* transforming trees.
              def ownerOf(sym: Symbol) = if (sym == null || sym == NoSymbol) NoSymbol else sym.owner
              val symsOwnedByContextOwner = tree.collect {
                case t @ (_: DefTree | _: Function) if ownerOf(t.symbol) == context.owner => t.symbol
              }
              def rollbackNamesDefaultsOwnerChanges() {
                symsOwnedByContextOwner foreach (_.owner = context.owner)
              }

              val fun1 = transformNamedApplication(Typer.this, mode, pt)(fun, x => x)
              if (fun1.isErroneous) duplErrTree
              else {
                assert(isNamedApplyBlock(fun1), fun1)
                val NamedApplyInfo(qual, targs, previousArgss, _) = context.namedApplyBlockInfo.get._2
                val blockIsEmpty = fun1 match {
                  case Block(Nil, _) =>
                    // if the block does not have any ValDef we can remove it. Note that the call to
                    // "transformNamedApplication" is always needed in order to obtain targs/previousArgss
                    context.namedApplyBlockInfo = None
                    true
                  case _ => false
                }
                val (allArgs, missing) = addDefaults(args, qual, targs, previousArgss, params, fun.pos.focus, context)
                val funSym = fun1 match { case Block(_, expr) => expr.symbol }
                val lencmp2 = compareLengths(allArgs, formals)

                if (!sameLength(allArgs, args) && callToCompanionConstr(context, funSym)) {
                  duplErrorTree(ModuleUsingCompanionClassDefaultArgsError(tree))
                } else if (lencmp2 > 0) {
                  removeNames(Typer.this)(allArgs, params) // #3818
                  duplErrTree
                } else if (lencmp2 == 0) {
                  // useful when a default doesn't match parameter type, e.g. def f[T](x:T="a"); f[Int]()
                  checkNotMacro()
                  context.diagUsedDefaults = true
                  doTypedApply(tree, if (blockIsEmpty) fun else fun1, allArgs, mode, pt)
                } else {
                  rollbackNamesDefaultsOwnerChanges()
                  tryTupleApply orElse duplErrorTree(NotEnoughArgsError(tree, fun, missing))
                }
              }
            }
          }

          if (!sameLength(formals, args) ||   // wrong nb of arguments
              (args exists isNamedArg) ||     // uses a named argument
              isNamedApplyBlock(fun)) {       // fun was transformed to a named apply block =>
                                              // integrate this application into the block
            if (dyna.isApplyDynamicNamed(fun) && isDynamicRewrite(fun)) dyna.typedNamedApply(tree, fun, args, mode, pt)
            else tryNamesDefaults
          } else {
            val tparams = context.extractUndetparams()
            if (tparams.isEmpty) { // all type params are defined
              def handleMonomorphicCall: Tree = {
                // no expected type when jumping to a match label -- anything goes (this is ok since we're typing the translation of well-typed code)
                // ... except during erasure: we must take the expected type into account as it drives the insertion of casts!
                // I've exhausted all other semi-clean approaches I could think of in balancing GADT magic, SI-6145, CPS type-driven transforms and other existential trickiness
                // (the right thing to do -- packing existential types -- runs into limitations in subtyping existential types,
                //  casting breaks SI-6145,
                //  not casting breaks GADT typing as it requires sneaking ill-typed trees past typer)
                def noExpectedType = !phase.erasedTypes && fun.symbol.isLabel && treeInfo.isSynthCaseSymbol(fun.symbol)

                val args1 = (
                  if (noExpectedType)
                    typedArgs(args, forArgMode(fun, mode))
                  else
                    typedArgsForFormals(args, paramTypes, forArgMode(fun, mode))
                )

                // instantiate dependent method types, must preserve singleton types where possible (stableTypeFor) -- example use case:
                // val foo = "foo"; def precise(x: String)(y: x.type): x.type = {...}; val bar : foo.type = precise(foo)(foo)
                // precise(foo) : foo.type => foo.type
                val restpe = mt.resultType(mapList(args1)(arg => gen stableTypeFor arg orElse arg.tpe))
                def ifPatternSkipFormals(tp: Type) = tp match {
                  case MethodType(_, rtp) if (mode.inPatternMode) => rtp
                  case _ => tp
                }

                /*
                 * This is translating uses of List() into Nil.  This is less
                 *  than ideal from a consistency standpoint, but it shouldn't be
                 *  altered without due caution.
                 *  ... this also causes bootstrapping cycles if List_apply is
                 *  forced during kind-arity checking, so it is guarded by additional
                 *  tests to ensure we're sufficiently far along.
                 */
                if (args.isEmpty && canTranslateEmptyListToNil && fun.symbol.isInitialized && ListModule.hasCompleteInfo && (fun.symbol == List_apply))
                  atPos(tree.pos)(gen.mkNil setType restpe)
                else
                  constfold(treeCopy.Apply(tree, fun, args1) setType ifPatternSkipFormals(restpe))
              }
              checkDead.updateExpr(fun) {
                handleMonomorphicCall
              }
            } else if (needsInstantiation(tparams, formals, args)) {
              //println("needs inst "+fun+" "+tparams+"/"+(tparams map (_.info)))
              inferExprInstance(fun, tparams)
              doTypedApply(tree, fun, args, mode, pt)
            } else {
              def handlePolymorphicCall = {
                assert(!mode.inPatternMode, mode) // this case cannot arise for patterns
                val lenientTargs = protoTypeArgs(tparams, formals, mt.resultApprox, pt)
                val strictTargs = map2(lenientTargs, tparams)((targ, tparam) =>
                  if (targ == WildcardType) tparam.tpeHK else targ)
                var remainingParams = paramTypes
                def typedArgToPoly(arg: Tree, formal: Type): Tree = { //TR TODO: cleanup
                  val lenientPt = formal.instantiateTypeParams(tparams, lenientTargs)
                  val newmode =
                    if (isByNameParamType(remainingParams.head)) POLYmode
                    else POLYmode | BYVALmode
                  if (remainingParams.tail.nonEmpty) remainingParams = remainingParams.tail
                  val arg1 = typedArg(arg, forArgMode(fun, mode), newmode, lenientPt)
                  val argtparams = context.extractUndetparams()
                  if (!argtparams.isEmpty) {
                    val strictPt = formal.instantiateTypeParams(tparams, strictTargs)
                    inferArgumentInstance(arg1, argtparams, strictPt, lenientPt)
                    arg1
                  } else arg1
                }
                val args1 = map2(args, formals)(typedArgToPoly)
                if (args1 exists { _.isErrorTyped }) duplErrTree
                else {
                  debuglog("infer method inst " + fun + ", tparams = " + tparams + ", args = " + args1.map(_.tpe) + ", pt = " + pt + ", lobounds = " + tparams.map(_.tpe.bounds.lo) + ", parambounds = " + tparams.map(_.info)) //debug
                  // define the undetparams which have been fixed by this param list, replace the corresponding symbols in "fun"
                  // returns those undetparams which have not been instantiated.
                  val undetparams = inferMethodInstance(fun, tparams, args1, pt)
                  try doTypedApply(tree, fun, args1, mode, pt)
                  finally context.undetparams = undetparams
                }
              }
              handlePolymorphicCall
            }
          }

        case SingleType(_, _) =>
          doTypedApply(tree, fun setType fun.tpe.widen, args, mode, pt)

        case ErrorType =>
          if (!tree.isErrorTyped) setError(tree) else tree
          // @H change to setError(treeCopy.Apply(tree, fun, args))

        // SI-7877 `isTerm` needed to exclude `class T[A] { def unapply(..) }; ... case T[X] =>`
        case HasUnapply(unapply) if mode.inPatternMode && fun.isTerm =>
          doTypedUnapply(tree, fun0, fun, args, mode, pt)

        case _ =>
          if (treeInfo.isMacroApplication(tree)) duplErrorTree(MacroTooManyArgumentListsError(tree, fun.symbol))
          else duplErrorTree(ApplyWithoutArgsError(tree, fun))
      }
    }

    /**
     * Convert an annotation constructor call into an AnnotationInfo.
     */
    def typedAnnotation(ann: Tree, mode: Mode = EXPRmode): AnnotationInfo = {
      var hasError: Boolean = false
      val pending = ListBuffer[AbsTypeError]()
      def ErroneousAnnotation = new ErroneousAnnotation().setOriginal(ann)

      def finish(res: AnnotationInfo): AnnotationInfo = {
        if (hasError) {
          pending.foreach(ErrorUtils.issueTypeError)
          ErroneousAnnotation
        }
        else res
      }

      def reportAnnotationError(err: AbsTypeError) = {
        pending += err
        hasError = true
        ErroneousAnnotation
      }

      /* Calling constfold right here is necessary because some trees (negated
       * floats and literals in particular) are not yet folded.
       */
      def tryConst(tr: Tree, pt: Type): Option[LiteralAnnotArg] = {
        // The typed tree may be relevantly different than the tree `tr`,
        // e.g. it may have encountered an implicit conversion.
        val ttree = typed(constfold(tr), pt)
        val const: Constant = ttree match {
          case l @ Literal(c) if !l.isErroneous => c
          case tree => tree.tpe match {
            case ConstantType(c)  => c
            case tpe              => null
          }
        }

        if (const == null) {
          reportAnnotationError(AnnotationNotAConstantError(ttree)); None
        } else if (const.value == null) {
          reportAnnotationError(AnnotationArgNullError(tr)); None
        } else
          Some(LiteralAnnotArg(const))
      }

      /* Converts an untyped tree to a ClassfileAnnotArg. If the conversion fails,
       * an error message is reported and None is returned.
       */
      def tree2ConstArg(tree: Tree, pt: Type): Option[ClassfileAnnotArg] = tree match {
        case Apply(Select(New(tpt), nme.CONSTRUCTOR), args) if (pt.typeSymbol == ArrayClass) =>
          reportAnnotationError(ArrayConstantsError(tree)); None

        case ann @ Apply(Select(New(tpt), nme.CONSTRUCTOR), args) =>
          val annInfo = typedAnnotation(ann, mode)
          val annType = annInfo.tpe

          if (!annType.typeSymbol.isSubClass(pt.typeSymbol))
            reportAnnotationError(AnnotationTypeMismatchError(tpt, annType, annType))
          else if (!annType.typeSymbol.isSubClass(ClassfileAnnotationClass))
            reportAnnotationError(NestedAnnotationError(ann, annType))

          if (annInfo.atp.isErroneous) { hasError = true; None }
          else Some(NestedAnnotArg(annInfo))

        // use of Array.apply[T: ClassTag](xs: T*): Array[T]
        // and    Array.apply(x: Int, xs: Int*): Array[Int]       (and similar)
        case Apply(fun, args) =>
          val typedFun = typed(fun, mode.forFunMode)
          if (typedFun.symbol.owner == ArrayModule.moduleClass && typedFun.symbol.name == nme.apply)
            pt match {
              case TypeRef(_, ArrayClass, targ :: _) =>
                trees2ConstArg(args, targ)
              case _ =>
                // For classfile annotations, pt can only be T:
                //   BT = Int, .., String, Class[_], JavaAnnotClass
                //   T = BT | Array[BT]
                // So an array literal as argument can only be valid if pt is Array[_]
                reportAnnotationError(ArrayConstantsTypeMismatchError(tree, pt))
                None
            }
          else tryConst(tree, pt)

        case Typed(t, _) =>
          tree2ConstArg(t, pt)

        case tree =>
          tryConst(tree, pt)
      }
      def trees2ConstArg(trees: List[Tree], pt: Type): Option[ArrayAnnotArg] = {
        val args = trees.map(tree2ConstArg(_, pt))
        if (args.exists(_.isEmpty)) None
        else Some(ArrayAnnotArg(args.flatten.toArray))
      }

      // begin typedAnnotation
      val treeInfo.Applied(fun0, targs, argss) = ann
      if (fun0.isErroneous)
        return finish(ErroneousAnnotation)
      val typedFun0 = typed(fun0, mode.forFunMode)
      val typedFunPart = (
        // If there are dummy type arguments in typeFun part, it suggests we
        // must type the actual constructor call, not only the select. The value
        // arguments are how the type arguments will be inferred.
        if (targs.isEmpty && typedFun0.exists(t => t.tpe != null && isDummyAppliedType(t.tpe)))
          logResult(s"Retyped $typedFun0 to find type args")(typed(argss.foldLeft(fun0)(Apply(_, _))))
        else
          typedFun0
      )
      val treeInfo.Applied(typedFun @ Select(New(annTpt), _), _, _) = typedFunPart
      val annType = annTpt.tpe

      finish(
        if (typedFun.isErroneous || annType == null)
          ErroneousAnnotation
        else if (annType.typeSymbol isNonBottomSubClass ClassfileAnnotationClass) {
          // annotation to be saved as java classfile annotation
          val isJava = typedFun.symbol.owner.isJavaDefined
          if (argss.length > 1) {
            reportAnnotationError(MultipleArgumentListForAnnotationError(ann))
          }
          else {
            val annScopeJava =
              if (isJava) annType.decls.filter(sym => sym.isMethod && !sym.isConstructor && sym.isJavaDefined)
              else EmptyScope // annScopeJava is only used if isJava

            val names = mutable.Set[Symbol]()
            names ++= (if (isJava) annScopeJava.iterator
                       else typedFun.tpe.params.iterator)

            def hasValue = names exists (_.name == nme.value)
            val args = argss match {
              case (arg :: Nil) :: Nil if !isNamedArg(arg) && hasValue => gen.mkNamedArg(nme.value, arg) :: Nil
              case args :: Nil                                         => args
            }

            val nvPairs = args map {
              case arg @ AssignOrNamedArg(Ident(name), rhs) =>
                val sym = if (isJava) annScopeJava.lookup(name)
                          else findSymbol(typedFun.tpe.params)(_.name == name)
                if (sym == NoSymbol) {
                  reportAnnotationError(UnknownAnnotationNameError(arg, name))
                  (nme.ERROR, None)
                } else if (!names.contains(sym)) {
                  reportAnnotationError(DuplicateValueAnnotationError(arg, name))
                  (nme.ERROR, None)
                } else {
                  names -= sym
                  if (isJava) sym.cookJavaRawInfo() // #3429
                  val annArg = tree2ConstArg(rhs, sym.tpe.resultType)
                  (sym.name, annArg)
                }
              case arg =>
                reportAnnotationError(ClassfileAnnotationsAsNamedArgsError(arg))
                (nme.ERROR, None)
            }
            for (sym <- names) {
              // make sure the flags are up to date before erroring (jvm/t3415 fails otherwise)
              sym.initialize
              if (!sym.hasAnnotation(AnnotationDefaultAttr) && !sym.hasDefault)
                reportAnnotationError(AnnotationMissingArgError(ann, annType, sym))
            }

            if (hasError) ErroneousAnnotation
            else AnnotationInfo(annType, List(), nvPairs map {p => (p._1, p._2.get)}).setOriginal(Apply(typedFun, args).setPos(ann.pos))
          }
        }
        else {
          val typedAnn: Tree = {
            // local dummy fixes SI-5544
            val localTyper = newTyper(context.make(ann, context.owner.newLocalDummy(ann.pos)))
            localTyper.typed(ann, mode, annType)
          }
          def annInfo(t: Tree): AnnotationInfo = t match {
            case Apply(Select(New(tpt), nme.CONSTRUCTOR), args) =>
              AnnotationInfo(annType, args, List()).setOriginal(typedAnn).setPos(t.pos)

            case Block(stats, expr) =>
              context.warning(t.pos, "Usage of named or default arguments transformed this annotation\n"+
                                "constructor call into a block. The corresponding AnnotationInfo\n"+
                                "will contain references to local values and default getters instead\n"+
                                "of the actual argument trees")
              annInfo(expr)

            case Apply(fun, args) =>
              context.warning(t.pos, "Implementation limitation: multiple argument lists on annotations are\n"+
                                     "currently not supported; ignoring arguments "+ args)
              annInfo(fun)

            case _ =>
              reportAnnotationError(UnexpectedTreeAnnotationError(t, typedAnn))
          }

          if (annType.typeSymbol == DeprecatedAttr && argss.flatten.size < 2)
            context.deprecationWarning(ann.pos, DeprecatedAttr, "@deprecated now takes two arguments; see the scaladoc.", "2.11.0")

          if ((typedAnn.tpe == null) || typedAnn.tpe.isErroneous) ErroneousAnnotation
          else annInfo(typedAnn)
        }
      )
    }

    /** Compute an existential type from raw hidden symbols `syms` and type `tp`
     */
    def packSymbols(hidden: List[Symbol], tp: Type): Type = global.packSymbols(hidden, tp, context0.owner)

    def isReferencedFrom(ctx: Context, sym: Symbol): Boolean = (
       ctx.owner.isTerm && (ctx.scope.exists { dcl => dcl.isInitialized && (dcl.info contains sym) }) || {
          var ctx1 = ctx.outer
          while ((ctx1 != NoContext) && (ctx1.scope eq ctx.scope))
            ctx1 = ctx1.outer

          (ctx1 != NoContext) && isReferencedFrom(ctx1, sym)
       }
    )

    def isCapturedExistential(sym: Symbol) = (
      (sym hasAllFlags EXISTENTIAL | CAPTURED) && {
        val start = if (Statistics.canEnable) Statistics.startTimer(isReferencedNanos) else null
        try !isReferencedFrom(context, sym)
        finally if (Statistics.canEnable) Statistics.stopTimer(isReferencedNanos, start)
      }
    )

    def packCaptured(tpe: Type): Type = {
      val captured = mutable.Set[Symbol]()
      for (tp <- tpe)
        if (isCapturedExistential(tp.typeSymbol))
          captured += tp.typeSymbol
      existentialAbstraction(captured.toList, tpe)
    }

    /** convert local symbols and skolems to existentials */
    def packedType(tree: Tree, owner: Symbol): Type = {
      def defines(tree: Tree, sym: Symbol) = (
           sym.isExistentialSkolem && sym.unpackLocation == tree
        || tree.isDef && tree.symbol == sym
      )
      def isVisibleParameter(sym: Symbol) = (
           sym.isParameter
        && (sym.owner == owner)
        && (sym.isType || !owner.isAnonymousFunction)
      )
      def containsDef(owner: Symbol, sym: Symbol): Boolean =
        (!sym.hasPackageFlag) && {
          var o = sym.owner
          while (o != owner && o != NoSymbol && !o.hasPackageFlag) o = o.owner
          o == owner && !isVisibleParameter(sym)
        }
      var localSyms = immutable.Set[Symbol]()
      var boundSyms = immutable.Set[Symbol]()
      def isLocal(sym: Symbol): Boolean =
        if (sym == NoSymbol || sym.isRefinementClass || sym.isLocalDummy) false
        else if (owner == NoSymbol) tree exists (defines(_, sym))
        else containsDef(owner, sym) || isRawParameter(sym) || isCapturedExistential(sym)
      def containsLocal(tp: Type): Boolean =
        tp exists (t => isLocal(t.typeSymbol) || isLocal(t.termSymbol))

      val dealiasLocals = new TypeMap {
        def apply(tp: Type): Type = tp match {
          case TypeRef(pre, sym, args) =>
            if (sym.isAliasType && containsLocal(tp) && (tp.dealias ne tp)) apply(tp.dealias)
            else {
              if (pre.isVolatile) pre match {
                case SingleType(_, sym) if sym.isSynthetic && isPastTyper =>
                  debuglog(s"ignoring volatility of prefix in pattern matcher generated inferred type: $tp") // See pos/t7459c.scala
                case _ =>
                  InferTypeWithVolatileTypeSelectionError(tree, pre)
              }
              mapOver(tp)
            }
          case _ =>
            mapOver(tp)
        }
      }
      // add all local symbols of `tp` to `localSyms`
      // TODO: expand higher-kinded types into individual copies for each instance.
      def addLocals(tp: Type) {
        val remainingSyms = new ListBuffer[Symbol]
        def addIfLocal(sym: Symbol, tp: Type) {
          if (isLocal(sym) && !localSyms(sym) && !boundSyms(sym)) {
            if (sym.typeParams.isEmpty) {
              localSyms += sym
              remainingSyms += sym
            } else {
              AbstractExistentiallyOverParamerizedTpeError(tree, tp)
            }
          }
        }

        for (t <- tp) {
          t match {
            case ExistentialType(tparams, _) =>
              boundSyms ++= tparams
            case AnnotatedType(annots, _) =>
              for (annot <- annots; arg <- annot.args) {
                arg match {
                  case Ident(_) =>
                    // Check the symbol of an Ident, unless the
                    // Ident's type is already over an existential.
                    // (If the type is already over an existential,
                    // then remap the type, not the core symbol.)
                    if (!arg.tpe.typeSymbol.hasFlag(EXISTENTIAL))
                      addIfLocal(arg.symbol, arg.tpe)
                  case _ => ()
                }
              }
            case _ =>
          }
          addIfLocal(t.termSymbol, t)
          addIfLocal(t.typeSymbol, t)
        }
        for (sym <- remainingSyms) addLocals(sym.existentialBound)
      }

      val dealiasedType = dealiasLocals(tree.tpe)
      addLocals(dealiasedType)
      packSymbols(localSyms.toList, dealiasedType)
    }

    def typedClassOf(tree: Tree, tpt: Tree, noGen: Boolean = false) =
      if (!checkClassType(tpt) && noGen) tpt
      else atPos(tree.pos)(gen.mkClassOf(tpt.tpe))

    protected def typedExistentialTypeTree(tree: ExistentialTypeTree, mode: Mode): Tree = {
      for (wc <- tree.whereClauses)
        if (wc.symbol == NoSymbol) { namer enterSym wc; wc.symbol setFlag EXISTENTIAL }
        else context.scope enter wc.symbol
      val whereClauses1 = typedStats(tree.whereClauses, context.owner)
      for (vd @ ValDef(_, _, _, _) <- whereClauses1)
        if (vd.symbol.tpe.isVolatile)
          AbstractionFromVolatileTypeError(vd)
      val tpt1 = typedType(tree.tpt, mode)
      existentialTransform(whereClauses1 map (_.symbol), tpt1.tpe)((tparams, tp) => {
        val original = tpt1 match {
          case tpt : TypeTree => atPos(tree.pos)(ExistentialTypeTree(tpt.original, tree.whereClauses))
          case _ => {
            debuglog(s"cannot reconstruct the original for $tree, because $tpt1 is not a TypeTree")
            tree
          }
        }
        TypeTree(newExistentialType(tparams, tp)) setOriginal original
      }
      )
    }

    // lifted out of typed1 because it's needed in typedImplicit0
    protected def typedTypeApply(tree: Tree, mode: Mode, fun: Tree, args: List[Tree]): Tree = fun.tpe match {
      case OverloadedType(pre, alts) =>
        inferPolyAlternatives(fun, mapList(args)(treeTpe))

        // SI-8267 `memberType` can introduce existentials *around* a PolyType/MethodType, see AsSeenFromMap#captureThis.
        //         If we had selected a non-overloaded symbol, `memberType` would have been called in `makeAccessible`
        //         and the resulting existential type would have been skolemized in `adapt` *before* we typechecked
        //         the enclosing type-/ value- application.
        //
        //         However, if the selection is overloaded, we defer calling `memberType` until we can select a single
        //         alternative here. It is therefore necessary to skolemize the existential here.
        //
        val fun1 = adaptAfterOverloadResolution(fun, mode.forFunMode | TAPPmode)

        val tparams = fun1.symbol.typeParams //@M TODO: fun.symbol.info.typeParams ? (as in typedAppliedTypeTree)
        val args1 = if (sameLength(args, tparams)) {
          //@M: in case TypeApply we can't check the kind-arities of the type arguments,
          // as we don't know which alternative to choose... here we do
          map2Conserve(args, tparams) {
            //@M! the polytype denotes the expected kind
            (arg, tparam) => typedHigherKindedType(arg, mode, Kind.FromParams(tparam.typeParams))
          }
        } else // @M: there's probably something wrong when args.length != tparams.length... (triggered by bug #320)
         // Martin, I'm using fake trees, because, if you use args or arg.map(typedType),
         // inferPolyAlternatives loops...  -- I have no idea why :-(
         // ...actually this was looping anyway, see bug #278.
          return TypedApplyWrongNumberOfTpeParametersError(fun, fun)

        typedTypeApply(tree, mode, fun1, args1)
      case SingleType(_, _) =>
        typedTypeApply(tree, mode, fun setType fun.tpe.widen, args)
      case PolyType(tparams, restpe) if tparams.nonEmpty =>
        if (sameLength(tparams, args)) {
          val targs = mapList(args)(treeTpe)
          checkBounds(tree, NoPrefix, NoSymbol, tparams, targs, "")
          if (isPredefClassOf(fun.symbol))
            typedClassOf(tree, args.head, noGen = true)
          else {
            if (!isPastTyper && fun.symbol == Any_isInstanceOf && targs.nonEmpty) {
              val scrutineeType = fun match {
                case Select(qual, _) => qual.tpe
                case _               => AnyTpe
              }
              checkCheckable(tree, targs.head, scrutineeType, inPattern = false)
            }
            val resultpe = restpe.instantiateTypeParams(tparams, targs)
            //@M substitution in instantiateParams needs to be careful!
            //@M example: class Foo[a] { def foo[m[x]]: m[a] = error("") } (new Foo[Int]).foo[List] : List[Int]
            //@M    --> first, m[a] gets changed to m[Int], then m gets substituted for List,
            //          this must preserve m's type argument, so that we end up with List[Int], and not List[a]
            //@M related bug: #1438
            //println("instantiating type params "+restpe+" "+tparams+" "+targs+" = "+resultpe)
            treeCopy.TypeApply(tree, fun, args) setType resultpe
          }
        }
        else {
          TypedApplyWrongNumberOfTpeParametersError(tree, fun)
        }
      case ErrorType =>
        setError(treeCopy.TypeApply(tree, fun, args))
      case _ =>
        fun match {
          // drop the application for an applyDynamic or selectDynamic call since it has been pushed down
          case treeInfo.DynamicApplication(_, _) => fun
          case _ => TypedApplyDoesNotTakeTpeParametersError(tree, fun)
        }
    }

    object dyna {
      import treeInfo.{isApplyDynamicName, DynamicUpdate, DynamicApplicationNamed}

      def acceptsApplyDynamic(tp: Type) = tp.typeSymbol isNonBottomSubClass DynamicClass

      /** Returns `Some(t)` if `name` can be selected dynamically on `qual`, `None` if not.
       * `t` specifies the type to be passed to the applyDynamic/selectDynamic call (unless it is NoType)
       * NOTE: currently either returns None or Some(NoType) (scala-virtualized extends this to Some(t) for selections on staged Structs)
       */
      def acceptsApplyDynamicWithType(qual: Tree, name: Name): Option[Type] =
        // don't selectDynamic selectDynamic, do select dynamic at unknown type,
        // in scala-virtualized, we may return a Some(tp) where tp ne NoType
        if (!isApplyDynamicName(name) && acceptsApplyDynamic(qual.tpe.widen)) Some(NoType)
        else None

      def isDynamicallyUpdatable(tree: Tree) = tree match {
        case DynamicUpdate(qual, name) =>
          // if the qualifier is a Dynamic, that's all we need to know
          acceptsApplyDynamic(qual.tpe)
        case _ => false
      }

      def isApplyDynamicNamed(fun: Tree): Boolean = fun match {
        case DynamicApplicationNamed(qual, _) if acceptsApplyDynamic(qual.tpe.widen) => true
        case _ => false
          // look deeper?
          // val treeInfo.Applied(methPart, _, _) = fun
          // println("methPart of "+ fun +" is "+ methPart)
          // if (methPart ne fun) isApplyDynamicNamed(methPart)
          // else false
      }

      def typedNamedApply(orig: Tree, fun: Tree, args: List[Tree], mode: Mode, pt: Type): Tree = {
        def argToBinding(arg: Tree): Tree = arg match {
          case AssignOrNamedArg(i @ Ident(name), rhs) =>
            atPos(i.pos.withEnd(rhs.pos.end)) {
              gen.mkTuple(List(atPos(i.pos)(CODE.LIT(name.toString)), rhs))
            }
          case _ =>
            gen.mkTuple(List(CODE.LIT(""), arg))
        }

        val t = treeCopy.Apply(orig, unmarkDynamicRewrite(fun), args map argToBinding)
        wrapErrors(t, _.typed(t, mode, pt))
      }

      /** Translate selection that does not typecheck according to the normal rules into a selectDynamic/applyDynamic.
       *
       * foo.method("blah")  ~~> foo.applyDynamic("method")("blah")
       * foo.method(x = "blah")  ~~> foo.applyDynamicNamed("method")(("x", "blah"))
       * foo.varia = 10      ~~> foo.updateDynamic("varia")(10)
       * foo.field           ~~> foo.selectDynamic("field")
       * foo.arr(10) = 13    ~~> foo.selectDynamic("arr").update(10, 13)
       *
       * what if we want foo.field == foo.selectDynamic("field") == 1, but `foo.field = 10` == `foo.selectDynamic("field").update(10)` == ()
       * what would the signature for selectDynamic be? (hint: it needs to depend on whether an update call is coming or not)
       *
       * need to distinguish selectDynamic and applyDynamic somehow: the former must return the selected value, the latter must accept an apply or an update
       *  - could have only selectDynamic and pass it a boolean whether more is to come,
       *    so that it can either return the bare value or something that can handle the apply/update
       *      HOWEVER that makes it hard to return unrelated values for the two cases
       *      --> selectDynamic's return type is now dependent on the boolean flag whether more is to come
       *  - simplest solution: have two method calls
       *
       */
      def mkInvoke(context: Context, tree: Tree, qual: Tree, name: Name): Option[Tree] = {
        val cxTree = context.enclosingNonImportContext.tree // SI-8364
        debuglog(s"dyna.mkInvoke($cxTree, $tree, $qual, $name)")
        val treeInfo.Applied(treeSelection, _, _) = tree
        def isDesugaredApply = {
          val protoQual = macroExpandee(qual) orElse qual
          treeSelection match {
            case Select(`protoQual`, nme.apply) => true
            case _                              => false
          }
        }
        acceptsApplyDynamicWithType(qual, name) map { tp =>
          // If tp == NoType, pass only explicit type arguments to applyXXX.  Not used at all
          // here - it is for scala-virtualized, where tp will be passed as an argument (for
          // selection on a staged Struct)
          def hasNamed(args: List[Tree]): Boolean = args exists (_.isInstanceOf[AssignOrNamedArg])
          // not supported: foo.bar(a1,..., an: _*)
          def hasStar(args: List[Tree]) = treeInfo.isWildcardStarArgList(args)
          def applyOp(args: List[Tree]) = if (hasNamed(args)) nme.applyDynamicNamed else nme.applyDynamic
          def matches(t: Tree)          = isDesugaredApply || treeInfo.dissectApplied(t).core == treeSelection

          /* Note that the trees which arrive here are potentially some distance from
           * the trees of direct interest. `cxTree` is some enclosing expression which
           * may apparently be arbitrarily larger than `tree`; and `tree` itself is
           * too small, having at least in some cases lost its explicit type parameters.
           * This logic is designed to use `tree` to pinpoint the immediately surrounding
           * Apply/TypeApply/Select node, and only then creates the dynamic call.
           * See SI-6731 among others.
           */
          def findSelection(t: Tree): Option[(TermName, Tree)] = t match {
            case Apply(fn, args) if hasStar(args) => DynamicVarArgUnsupported(tree, applyOp(args)) ; None
            case Apply(fn, args) if matches(fn)   => Some((applyOp(args), fn))
            case Assign(lhs, _) if matches(lhs)   => Some((nme.updateDynamic, lhs))
            case _ if matches(t)                  => Some((nme.selectDynamic, t))
            case _                                => (t.children flatMap findSelection).headOption
          }
          findSelection(cxTree) match {
            case Some((opName, treeInfo.Applied(_, targs, _))) =>
              val fun = gen.mkTypeApply(Select(qual, opName), targs)
              if (opName == nme.updateDynamic) suppressMacroExpansion(fun) // SI-7617
              val nameStringLit = atPos(treeSelection.pos.withStart(treeSelection.pos.point).makeTransparent) {
                Literal(Constant(name.decode))
              }
              markDynamicRewrite(atPos(qual.pos)(Apply(fun, List(nameStringLit))))
            case _ =>
              setError(tree)
          }
        }
      }
      def wrapErrors(tree: Tree, typeTree: Typer => Tree): Tree = silent(typeTree) orElse (err => DynamicRewriteError(tree, err.head))
    }

    def typed1(tree: Tree, mode: Mode, pt: Type): Tree = {
      // Lookup in the given class using the root mirror.
      def lookupInOwner(owner: Symbol, name: Name): Symbol =
        if (mode.inQualMode) rootMirror.missingHook(owner, name) else NoSymbol

      // Lookup in the given qualifier.  Used in last-ditch efforts by typedIdent and typedSelect.
      def lookupInRoot(name: Name): Symbol  = lookupInOwner(rootMirror.RootClass, name)
      def lookupInEmpty(name: Name): Symbol = rootMirror.EmptyPackageClass.info member name

      def lookupInQualifier(qual: Tree, name: Name): Symbol = (
        if (name == nme.ERROR || qual.tpe.widen.isErroneous)
          NoSymbol
        else lookupInOwner(qual.tpe.typeSymbol, name) orElse {
          NotAMemberError(tree, qual, name)
          NoSymbol
        }
      )

      def typedAnnotated(atd: Annotated): Tree = {
        val ann = atd.annot
        val arg1 = typed(atd.arg, mode, pt)
        /* mode for typing the annotation itself */
        val annotMode = (mode &~ TYPEmode) | EXPRmode

        def resultingTypeTree(tpe: Type) = {
          // we need symbol-ful originals for reification
          // hence we go the extra mile to hand-craft this guy
          val original = arg1 match {
            case tt @ TypeTree() if tt.original != null => Annotated(ann, tt.original)
            // this clause is needed to correctly compile stuff like "new C @D" or "@(inline @getter)"
            case _ => Annotated(ann, arg1)
          }
          original setType ann.tpe
          TypeTree(tpe) setOriginal original setPos tree.pos.focus
        }

        if (arg1.isType) {
          // make sure the annotation is only typechecked once
          if (ann.tpe == null) {
            val ainfo = typedAnnotation(ann, annotMode)
            val atype = arg1.tpe.withAnnotation(ainfo)

            if (ainfo.isErroneous)
              // Erroneous annotations were already reported in typedAnnotation
              arg1  // simply drop erroneous annotations
            else {
              ann setType atype
              resultingTypeTree(atype)
            }
          } else {
            // the annotation was typechecked before
            resultingTypeTree(ann.tpe)
          }
        }
        else {
          if (ann.tpe == null) {
            val annotInfo = typedAnnotation(ann, annotMode)
            ann setType arg1.tpe.withAnnotation(annotInfo)
          }
          val atype = ann.tpe
          // For `f(): @inline/noinline` callsites, add the InlineAnnotatedAttachment. TypeApplys
          // are eliminated by erasure, so add it to the underlying function in this case.
          def setInlineAttachment(t: Tree, att: InlineAnnotatedAttachment): Unit = t match {
            case TypeApply(fun, _) => setInlineAttachment(fun, att)
            case _ => t.updateAttachment(att)
          }
          if (atype.hasAnnotation(definitions.ScalaNoInlineClass)) setInlineAttachment(arg1, NoInlineCallsiteAttachment)
          else if (atype.hasAnnotation(definitions.ScalaInlineClass)) setInlineAttachment(arg1, InlineCallsiteAttachment)
          Typed(arg1, resultingTypeTree(atype)) setPos tree.pos setType atype
        }
      }

      def typedBind(tree: Bind) = {
        val name = tree.name
        val body = tree.body
        name match {
          case name: TypeName  => assert(body == EmptyTree, context.unit + " typedBind: " + name.debugString + " " + body + " " + body.getClass)
            val sym =
              if (tree.symbol != NoSymbol) tree.symbol
              else {
                if (isFullyDefined(pt))
                  context.owner.newAliasType(name, tree.pos) setInfo pt
                else
                  context.owner.newAbstractType(name, tree.pos) setInfo TypeBounds.empty
              }

            if (name != tpnme.WILDCARD) namer.enterInScope(sym)
            else context.scope.enter(sym)

            tree setSymbol sym setType sym.tpeHK

          case name: TermName  =>
            val sym =
              if (tree.symbol != NoSymbol) tree.symbol
              else context.owner.newValue(name, tree.pos)

            if (name != nme.WILDCARD) {
              if (context.inPatAlternative)
                VariableInPatternAlternativeError(tree)

              namer.enterInScope(sym)
            }

            val body1 = typed(body, mode, pt)
            val impliedType = patmat.binderTypeImpliedByPattern(body1, pt, sym) // SI-1503, SI-5204
            val symTp =
              if (treeInfo.isSequenceValued(body)) seqType(impliedType)
              else impliedType
            sym setInfo symTp

            // have to imperatively set the symbol for this bind to keep it in sync with the symbols used in the body of a case
            // when type checking a case we imperatively update the symbols in the body of the case
            // those symbols are bound by the symbols in the Binds in the pattern of the case,
            // so, if we set the symbols in the case body, but not in the patterns,
            // then re-type check the casedef (for a second try in typedApply for example -- SI-1832),
            // we are no longer in sync: the body has symbols set that do not appear in the patterns
            // since body1 is not necessarily equal to body, we must return a copied tree,
            // but we must still mutate the original bind
            tree setSymbol sym
            treeCopy.Bind(tree, name, body1) setSymbol sym setType body1.tpe
        }
      }

      def typedArrayValue(tree: ArrayValue) = {
        val elemtpt1 = typedType(tree.elemtpt, mode)
        val elems1   = tree.elems mapConserve (elem => typed(elem, mode, elemtpt1.tpe))
        // see run/t6126 for an example where `pt` does not suffice (tagged types)
        val tpe1     = if (isFullyDefined(pt) && !phase.erasedTypes) pt else arrayType(elemtpt1.tpe)

        treeCopy.ArrayValue(tree, elemtpt1, elems1) setType tpe1
      }

      def typedAssign(lhs: Tree, rhs: Tree): Tree = {
        // see SI-7617 for an explanation of why macro expansion is suppressed
        def typedLhs(lhs: Tree) = typed(lhs, EXPRmode | LHSmode)
        val lhs1    = unsuppressMacroExpansion(typedLhs(suppressMacroExpansion(lhs)))
        val varsym  = lhs1.symbol

        // see #2494 for double error message example
        def fail() =
          if (lhs1.isErrorTyped) lhs1
          else AssignmentError(tree, varsym)

        if (varsym == null)
          return fail()

        if (treeInfo.mayBeVarGetter(varsym)) {
          lhs1 match {
            case treeInfo.Applied(Select(qual, name), _, _) =>
              val sel = Select(qual, name.setterName) setPos lhs.pos
              val app = Apply(sel, List(rhs)) setPos tree.pos
              return typed(app, mode, pt)

            case _ =>
          }
        }
//      if (varsym.isVariable ||
//        // setter-rewrite has been done above, so rule out methods here, but, wait a minute, why are we assigning to non-variables after erasure?!
//        (phase.erasedTypes && varsym.isValue && !varsym.isMethod)) {
        if (varsym.isVariable || varsym.isValue && phase.assignsFields) {
          val rhs1 = typedByValueExpr(rhs, lhs1.tpe)
          treeCopy.Assign(tree, lhs1, checkDead(rhs1)) setType UnitTpe
        }
        else if(dyna.isDynamicallyUpdatable(lhs1)) {
          val rhs1 = typedByValueExpr(rhs)
          val t = atPos(lhs1.pos.withEnd(rhs1.pos.end)) {
            Apply(lhs1, List(rhs1))
          }
          dyna.wrapErrors(t, _.typed1(t, mode, pt))
        }
        else fail()
      }

      def typedIf(tree: If): If = {
        val cond1 = checkDead(typedByValueExpr(tree.cond, BooleanTpe))
        // One-legged ifs don't need a lot of analysis
        if (tree.elsep.isEmpty)
          return treeCopy.If(tree, cond1, typed(tree.thenp, UnitTpe), tree.elsep) setType UnitTpe

        val thenp1 = typed(tree.thenp, pt)
        val elsep1 = typed(tree.elsep, pt)

        // in principle we should pack the types of each branch before lubbing, but lub doesn't really work for existentials anyway
        // in the special (though common) case where the types are equal, it pays to pack before comparing
        // especially virtpatmat needs more aggressive unification of skolemized types
        // this breaks src/library/scala/collection/immutable/TrieIterator.scala
        // annotated types need to be lubbed regardless (at least, continuations break if you bypass them like this)
        def samePackedTypes = (
             !isPastTyper
          && thenp1.tpe.annotations.isEmpty
          && elsep1.tpe.annotations.isEmpty
          && packedType(thenp1, context.owner) =:= packedType(elsep1, context.owner)
        )
        def finish(ownType: Type) = treeCopy.If(tree, cond1, thenp1, elsep1) setType ownType
        // TODO: skolemize (lub of packed types) when that no longer crashes on files/pos/t4070b.scala
        // @PP: This was doing the samePackedTypes check BEFORE the isFullyDefined check,
        // which based on everything I see everywhere else was a bug. I reordered it.
        if (isFullyDefined(pt))
          finish(pt)
        // Important to deconst, otherwise `if (???) 0 else 0` evaluates to 0 (SI-6331)
        else thenp1.tpe.deconst :: elsep1.tpe.deconst :: Nil match {
          case tp :: _ if samePackedTypes     => finish(tp)
          case tpes if sameWeakLubAsLub(tpes) => finish(lub(tpes))
          case tpes                           =>
            val lub = weakLub(tpes)
            treeCopy.If(tree, cond1, adapt(thenp1, mode, lub), adapt(elsep1, mode, lub)) setType lub
        }
      }

      // When there's a suitable __match in scope, virtualize the pattern match
      // otherwise, type the Match and leave it until phase `patmat` (immediately after typer)
      // empty-selector matches are transformed into synthetic PartialFunction implementations when the expected type demands it
      def typedVirtualizedMatch(tree: Match): Tree = {
        val selector = tree.selector
        val cases = tree.cases
        if (selector == EmptyTree) {
          if (pt.typeSymbol == PartialFunctionClass)
            synthesizePartialFunction(newTermName(context.unit.fresh.newName("x")), tree.pos, paramSynthetic = true, tree, mode, pt)
          else {
            val arity = functionArityFromType(pt) match { case -1 => 1 case arity => arity } // SI-8429: consider sam and function type equally in determining function arity

            val params = for (i <- List.range(0, arity)) yield
              atPos(tree.pos.focusStart) {
                ValDef(Modifiers(PARAM | SYNTHETIC),
                       unit.freshTermName("x" + i + "$"), TypeTree(), EmptyTree)
              }
            val ids = for (p <- params) yield Ident(p.name)
            val selector1 = atPos(tree.pos.focusStart) { if (arity == 1) ids.head else gen.mkTuple(ids) }
            // SI-8120 If we don't duplicate the cases, the original Match node will share trees with ones that
            //         receive symbols owned by this function. However if, after a silent mode session, we discard
            //         this Function and try a different approach (e.g. applying a view to the receiver) we end up
            //         with orphaned symbols which blows up far down the pipeline (or can be detected with -Ycheck:typer).
            val body = treeCopy.Match(tree, selector1, (cases map duplicateAndKeepPositions).asInstanceOf[List[CaseDef]])
            typed1(atPos(tree.pos) { Function(params, body) }, mode, pt)
          }
        } else
          virtualizedMatch(typedMatch(selector, cases, mode, pt, tree), mode, pt)
      }

      def typedReturn(tree: Return) = {
        val expr = tree.expr
        val enclMethod = context.enclMethod
        if (enclMethod == NoContext ||
            enclMethod.owner.isConstructor ||
            context.enclClass.enclMethod == enclMethod // i.e., we are in a constructor of a local class
            ) {
          ReturnOutsideOfDefError(tree)
        } else {
          val DefDef(_, name, _, _, restpt, _) = enclMethod.tree
          if (restpt.tpe eq null) {
            ReturnWithoutTypeError(tree, enclMethod.owner)
          }
          else {
            val expr1 = context withinReturnExpr typedByValueExpr(expr, restpt.tpe)
            // Warn about returning a value if no value can be returned.
            if (restpt.tpe.typeSymbol == UnitClass) {
              // The typing in expr1 says expr is Unit (it has already been coerced if
              // it is non-Unit) so we have to retype it.  Fortunately it won't come up much
              // unless the warning is legitimate.
              if (typed(expr).tpe.typeSymbol != UnitClass)
                context.warning(tree.pos, "enclosing method " + name + " has result type Unit: return value discarded")
            }
            val res = treeCopy.Return(tree, checkDead(expr1)).setSymbol(enclMethod.owner)
            val tp = pluginsTypedReturn(NothingTpe, this, res, restpt.tpe)
            res.setType(tp)
          }
        }
      }

      def typedNew(tree: New) = {
        val tpt = tree.tpt
        val tpt1 = {
          // This way typedNew always returns a dealiased type. This used to happen by accident
          // for instantiations without type arguments due to ad hoc code in typedTypeConstructor,
          // and annotations depended on it (to the extent that they worked, which they did
          // not when given a parameterized type alias which dealiased to an annotation.)
          // typedTypeConstructor dealiases nothing now, but it makes sense for a "new" to always be
          // given a dealiased type.
          val tpt0 = typedTypeConstructor(tpt) modifyType (_.dealias)
          if (checkStablePrefixClassType(tpt0))
            if (tpt0.hasSymbolField && !tpt0.symbol.typeParams.isEmpty) {
              context.undetparams = cloneSymbols(tpt0.symbol.typeParams)
              notifyUndetparamsAdded(context.undetparams)
              TypeTree().setOriginal(tpt0)
                        .setType(appliedType(tpt0.tpe, context.undetparams map (_.tpeHK))) // @PP: tpeHK! #3343, #4018, #4347.
            } else tpt0
          else tpt0
        }

        /* If current tree <tree> appears in <val x(: T)? = <tree>>
         * return `tp with x.type' else return `tp`.
         */
        def narrowRhs(tp: Type) = { val sym = context.tree.symbol
          context.tree match {
            case ValDef(mods, _, _, Apply(Select(`tree`, _), _)) if !mods.isMutable && sym != null && sym != NoSymbol =>
              val sym1 =
                if (sym.owner.isClass && sym.getterIn(sym.owner) != NoSymbol) sym.getterIn(sym.owner)
                else sym
              val pre = if (sym1.owner.isClass) sym1.owner.thisType else NoPrefix
              intersectionType(List(tp, singleType(pre, sym1)))
            case _ => tp
          }}

        val tp = tpt1.tpe
        val sym = tp.typeSymbol.initialize
        if (sym.isAbstractType || sym.hasAbstractFlag)
          IsAbstractError(tree, sym)
        else if (isPrimitiveValueClass(sym)) {
          NotAMemberError(tpt, TypeTree(tp), nme.CONSTRUCTOR)
          setError(tpt)
        }
        else if (!(  tp == sym.typeOfThis // when there's no explicit self type -- with (#3612) or without self variable
                     // sym.thisSym.tpe == tp.typeOfThis (except for objects)
                  || narrowRhs(tp) <:< tp.typeOfThis
                  || phase.erasedTypes
                  )) {
          DoesNotConformToSelfTypeError(tree, sym, tp.typeOfThis)
        } else
          treeCopy.New(tree, tpt1).setType(tp)
      }

      def functionTypeWildcard(arity: Int): Type =
        functionType(List.fill(arity)(WildcardType), WildcardType)

      def checkArity(tree: Tree)(tp: Type): tp.type = tp match {
        case NoType => MaxFunctionArityError(tree); tp
        case _ => tp
      }


      /** Eta expand an expression like `m _`, where `m` denotes a method or a by-name argument
        *
        * The spec says:
        * The expression `$e$ _` is well-formed if $e$ is of method type or if $e$ is a call-by-name parameter.
        *   (1) If $e$ is a method with parameters, `$e$ _` represents $e$ converted to a function type
        *       by [eta expansion](#eta-expansion).
        *   (2) If $e$ is a parameterless method or call-by-name parameter of type `=>$T$`, `$e$ _` represents
        *       the function of type `() => $T$`, which evaluates $e$ when it is applied to the empty parameterlist `()`.
        */
      def typedEta(methodValue: Tree, original: Tree): Tree = methodValue.tpe match {
        case tp@(MethodType(_, _) | PolyType(_, MethodType(_, _))) => // (1)
          val formals = tp.params
          if (isFunctionType(pt) || samMatchesFunctionBasedOnArity(samOf(pt), formals)) methodValue
          else adapt(methodValue, mode, checkArity(methodValue)(functionTypeWildcard(formals.length)), original)

        case TypeRef(_, ByNameParamClass, _) |  NullaryMethodType(_) => // (2)
          val pos = methodValue.pos
          // must create it here to change owner (normally done by typed's typedFunction)
          val funSym = context.owner.newAnonymousFunctionValue(pos)
          new ChangeOwnerTraverser(context.owner, funSym) traverse methodValue

          typed(Function(List(), methodValue) setSymbol funSym setPos pos, mode, pt)

        case ErrorType =>
          methodValue

        case _ =>
          UnderscoreEtaError(methodValue)
      }

      def tryTypedArgs(args: List[Tree], mode: Mode): Option[List[Tree]] = {
        val c = context.makeSilent(reportAmbiguousErrors = false)
        c.retyping = true
        try {
          val res = newTyper(c).typedArgs(args, mode)
          if (c.reporter.hasErrors) None else Some(res)
        } catch {
          case ex: CyclicReference =>
            throw ex
          case te: TypeError =>
            // @H some of typer errors can still leak,
            // for instance in continuations
            None
        }
      }

      /* Try to apply function to arguments; if it does not work, try to convert Java raw to existentials, or try to
       * insert an implicit conversion.
       */
      def tryTypedApply(fun: Tree, args: List[Tree]): Tree = {
        val start = if (Statistics.canEnable) Statistics.startTimer(failedApplyNanos) else null

        def onError(typeErrors: Seq[AbsTypeError], warnings: Seq[(Position, String)]): Tree = {
          if (Statistics.canEnable) Statistics.stopTimer(failedApplyNanos, start)

          // If the problem is with raw types, convert to existentials and try again.
          // See #4712 for a case where this situation arises,
          if ((fun.symbol ne null) && fun.symbol.isJavaDefined) {
            val newtpe = rawToExistential(fun.tpe)
            if (fun.tpe ne newtpe) {
              // println("late cooking: "+fun+":"+fun.tpe) // DEBUG
              return tryTypedApply(fun setType newtpe, args)
            }
          }
          def treesInResult(tree: Tree): List[Tree] = tree :: (tree match {
            case Block(_, r)                        => treesInResult(r)
            case Match(_, cases)                    => cases
            case CaseDef(_, _, r)                   => treesInResult(r)
            case Annotated(_, r)                    => treesInResult(r)
            case If(_, t, e)                        => treesInResult(t) ++ treesInResult(e)
            case Try(b, catches, _)                 => treesInResult(b) ++ catches
            case Typed(r, Function(Nil, EmptyTree)) => treesInResult(r) // a method value
            case Select(qual, name)                 => treesInResult(qual)
            case Apply(fun, args)                   => treesInResult(fun) ++ args.flatMap(treesInResult)
            case TypeApply(fun, args)               => treesInResult(fun) ++ args.flatMap(treesInResult)
            case _                                  => Nil
          })
          def errorInResult(tree: Tree) = treesInResult(tree) exists (err => typeErrors.exists(_.errPos == err.pos))

          val retry = (typeErrors.forall(_.errPos != null)) && (fun :: tree :: args exists errorInResult)
          typingStack.printTyping({
            val funStr = ptTree(fun) + " and " + (args map ptTree mkString ", ")
            if (retry) "second try: " + funStr
            else "no second try: " + funStr + " because error not in result: " + typeErrors.head.errPos+"!="+tree.pos
          })
          if (retry) {
            val Select(qual, name) = fun
            tryTypedArgs(args, forArgMode(fun, mode)) match {
              case Some(args1) if !args1.exists(arg => arg.exists(_.isErroneous)) =>
                val qual1 =
                  if (!pt.isError) adaptToArguments(qual, name, args1, pt)
                  else qual
                if (qual1 ne qual) {
                  val tree1 = Apply(Select(qual1, name) setPos fun.pos, args1) setPos tree.pos
                  return context withinSecondTry typed1(tree1, mode, pt)
                }
              case _ => ()
            }
          }
          typeErrors foreach context.issue
          warnings foreach { case (p, m) => context.warning(p, m) }
          setError(treeCopy.Apply(tree, fun, args))
        }

        silent(_.doTypedApply(tree, fun, args, mode, pt)) match {
          case SilentResultValue(value) => value
          case e: SilentTypeError => onError(e.errors, e.warnings)
        }
      }

      def normalTypedApply(tree: Tree, fun: Tree, args: List[Tree]) = {
        // TODO: replace `fun.symbol.isStable` by `treeInfo.isStableIdentifierPattern(fun)`
        val stableApplication = (fun.symbol ne null) && fun.symbol.isMethod && fun.symbol.isStable
        val funpt = if (mode.inPatternMode) pt else WildcardType
        val appStart = if (Statistics.canEnable) Statistics.startTimer(failedApplyNanos) else null
        val opeqStart = if (Statistics.canEnable) Statistics.startTimer(failedOpEqNanos) else null

        def isConversionCandidate(qual: Tree, name: Name): Boolean =
          !mode.inPatternMode && nme.isOpAssignmentName(TermName(name.decode)) && !qual.exists(_.isErroneous)

        def reportError(error: SilentTypeError): Tree = {
          error.reportableErrors foreach context.issue
          error.warnings foreach { case (p, m) => context.warning(p, m) }
          args foreach (arg => typed(arg, mode, ErrorType))
          setError(tree)
        }
        def advice1(convo: Tree, errors: List[AbsTypeError], err: SilentTypeError): List[AbsTypeError] =
          errors.map { e =>
            if (e.errPos == tree.pos) {
              val header = f"${e.errMsg}%n  Expression does not convert to assignment because:%n    "
              val expansion = f"%n    expansion: ${show(convo)}"
              NormalTypeError(tree, err.errors.flatMap(_.errMsg.lines.toList).mkString(header, f"%n    ", expansion))
            } else e
          }
        def advice2(errors: List[AbsTypeError]): List[AbsTypeError] =
          errors.map { e =>
            if (e.errPos == tree.pos) {
              val msg = f"${e.errMsg}%n  Expression does not convert to assignment because receiver is not assignable."
              NormalTypeError(tree, msg)
            } else e
          }
        def onError(error: SilentTypeError): Tree = fun match {
          case Select(qual, name) if isConversionCandidate(qual, name) =>
            val qual1 = typedQualifier(qual)
            if (treeInfo.isVariableOrGetter(qual1)) {
              if (Statistics.canEnable) Statistics.stopTimer(failedOpEqNanos, opeqStart)
              val erred = qual1.exists(_.isErroneous) || args.exists(_.isErroneous)
              if (erred) reportError(error) else {
                val convo = convertToAssignment(fun, qual1, name, args)
                silent(op = _.typed1(convo, mode, pt)) match {
                  case SilentResultValue(t) => t
                  case err: SilentTypeError => reportError(
                    SilentTypeError(advice1(convo, error.errors, err), error.warnings)
                  )
                }
              }
            } else {
              if (Statistics.canEnable) Statistics.stopTimer(failedApplyNanos, appStart)
              val Apply(Select(qual2, _), args2) = tree
              val erred = qual2.exists(_.isErroneous) || args2.exists(_.isErroneous)
              reportError {
                if (erred) error else SilentTypeError(advice2(error.errors), error.warnings)
              }
            }
          case _ =>
            if (Statistics.canEnable) Statistics.stopTimer(failedApplyNanos, appStart)
            reportError(error)
        }
        val silentResult = silent(
          op                    = _.typed(fun, mode.forFunMode, funpt),
          reportAmbiguousErrors = !mode.inExprMode && context.ambiguousErrors,
          newtree               = if (mode.inExprMode) tree else context.tree
        )
        silentResult match {
          case SilentResultValue(fun1) =>
            val fun2 = if (stableApplication) stabilizeFun(fun1, mode, pt) else fun1
            if (Statistics.canEnable) Statistics.incCounter(typedApplyCount)
            val noSecondTry = (
                 isPastTyper
              || context.inSecondTry
              || (fun2.symbol ne null) && fun2.symbol.isConstructor
              || isImplicitMethodType(fun2.tpe)
            )
            val isFirstTry = fun2 match {
              case Select(_, _) => !noSecondTry && mode.inExprMode
              case _            => false
            }
            if (isFirstTry)
              tryTypedApply(fun2, args)
            else
              doTypedApply(tree, fun2, args, mode, pt)
          case err: SilentTypeError => onError(err)
        }
      }

      // convert new Array[T](len) to evidence[ClassTag[T]].newArray(len)
      // convert new Array^N[T](len) for N > 1 to evidence[ClassTag[Array[...Array[T]...]]].newArray(len)
      // where Array HK gets applied (N-1) times
      object ArrayInstantiation {
        def unapply(tree: Apply) = tree match {
          case Apply(Select(New(tpt), name), arg :: Nil) if tpt.tpe != null && tpt.tpe.typeSymbol == ArrayClass =>
            Some(tpt.tpe) collect {
              case erasure.GenericArray(level, componentType) =>
                val tagType = (1 until level).foldLeft(componentType)((res, _) => arrayType(res))

                resolveClassTag(tree.pos, tagType) match {
                  case EmptyTree => MissingClassTagError(tree, tagType)
                  case tag       => atPos(tree.pos)(new ApplyToImplicitArgs(Select(tag, nme.newArray), arg :: Nil))
                }
            }
          case _ => None
        }
      }

      def typedApply(tree: Apply) = tree match {
        case Apply(Block(stats, expr), args) =>
          typed1(atPos(tree.pos)(Block(stats, Apply(expr, args) setPos tree.pos.makeTransparent)), mode, pt)
        case Apply(fun, args) =>
          normalTypedApply(tree, fun, args) match {
            case ArrayInstantiation(tree1)                                           => if (tree1.isErrorTyped) tree1 else typed(tree1, mode, pt)
            case Apply(Select(fun, nme.apply), _) if treeInfo.isSuperConstrCall(fun) => TooManyArgumentListsForConstructor(tree) //SI-5696
            case tree1                                                               => tree1
          }
      }

      def convertToAssignment(fun: Tree, qual: Tree, name: Name, args: List[Tree]): Tree = {
        val prefix = name.toTermName stripSuffix nme.EQL
        def mkAssign(vble: Tree): Tree =
          Assign(
            vble,
            Apply(
              Select(vble.duplicate, prefix) setPos fun.pos.focus, args) setPos tree.pos.makeTransparent
          ) setPos tree.pos

        def mkUpdate(table: Tree, indices: List[Tree]) =
          gen.evalOnceAll(table :: indices, context.owner, context.unit) {
            case tab :: is =>
              def mkCall(name: Name, extraArgs: Tree*) = (
                Apply(
                  Select(tab(), name) setPos table.pos,
                  is.map(i => i()) ++ extraArgs
                ) setPos tree.pos
              )
              mkCall(
                nme.update,
                Apply(Select(mkCall(nme.apply), prefix) setPos fun.pos, args) setPos tree.pos
              )
            case _ => EmptyTree
          }

        val assignment = qual match {
          case Ident(_) =>
            mkAssign(qual)

          case Select(qualqual, vname) =>
            gen.evalOnce(qualqual, context.owner, context.unit) { qq =>
              val qq1 = qq()
              mkAssign(Select(qq1, vname) setPos qual.pos)
            }

          case Apply(fn, indices) =>
            fn match {
              case treeInfo.Applied(Select(table, nme.apply), _, _) => mkUpdate(table, indices)
              case _  => UnexpectedTreeAssignmentConversionError(qual)
            }
        }
        assignment
      }

      def typedSuper(tree: Super) = {
        val mix = tree.mix
        val qual1 = typed(tree.qual)

        val clazz = qual1 match {
          case This(_) => qual1.symbol
          case _ => qual1.tpe.typeSymbol
        }
        def findMixinSuper(site: Type): Type = {
          var ps = site.parents filter (_.typeSymbol.name == mix)
          if (ps.isEmpty)
            ps = site.parents filter (_.typeSymbol.name == mix)
          if (ps.isEmpty) {
            debuglog("Fatal: couldn't find site " + site + " in " + site.parents.map(_.typeSymbol.name))
            if (phase.erasedTypes && context.enclClass.owner.isTrait) {
              // the reference to super class got lost during erasure
              restrictionError(tree.pos, unit, "traits may not select fields or methods from super[C] where C is a class")
              ErrorType
            } else {
              MixinMissingParentClassNameError(tree, mix, clazz)
              ErrorType
            }
          } else if (!ps.tail.isEmpty) {
            AmbiguousParentClassError(tree)
            ErrorType
          } else {
            ps.head
          }
        }

        val owntype = (
          if (!mix.isEmpty) findMixinSuper(clazz.tpe)
          else if (context.inSuperInit) clazz.info.firstParent
          else intersectionType(clazz.info.parents)
        )
        treeCopy.Super(tree, qual1, mix) setType SuperType(clazz.thisType, owntype)
      }

      def typedThis(tree: This) =
        tree.symbol orElse qualifyingClass(tree, tree.qual, packageOK = false) match {
          case NoSymbol => tree
          case clazz    =>
            tree setSymbol clazz setType clazz.thisType.underlying
            if (isStableContext(tree, mode, pt)) tree setType clazz.thisType else tree
        }


      // For Java, instance and static members are in the same scope, but we put the static ones in the companion object
      // so, when we can't find a member in the class scope, check the companion
      def inCompanionForJavaStatic(pre: Type, cls: Symbol, name: Name): Symbol =
        if (!(context.unit.isJava && cls.isClass && !cls.isModuleClass)) NoSymbol else {
          val companion = companionSymbolOf(cls, context)
          if (!companion.exists) NoSymbol
          else member(gen.mkAttributedRef(pre, companion), name) // assert(res.isStatic, s"inCompanionForJavaStatic($pre, $cls, $name) = $res ${res.debugFlagString}")
        }

      /* Attribute a selection where `tree` is `qual.name`.
       * `qual` is already attributed.
       */
      def typedSelect(tree: Tree, qual: Tree, name: Name): Tree = {
        val t = typedSelectInternal(tree, qual, name)
        // Checking for OverloadedTypes being handed out after overloading
        // resolution has already happened.
        if (isPastTyper) t.tpe match {
          case OverloadedType(pre, alts) =>
            if (alts forall (s => (s.owner == ObjectClass) || (s.owner == AnyClass) || isPrimitiveValueClass(s.owner))) ()
            else if (settings.debug) printCaller(
              s"""|Select received overloaded type during $phase, but typer is over.
                  |If this type reaches the backend, we are likely doomed to crash.
                  |$t has these overloads:
                  |${alts map (s => "  " + s.defStringSeenAs(pre memberType s)) mkString "\n"}
                  |""".stripMargin
            )("")
          case _ =>
        }
        t
      }
      def typedSelectInternal(tree: Tree, qual: Tree, name: Name): Tree = {
        def asDynamicCall = dyna.mkInvoke(context, tree, qual, name) map { t =>
          dyna.wrapErrors(t, (_.typed1(t, mode, pt)))
        }

        val sym = tree.symbol orElse member(qual, name) orElse inCompanionForJavaStatic(qual.tpe.prefix, qual.symbol, name) orElse {
          // symbol not found? --> try to convert implicitly to a type that does have the required
          // member.  Added `| PATTERNmode` to allow enrichment in patterns (so we can add e.g., an
          // xml member to StringContext, which in turn has an unapply[Seq] method)
          if (name != nme.CONSTRUCTOR && mode.inAny(EXPRmode | PATTERNmode)) {
            val qual1 = adaptToMemberWithArgs(tree, qual, name, mode)
            if ((qual1 ne qual) && !qual1.isErrorTyped)
              return typed(treeCopy.Select(tree, qual1, name), mode, pt)
          }
          NoSymbol
        }
        if (phase.erasedTypes && qual.isInstanceOf[Super] && tree.symbol != NoSymbol)
          qual setType tree.symbol.owner.tpe

        if (!reallyExists(sym)) {
          def handleMissing: Tree = {
            def errorTree = missingSelectErrorTree(tree, qual, name)
            def asTypeSelection = (
              if (context.unit.isJava && name.isTypeName) {
                // SI-3120 Java uses the same syntax, A.B, to express selection from the
                // value A and from the type A. We have to try both.
                atPos(tree.pos)(gen.convertToSelectFromType(qual, name)) match {
                  case EmptyTree => None
                  case tree1     => Some(typed1(tree1, mode, pt))
                }
              }
              else None
            )
            debuglog(s"""
              |qual=$qual:${qual.tpe}
              |symbol=${qual.tpe.termSymbol.defString}
              |scope-id=${qual.tpe.termSymbol.info.decls.hashCode}
              |members=${qual.tpe.members mkString ", "}
              |name=$name
              |found=$sym
              |owner=${context.enclClass.owner}
              """.stripMargin)

            // 1) Try converting a term selection on a java class into a type selection.
            // 2) Try expanding according to Dynamic rules.
            // 3) Try looking up the name in the qualifier.
            asTypeSelection orElse asDynamicCall getOrElse (lookupInQualifier(qual, name) match {
              case NoSymbol => setError(errorTree)
              case found    => typed1(tree setSymbol found, mode, pt)
            })
          }
          handleMissing
        }
        else {
          val tree1 = tree match {
            case Select(_, _) => treeCopy.Select(tree, qual, name)
            case SelectFromTypeTree(_, _) => treeCopy.SelectFromTypeTree(tree, qual, name)
          }
          val (result, accessibleError) = silent(_.makeAccessible(tree1, sym, qual.tpe, qual)) match {
            case SilentTypeError(err: AccessTypeError) =>
              (tree1, Some(err))
            case SilentTypeError(err) =>
              SelectWithUnderlyingError(tree, err)
              return tree
            case SilentResultValue(treeAndPre) =>
              (stabilize(treeAndPre._1, treeAndPre._2, mode, pt), None)
          }

          result match {
            // could checkAccessible (called by makeAccessible) potentially have skipped checking a type application in qual?
            case SelectFromTypeTree(qual@TypeTree(), name) if qual.tpe.typeArgs.nonEmpty => // TODO: somehow the new qual is not checked in refchecks
              treeCopy.SelectFromTypeTree(
                result,
                (TypeTreeWithDeferredRefCheck(){ () => val tp = qual.tpe; val sym = tp.typeSymbolDirect
                  // will execute during refchecks -- TODO: make private checkTypeRef in refchecks public and call that one?
                  checkBounds(qual, tp.prefix, sym.owner, sym.typeParams, tp.typeArgs, "")
                  qual // you only get to see the wrapped tree after running this check :-p
                }) setType qual.tpe setPos qual.pos,
                name)
            case _ if accessibleError.isDefined =>
              // don't adapt constructor, SI-6074
              val qual1 = if (name == nme.CONSTRUCTOR) qual
                          else adaptToMemberWithArgs(tree, qual, name, mode, reportAmbiguous = false, saveErrors = false)
              if (!qual1.isErrorTyped && (qual1 ne qual))
                typed(Select(qual1, name) setPos tree.pos, mode, pt)
              else
                // before failing due to access, try a dynamic call.
                asDynamicCall getOrElse {
                  context.issue(accessibleError.get)
                  setError(tree)
                }
            case _ =>
              result
          }
        }
      }

      def typedSelectOrSuperCall(tree: Select) = tree match {
        case Select(qual @ Super(_, _), nme.CONSTRUCTOR) =>
          // the qualifier type of a supercall constructor is its first parent class
          typedSelect(tree, typedSelectOrSuperQualifier(qual), nme.CONSTRUCTOR)
        case Select(qual, name) =>
          if (Statistics.canEnable) Statistics.incCounter(typedSelectCount)
          val qualTyped = checkDead(typedQualifier(qual, mode))
          val qualStableOrError = (
            if (qualTyped.isErrorTyped || !name.isTypeName || treeInfo.admitsTypeSelection(qualTyped))
              qualTyped
            else
              UnstableTreeError(qualTyped)
          )
          val tree1 = typedSelect(tree, qualStableOrError, name)
          def sym = tree1.symbol
          if (tree.isInstanceOf[PostfixSelect])
            checkFeature(tree.pos, PostfixOpsFeature, name.decode)
          if (sym != null && sym.isOnlyRefinementMember && !sym.isMacro)
            checkFeature(tree1.pos, ReflectiveCallsFeature, sym.toString)

          qualStableOrError.symbol match {
            case s: Symbol if s.isRootPackage => treeCopy.Ident(tree1, name)
            case _                            => tree1
          }
      }

      /* A symbol qualifies if:
       *  - it exists
       *  - it is not stale (stale symbols are made to disappear here)
       *  - if we are in a constructor pattern, method definitions do not qualify
       *    unless they are stable.  Otherwise, 'case x :: xs' would find the :: method.
       */
      def qualifies(sym: Symbol) = (
           sym.hasRawInfo
        && reallyExists(sym)
        && !(mode.typingConstructorPattern && sym.isMethod && !sym.isStable)
      )

      /* Attribute an identifier consisting of a simple name or an outer reference.
       *
       * @param tree      The tree representing the identifier.
       * @param name      The name of the identifier.
       * Transformations: (1) Prefix class members with this.
       *                  (2) Change imported symbols to selections
       */
      def typedIdent(tree: Tree, name: Name): Tree = {
        // setting to enable unqualified idents in empty package (used by the repl)
        def inEmptyPackage = if (settings.exposeEmptyPackage) lookupInEmpty(name) else NoSymbol

        def issue(err: AbsTypeError) = {
          // Avoiding some spurious error messages: see SI-2388.
          val suppress = reporter.hasErrors && (name startsWith tpnme.ANON_CLASS_NAME)
          if (!suppress)
            ErrorUtils.issueTypeError(err)

          setError(tree)
        }
          // ignore current variable scope in patterns to enforce linearity
        val startContext = if (mode.typingPatternOrTypePat) context.outer else context
        val nameLookup   = tree.symbol match {
          case NoSymbol   => startContext.lookupSymbol(name, qualifies)
          case sym        => LookupSucceeded(EmptyTree, sym)
        }
        import InferErrorGen._
        nameLookup match {
          case LookupAmbiguous(msg)         => issue(AmbiguousIdentError(tree, name, msg))
          case LookupInaccessible(sym, msg) => issue(AccessError(tree, sym, context, msg))
          case LookupNotFound               =>
            inEmptyPackage orElse lookupInRoot(name) match {
              case NoSymbol => issue(SymbolNotFoundError(tree, name, context.owner, startContext))
              case sym      => typed1(tree setSymbol sym, mode, pt)
                }
          case LookupSucceeded(qual, sym)   =>
            (// this -> Foo.this
            if (sym.isThisSym)
              typed1(This(sym.owner) setPos tree.pos, mode, pt)
            else if (isPredefClassOf(sym) && pt.typeSymbol == ClassClass && pt.typeArgs.nonEmpty) {
              // Inferring classOf type parameter from expected type.  Otherwise an
              // actual call to the stubbed classOf method is generated, returning null.
              typedClassOf(tree, TypeTree(pt.typeArgs.head).setPos(tree.pos.focus))
            }
          else {
              val pre1  = if (sym.isTopLevel) sym.owner.thisType else if (qual == EmptyTree) NoPrefix else qual.tpe
              val tree1 = if (qual == EmptyTree) tree else atPos(tree.pos)(Select(atPos(tree.pos.focusStart)(qual), name))
              val (tree2, pre2) = makeAccessible(tree1, sym, pre1, qual)
            // SI-5967 Important to replace param type A* with Seq[A] when seen from from a reference, to avoid
            //         inference errors in pattern matching.
              stabilize(tree2, pre2, mode, pt) modifyType dropIllegalStarTypes
            }) setAttachments tree.attachments
          }
        }

      def typedIdentOrWildcard(tree: Ident) = {
        val name = tree.name
        if (Statistics.canEnable) Statistics.incCounter(typedIdentCount)
        if ((name == nme.WILDCARD && mode.typingPatternNotConstructor) ||
            (name == tpnme.WILDCARD && mode.inTypeMode))
          tree setType makeFullyDefined(pt)
        else
          typedIdent(tree, name)
      }

      def typedCompoundTypeTree(tree: CompoundTypeTree) = {
        val templ = tree.templ
        val parents1 = templ.parents mapConserve (typedType(_, mode))

        // This is also checked later in typedStats, but that is too late for SI-5361, so
        // we eagerly check this here.
        for (stat <- templ.body if !treeInfo.isDeclarationOrTypeDef(stat))
          OnlyDeclarationsError(stat)

        if ((parents1 ++ templ.body) exists (_.isErrorTyped)) tree setType ErrorType
        else {
          val decls = newScope
          //Console.println("Owner: " + context.enclClass.owner + " " + context.enclClass.owner.id)
          val self = refinedType(parents1 map (_.tpe), context.enclClass.owner, decls, templ.pos)
          newTyper(context.make(templ, self.typeSymbol, decls)).typedRefinement(templ)
          templ updateAttachment CompoundTypeTreeOriginalAttachment(parents1, Nil) // stats are set elsewhere
          tree setType (if (templ.exists(_.isErroneous)) ErrorType else self) // Being conservative to avoid SI-5361
        }
      }

      def typedAppliedTypeTree(tree: AppliedTypeTree) = {
        val tpt        = tree.tpt
        val args       = tree.args
        val tpt1       = typed1(tpt, mode | FUNmode | TAPPmode, WildcardType)
        def isPoly     = tpt1.tpe.isInstanceOf[PolyType]
        def isComplete = tpt1.symbol.rawInfo.isComplete

        if (tpt1.isErrorTyped) {
          tpt1
        } else if (!tpt1.hasSymbolField) {
          AppliedTypeNoParametersError(tree, tpt1.tpe)
        } else {
          val tparams = tpt1.symbol.typeParams

          if (sameLength(tparams, args)) {
            // @M: kind-arity checking is done here and in adapt, full kind-checking is in checkKindBounds (in Infer)
            val args1 = map2Conserve(args, tparams) { (arg, tparam) =>
              def ptParams = Kind.FromParams(tparam.typeParams)

              // if symbol hasn't been fully loaded, can't check kind-arity except when we're in a pattern,
              // where we can (we can't take part in F-Bounds) and must (SI-8023)
              val pt = if (mode.typingPatternOrTypePat) {
                tparam.initialize; ptParams
              }
              else if (isComplete) ptParams
              else Kind.Wildcard

              typedHigherKindedType(arg, mode, pt)
            }
            val argtypes = mapList(args1)(treeTpe)

            foreach2(args, tparams) { (arg, tparam) =>
              // note: can't use args1 in selector, because Binds got replaced
              val asym = arg.symbol
              def abounds = asym.info.bounds
              def tbounds = tparam.info.bounds
              def enhanceBounds(): Unit = {
                val TypeBounds(lo0, hi0) = abounds
                val TypeBounds(lo1, hi1) = tbounds.subst(tparams, argtypes)
                val lo = lub(List(lo0, lo1))
                val hi = glb(List(hi0, hi1))
                if (!(lo =:= lo0 && hi =:= hi0))
                  asym setInfo logResult(s"Updating bounds of ${asym.fullLocationString} in $tree from '$abounds' to")(TypeBounds(lo, hi))
              }
              if (asym != null && asym.isAbstractType) {
                arg match {
                  // I removed the Ident() case that partially fixed SI-1786,
                  // because the stricter bounds being inferred broke e.g., slick
                  // worse, the fix was compilation order-dependent
                  // sharpenQuantifierBounds (used in skolemizeExistential) has an alternative fix (SI-6169) that's less invasive
                  case Bind(_, _) => enhanceBounds()
                  case _          =>
                }
              }
            }
            val original = treeCopy.AppliedTypeTree(tree, tpt1, args1)
            val result = TypeTree(appliedType(tpt1.tpe, argtypes)) setOriginal original
            if (isPoly) // did the type application (performed by appliedType) involve an unchecked beta-reduction?
              TypeTreeWithDeferredRefCheck(){ () =>
                // wrap the tree and include the bounds check -- refchecks will perform this check (that the beta reduction was indeed allowed) and unwrap
                // we can't simply use original in refchecks because it does not contains types
                // (and the only typed trees we have been mangled so they're not quite the original tree anymore)
                checkBounds(result, tpt1.tpe.prefix, tpt1.symbol.owner, tpt1.symbol.typeParams, argtypes, "")
                result // you only get to see the wrapped tree after running this check :-p
              } setType (result.tpe) setPos(result.pos)
            else result
          } else if (tparams.isEmpty) {
            AppliedTypeNoParametersError(tree, tpt1.tpe)
          } else {
            //Console.println("\{tpt1}:\{tpt1.symbol}:\{tpt1.symbol.info}")
            if (settings.debug) Console.println(tpt1+":"+tpt1.symbol+":"+tpt1.symbol.info)//debug
            AppliedTypeWrongNumberOfArgsError(tree, tpt1, tparams)
          }
        }
      }

      val sym: Symbol = tree.symbol
      if ((sym ne null) && (sym ne NoSymbol)) sym.initialize

      def typedPackageDef(pdef0: PackageDef) = {
        val pdef = treeCopy.PackageDef(pdef0, pdef0.pid, pluginsEnterStats(this, pdef0.stats))
        val pid1 = typedQualifier(pdef.pid).asInstanceOf[RefTree]
        assert(sym.moduleClass ne NoSymbol, sym)
        val stats1 = newTyper(context.make(tree, sym.moduleClass, sym.info.decls))
          .typedStats(pdef.stats, NoSymbol)
        treeCopy.PackageDef(tree, pid1, stats1) setType NoType
      }

      /*
       * The typer with the correct context for a method definition. If the method is a default getter for
       * a constructor default, the resulting typer has a constructor context (fixes SI-5543).
       */
      def defDefTyper(ddef: DefDef) = {
        val isConstrDefaultGetter = ddef.mods.hasDefault && sym.owner.isModuleClass &&
            nme.defaultGetterToMethod(sym.name) == nme.CONSTRUCTOR
        newTyper(context.makeNewScope(ddef, sym)).constrTyperIf(isConstrDefaultGetter)
      }

      def typedAlternative(alt: Alternative) = {
        context withinPatAlternative (
          treeCopy.Alternative(tree, alt.trees mapConserve (alt => typed(alt, mode, pt))) setType pt
        )
      }
      def typedStar(tree: Star) = {
        if (!context.starPatterns && !isPastTyper)
          StarPatternWithVarargParametersError(tree)

        treeCopy.Star(tree, typed(tree.elem, mode, pt)) setType makeFullyDefined(pt)
      }
      def issueTryWarnings(tree: Try): Try = {
        def checkForCatchAll(cdef: CaseDef) {
          def unbound(t: Tree) = t.symbol == null || t.symbol == NoSymbol
          def warn(name: Name) = {
            val msg = s"This catches all Throwables. If this is really intended, use `case ${name.decoded} : Throwable` to clear this warning."
            context.warning(cdef.pat.pos, msg)
          }
          if (cdef.guard.isEmpty) cdef.pat match {
            case Bind(name, i @ Ident(_)) if unbound(i) => warn(name)
            case i @ Ident(name) if unbound(i)          => warn(name)
            case _                                      =>
          }
        }
        if (!isPastTyper) tree match {
          case Try(_, Nil, fin) =>
            if (fin eq EmptyTree)
              context.warning(tree.pos, "A try without a catch or finally is equivalent to putting its body in a block; no exceptions are handled.")
          case Try(_, catches, _) =>
            catches foreach checkForCatchAll
        }
        tree
      }

      def typedTry(tree: Try) = {
        val Try(block, catches, fin) = tree
        val block1   = typed(block, pt)
        val catches1 = typedCases(catches, ThrowableTpe, pt)
        val fin1     = if (fin.isEmpty) fin else typed(fin, UnitTpe)

        def finish(ownType: Type) = treeCopy.Try(tree, block1, catches1, fin1) setType ownType

        issueTryWarnings(
          if (isFullyDefined(pt))
            finish(pt)
          else block1 :: catches1 map (_.tpe.deconst) match {
            case tpes if sameWeakLubAsLub(tpes) => finish(lub(tpes))
            case tpes                           =>
              val lub      = weakLub(tpes)
              val block2   = adapt(block1, mode, lub)
              val catches2 = catches1 map (adaptCase(_, mode, lub))
              treeCopy.Try(tree, block2, catches2, fin1) setType lub
          }
        )
      }

      def typedThrow(tree: Throw) = {
        val expr1 = typedByValueExpr(tree.expr, ThrowableTpe)
        treeCopy.Throw(tree, expr1) setType NothingTpe
      }

      def typedTyped(tree: Typed) = {
        if (treeInfo isWildcardStarType tree.tpt)
          typedStarInPattern(tree, mode.onlySticky, pt)
        else if (mode.inPatternMode)
          typedInPattern(tree, mode.onlySticky, pt)
        else tree match {
          // find out whether the programmer is trying to eta-expand a macro def
          // to do that we need to typecheck the tree first (we need a symbol of the eta-expandee)
          // that typecheck must not trigger macro expansions, so we explicitly prohibit them
          // however we cannot do `context.withMacrosDisabled`
          // because `expr` might contain nested macro calls (see SI-6673)
          //
          // Note: apparently `Function(Nil, EmptyTree)` is the secret parser marker
          // which means trailing underscore -- denoting a method value. See makeMethodValue in TreeBuilder.
          case Typed(expr, Function(Nil, EmptyTree)) =>
            typed1(suppressMacroExpansion(expr), mode, pt) match {
              case macroDef if treeInfo.isMacroApplication(macroDef) => MacroEtaError(macroDef)
              case methodValue                                       => typedEta(checkDead(methodValue), tree)
            }
          case Typed(expr, tpt) =>
            val tpt1  = typedType(tpt, mode)                           // type the ascribed type first
            val expr1 = typed(expr, mode.onlySticky, tpt1.tpe.deconst) // then type the expression with tpt1 as the expected type
            treeCopy.Typed(tree, expr1, tpt1) setType tpt1.tpe
        }
      }

      def typedTypeApply(tree: TypeApply) = {
        val fun = tree.fun
        val args = tree.args
        // @M: kind-arity checking is done here and in adapt, full kind-checking is in checkKindBounds (in Infer)
        //@M! we must type fun in order to type the args, as that requires the kinds of fun's type parameters.
        // However, args should apparently be done first, to save context.undetparams. Unfortunately, the args
        // *really* have to be typed *after* fun. We escape from this classic Catch-22 by simply saving&restoring undetparams.

        // @M TODO: the compiler still bootstraps&all tests pass when this is commented out..
        //val undets = context.undetparams

        // @M: fun is typed in TAPPmode because it is being applied to its actual type parameters
        val fun1 = typed(fun, mode.forFunMode | TAPPmode)
        val tparams = if (fun1.symbol == null) Nil else fun1.symbol.typeParams

        //@M TODO: val undets_fun = context.undetparams  ?
        // "do args first" (by restoring the context.undetparams) in order to maintain context.undetparams on the function side.

        // @M TODO: the compiler still bootstraps when this is commented out.. TODO: run tests
        //context.undetparams = undets

        // @M maybe the well-kindedness check should be done when checking the type arguments conform to the type parameters' bounds?
        val args1 = if (sameLength(args, tparams)) map2Conserve(args, tparams) {
          (arg, tparam) => typedHigherKindedType(arg, mode, Kind.FromParams(tparam.typeParams))
        }
        else {
          //@M  this branch is correctly hit for an overloaded polymorphic type. It also has to handle erroneous cases.
          // Until the right alternative for an overloaded method is known, be very liberal,
          // typedTypeApply will find the right alternative and then do the same check as
          // in the then-branch above. (see pos/tcpoly_overloaded.scala)
          // this assert is too strict: be tolerant for errors like trait A { def foo[m[x], g]=error(""); def x[g] = foo[g/*ERR: missing argument type*/] }
          //assert(fun1.symbol.info.isInstanceOf[OverloadedType] || fun1.symbol.isError) //, (fun1.symbol,fun1.symbol.info,fun1.symbol.info.getClass,args,tparams))
          args mapConserve (typedHigherKindedType(_, mode))
        }

        //@M TODO: context.undetparams = undets_fun ?
        Typer.this.typedTypeApply(tree, mode, fun1, args1)
      }

      def typedApplyDynamic(tree: ApplyDynamic) = {
        assert(phase.erasedTypes)
        val qual1 = typed(tree.qual, AnyRefTpe)
        val args1 = tree.args mapConserve (arg => typed(arg, AnyRefTpe))
        treeCopy.ApplyDynamic(tree, qual1, args1) setType AnyRefTpe
      }

      def typedReferenceToBoxed(tree: ReferenceToBoxed) = {
        val id = tree.ident
        val id1 = typed1(id, mode, pt) match { case id: Ident => id }
        // [Eugene] am I doing it right?
        val erasedTypes = phaseId(currentPeriod) >= currentRun.erasurePhase.id
        val tpe = capturedVariableType(id.symbol, erasedTypes = erasedTypes)
        treeCopy.ReferenceToBoxed(tree, id1) setType tpe
      }

      // Warn about likely interpolated strings which are missing their interpolators
      def warnMissingInterpolator(lit: Literal): Unit = if (!isPastTyper) {
        // attempt to avoid warning about trees munged by macros
        def isMacroExpansion = {
          // context.tree is not the expandee; it is plain new SC(ps).m(args)
          //context.tree exists (t => (t.pos includes lit.pos) && hasMacroExpansionAttachment(t))
          // testing pos works and may suffice
          //openMacros exists (_.macroApplication.pos includes lit.pos)
          // tests whether the lit belongs to the expandee of an open macro
          openMacros exists (_.macroApplication.attachments.get[MacroExpansionAttachment] match {
            case Some(MacroExpansionAttachment(_, t: Tree)) => t exists (_ == lit)
            case _                                          => false
          })
        }
        // attempt to avoid warning about the special interpolated message string
        // for implicitNotFound or any standard interpolation (with embedded $$).
        def isRecognizablyNotForInterpolation = context.enclosingApply.tree match {
          case Apply(Select(Apply(RefTree(_, nme.StringContext), _), _), _) => true
          case Apply(Select(New(RefTree(_, tpnme.implicitNotFound)), _), _) => true
          case _                                                            => isMacroExpansion
        }
        def requiresNoArgs(tp: Type): Boolean = tp match {
          case PolyType(_, restpe)     => requiresNoArgs(restpe)
          case MethodType(Nil, restpe) => requiresNoArgs(restpe)  // may be a curried method - can't tell yet
          case MethodType(p :: _, _)   => p.isImplicit            // implicit method requires no args
          case _                       => true                    // catches all others including NullaryMethodType
        }
        def isPlausible(m: Symbol) = !m.isPackage && m.alternatives.exists(x => requiresNoArgs(x.info))

        def maybeWarn(s: String): Unit = {
          def warn(message: String)         = context.warning(lit.pos, s"possible missing interpolator: $message")
          def suspiciousSym(name: TermName) = context.lookupSymbol(name, _ => true).symbol
          val suspiciousExprs               = InterpolatorCodeRegex findAllMatchIn s
          def suspiciousIdents              = InterpolatorIdentRegex findAllIn s map (s => suspiciousSym(TermName(s drop 1)))
          def isCheapIdent(expr: String)    = (Character.isJavaIdentifierStart(expr.charAt(0)) &&
                                               expr.tail.forall(Character.isJavaIdentifierPart))
          def warnableExpr(expr: String)    = !expr.isEmpty && (!isCheapIdent(expr) || isPlausible(suspiciousSym(TermName(expr))))

          if (suspiciousExprs.nonEmpty) {
            val exprs = (suspiciousExprs map (_ group 1)).toList
            // short-circuit on leading ${}
            if (!exprs.head.isEmpty && exprs.exists(warnableExpr))
              warn("detected an interpolated expression") // "${...}"
          } else
            suspiciousIdents find isPlausible foreach (sym => warn(s"detected interpolated identifier `$$${sym.name}`")) // "$id"
        }
        lit match {
          case Literal(Constant(s: String)) if !isRecognizablyNotForInterpolation => maybeWarn(s)
          case _                                                                  =>
        }
      }

      def typedLiteral(tree: Literal) = {
        if (settings.warnMissingInterpolator) warnMissingInterpolator(tree)

        tree setType (if (tree.value.tag == UnitTag) UnitTpe else ConstantType(tree.value))
      }

      def typedSingletonTypeTree(tree: SingletonTypeTree) = {
        val refTyped =
          context.withImplicitsDisabled {
            typed(tree.ref, MonoQualifierModes | mode.onlyTypePat, AnyRefTpe)
          }

        if (refTyped.isErrorTyped) {
          setError(tree)
        } else {
          tree setType refTyped.tpe.resultType.deconst
          if (refTyped.isErrorTyped || treeInfo.admitsTypeSelection(refTyped)) tree
          else UnstableTreeError(tree)
        }
      }

      def typedSelectFromTypeTree(tree: SelectFromTypeTree) = {
        val qual1 = typedType(tree.qualifier, mode)
        if (qual1.isErrorTyped) setError(treeCopy.SelectFromTypeTree(tree, qual1, tree.name))
        else if (qual1.tpe.isVolatile) TypeSelectionFromVolatileTypeError(tree, qual1)
        else typedSelect(tree, qual1, tree.name)
      }

      def typedTypeBoundsTree(tree: TypeBoundsTree) = {
        val lo1 = if (tree.lo.isEmpty) TypeTree(NothingTpe) else typedType(tree.lo, mode)
        val hi1 = if (tree.hi.isEmpty) TypeTree(AnyTpe) else typedType(tree.hi, mode)
        treeCopy.TypeBoundsTree(tree, lo1, hi1) setType TypeBounds(lo1.tpe, hi1.tpe)
      }

      def typedExistentialTypeTree(tree: ExistentialTypeTree) = {
        val tree1 = typerWithLocalContext(context.makeNewScope(tree, context.owner)){
          typer =>
            if (context.inTypeConstructorAllowed)
              typer.context.withinTypeConstructorAllowed(typer.typedExistentialTypeTree(tree, mode))
            else
              typer.typedExistentialTypeTree(tree, mode)
        }
        checkExistentialsFeature(tree1.pos, tree1.tpe, "the existential type")
        tree1
      }

      def typedTypeTree(tree: TypeTree) = {
        if (tree.original != null) {
          val newTpt = typedType(tree.original, mode)
          tree setType newTpt.tpe
          newTpt match {
            case tt @ TypeTree() => tree setOriginal tt.original
            case _ => tree
          }
        }
        else {
          // we should get here only when something before failed
          // and we try again (@see tryTypedApply). In that case we can assign
          // whatever type to tree; we just have to survive until a real error message is issued.
          devWarning(tree.pos, s"Assigning Any type to TypeTree because tree.original is null: tree is $tree/${System.identityHashCode(tree)}, sym=${tree.symbol}, tpe=${tree.tpe}")
          tree setType AnyTpe
        }
      }
      def typedFunction(fun: Function) = {
        if (fun.symbol == NoSymbol)
          fun.symbol = context.owner.newAnonymousFunctionValue(fun.pos)

        typerWithLocalContext(context.makeNewScope(fun, fun.symbol))(_.typedFunction(fun, mode, pt))
      }

      // Trees only allowed during pattern mode.
      def typedInPatternMode(tree: Tree): Tree = tree match {
        case tree: Alternative => typedAlternative(tree)
        case tree: Star        => typedStar(tree)
        case _                 => abort(s"unexpected tree in pattern mode: ${tree.getClass}\n$tree")
      }

      def typedTypTree(tree: TypTree): Tree = tree match {
        case tree: TypeTree                     => typedTypeTree(tree)
        case tree: AppliedTypeTree              => typedAppliedTypeTree(tree)
        case tree: TypeBoundsTree               => typedTypeBoundsTree(tree)
        case tree: SingletonTypeTree            => typedSingletonTypeTree(tree)
        case tree: SelectFromTypeTree           => typedSelectFromTypeTree(tree)
        case tree: CompoundTypeTree             => typedCompoundTypeTree(tree)
        case tree: ExistentialTypeTree          => typedExistentialTypeTree(tree)
        case tree: TypeTreeWithDeferredRefCheck => tree // TODO: retype the wrapped tree? TTWDRC would have to change to hold the wrapped tree (not a closure)
        case _                                  => abort(s"unexpected type-representing tree: ${tree.getClass}\n$tree")
      }

      def typedMemberDef(tree: MemberDef): Tree = tree match {
        case tree: ValDef     => typedValDef(tree)
        case tree: DefDef     => defDefTyper(tree).typedDefDef(tree)
        case tree: ClassDef   => newTyper(context.makeNewScope(tree, sym)).typedClassDef(tree)
        case tree: ModuleDef  => newTyper(context.makeNewScope(tree, sym.moduleClass)).typedModuleDef(tree)
        case tree: TypeDef    => typedTypeDef(tree)
        case tree: PackageDef => typedPackageDef(tree)
        case _                => abort(s"unexpected member def: ${tree.getClass}\n$tree")
      }

      // Trees not allowed during pattern mode.
      def typedOutsidePatternMode(tree: Tree): Tree = tree match {
        case tree: Block            => typerWithLocalContext(context.makeNewScope(tree, context.owner))(_.typedBlock(tree, mode, pt))
        case tree: If               => typedIf(tree)
        case tree: TypeApply        => typedTypeApply(tree)
        case tree: Function         => typedFunction(tree)
        case tree: Match            => typedVirtualizedMatch(tree)
        case tree: New              => typedNew(tree)
        case tree: Assign           => typedAssign(tree.lhs, tree.rhs)
        case tree: AssignOrNamedArg => typedAssign(tree.lhs, tree.rhs) // called by NamesDefaults in silent typecheck
        case tree: Super            => typedSuper(tree)
        case tree: Annotated        => typedAnnotated(tree)
        case tree: Return           => typedReturn(tree)
        case tree: Try              => typedTry(tree)
        case tree: Throw            => typedThrow(tree)
        case tree: ArrayValue       => typedArrayValue(tree)
        case tree: ApplyDynamic     => typedApplyDynamic(tree)
        case tree: ReferenceToBoxed => typedReferenceToBoxed(tree)
        case tree: LabelDef         => labelTyper(tree).typedLabelDef(tree)
        case tree: DocDef           => typedDocDef(tree, mode, pt)
        case _                      => abort(s"unexpected tree: ${tree.getClass}\n$tree")
      }

      // Trees allowed in or out of pattern mode.
      def typedInAnyMode(tree: Tree): Tree = tree match {
        case tree: Ident   => typedIdentOrWildcard(tree)
        case tree: Bind    => typedBind(tree)
        case tree: Apply   => typedApply(tree)
        case tree: Select  => typedSelectOrSuperCall(tree)
        case tree: Literal => typedLiteral(tree)
        case tree: Typed   => typedTyped(tree)
        case tree: This    => typedThis(tree)  // SI-6104
        case tree: UnApply => abort(s"unexpected UnApply $tree") // turns out UnApply never reaches here
        case _             =>
          if (mode.inPatternMode)
            typedInPatternMode(tree)
          else
            typedOutsidePatternMode(tree)
      }

      // begin typed1
      tree match {
        case tree: TypTree   => typedTypTree(tree)
        case tree: MemberDef => typedMemberDef(tree)
        case _               => typedInAnyMode(tree)
      }
    }

    def typed(tree: Tree, mode: Mode, pt: Type): Tree = {
      lastTreeToTyper = tree
      def body = (
        if (printTypings && !phase.erasedTypes && !noPrintTyping(tree))
          typingStack.nextTyped(tree, mode, pt, context)(typedInternal(tree, mode, pt))
        else
          typedInternal(tree, mode, pt)
      )
      val startByType = if (Statistics.canEnable) Statistics.pushTimer(byTypeStack, byTypeNanos(tree.getClass)) else null
      if (Statistics.canEnable) Statistics.incCounter(visitsByType, tree.getClass)
      try body
      finally if (Statistics.canEnable) Statistics.popTimer(byTypeStack, startByType)
    }

    private def typedInternal(tree: Tree, mode: Mode, pt: Type): Tree = {
      val ptPlugins = pluginsPt(pt, this, tree, mode)
      def retypingOk = (
            context.retyping
        && (tree.tpe ne null)
        && (tree.tpe.isErroneous || !(tree.tpe <:< ptPlugins))
      )
      def runTyper(): Tree = {
        if (retypingOk) {
          tree.setType(null)
          if (tree.hasSymbolField) tree.symbol = NoSymbol
        }
        val alreadyTyped = tree.tpe ne null
        val shouldPrint = !alreadyTyped && !phase.erasedTypes
        val ptWild = if (mode.inPatternMode)
          ptPlugins // SI-5022 don't widen pt for patterns as types flow from it to the case body.
        else
          dropExistential(ptPlugins) // FIXME: document why this is done.
        val tree1: Tree = if (alreadyTyped) tree else typed1(tree, mode, ptWild)
        if (shouldPrint)
          typingStack.showTyped(tree1)

        // Can happen during erroneous compilation - error(s) have been
        // reported, but we need to avoid causing an NPE with this tree
        if (tree1.tpe eq null)
          return setError(tree)

        tree1 modifyType (pluginsTyped(_, this, tree1, mode, ptPlugins))

        val result =
          if (tree1.isEmpty) tree1
          else {
            val result = adapt(tree1, mode, ptPlugins, tree)
            if (hasPendingMacroExpansions) macroExpandAll(this, result) else result
          }

        if (shouldPrint)
          typingStack.showAdapt(tree1, result, ptPlugins, context)

        if (!isPastTyper)
          signalDone(context.asInstanceOf[analyzer.Context], tree, result)

        if (mode.inPatternMode && !mode.inPolyMode && result.isType)
          PatternMustBeValue(result, pt)

        result
      }

      try runTyper() catch {
        case ex: CyclicReference if global.propagateCyclicReferences =>
          throw ex
        case ex: TypeError =>
          tree.clearType()
          // The only problematic case are (recoverable) cyclic reference errors which can pop up almost anywhere.
          typingStack.printTyping(tree, "caught %s: while typing %s".format(ex, tree)) //DEBUG
          reportTypeError(context, tree.pos, ex)
          setError(tree)
        case ex: Exception =>
          // @M causes cyclic reference error
          devWarning(s"exception when typing $tree, pt=$ptPlugins")
          if (context != null && context.unit.exists && tree != null)
            logError("AT: " + tree.pos, ex)
          throw ex
      }
    }

    def atOwner(owner: Symbol): Typer =
      newTyper(context.make(owner = owner))

    def atOwner(tree: Tree, owner: Symbol): Typer =
      newTyper(context.make(tree, owner))

    /** Types expression or definition `tree`.
     */
    def typed(tree: Tree): Tree = {
      val ret = typed(tree, context.defaultModeForTyped, WildcardType)
      ret
    }

    def typedByValueExpr(tree: Tree, pt: Type = WildcardType): Tree = typed(tree, EXPRmode | BYVALmode, pt)

    def typedPos(pos: Position, mode: Mode, pt: Type)(tree: Tree) = typed(atPos(pos)(tree), mode, pt)
    def typedPos(pos: Position)(tree: Tree) = typed(atPos(pos)(tree))
    // TODO: see if this formulation would impose any penalty, since
    // it makes for a lot less casting.
    // def typedPos[T <: Tree](pos: Position)(tree: T): T = typed(atPos(pos)(tree)).asInstanceOf[T]

    /** Types expression `tree` with given prototype `pt`.
     */
    def typed(tree: Tree, pt: Type): Tree =
      typed(tree, context.defaultModeForTyped, pt)

    def typed(tree: Tree, mode: Mode): Tree =
      typed(tree, mode, WildcardType)

    /** Types qualifier `tree` of a select node.
     *  E.g. is tree occurs in a context like `tree.m`.
     */
    def typedQualifier(tree: Tree, mode: Mode, pt: Type): Tree =
      typed(tree, PolyQualifierModes | mode.onlyTypePat, pt) // TR: don't set BYVALmode, since qualifier might end up as by-name param to an implicit

    /** Types qualifier `tree` of a select node.
     *  E.g. is tree occurs in a context like `tree.m`.
     */
    def typedQualifier(tree: Tree, mode: Mode): Tree =
      typedQualifier(tree, mode, WildcardType)

    def typedQualifier(tree: Tree): Tree = typedQualifier(tree, NOmode, WildcardType)

    /** Types function part of an application */
    def typedOperator(tree: Tree): Tree = typed(tree, OperatorModes)

    // the qualifier type of a supercall constructor is its first parent class
    private def typedSelectOrSuperQualifier(qual: Tree) =
      context withinSuperInit typed(qual, PolyQualifierModes)

    /** Types a pattern with prototype `pt` */
    def typedPattern(tree: Tree, pt: Type): Tree = {
      // We disable implicits because otherwise some constructs will
      // type check which should not.  The pattern matcher does not
      // perform implicit conversions in an attempt to consummate a match.

      // on the one hand,
      //   "abc" match { case Seq('a', 'b', 'c') => true }
      // should be ruled out statically, otherwise this is a runtime
      // error both because there is an implicit from String to Seq
      // (even though such implicits are not used by the matcher) and
      // because the typer is fine with concluding that "abc" might
      // be of type "String with Seq[T]" and thus eligible for a call
      // to unapplySeq.

      // on the other hand, we want to be able to use implicits to add members retro-actively (e.g., add xml to StringContext)

      // as a compromise, context.enrichmentEnabled tells adaptToMember to go ahead and enrich,
      // but arbitrary conversions (in adapt) are disabled
      // TODO: can we achieve the pattern matching bit of the string interpolation SIP without this?
      typingInPattern(context.withImplicitsDisabledAllowEnrichment(typed(tree, PATTERNmode, pt)))
    }

    /** Types a (fully parameterized) type tree */
    def typedType(tree: Tree, mode: Mode): Tree =
      typed(tree, mode.forTypeMode, WildcardType)

    /** Types a (fully parameterized) type tree */
    def typedType(tree: Tree): Tree = typedType(tree, NOmode)

    /** Types a higher-kinded type tree -- pt denotes the expected kind and must be one of `Kind.WildCard` and `Kind.FromParams` */
    def typedHigherKindedType(tree: Tree, mode: Mode, pt: Type): Tree =
      if (pt != Kind.Wildcard && pt.typeParams.isEmpty) typedType(tree, mode) // kind is known and it's *
      else context withinTypeConstructorAllowed typed(tree, NOmode, pt)

    def typedHigherKindedType(tree: Tree, mode: Mode): Tree =
      context withinTypeConstructorAllowed typed(tree)

    /** Types a type constructor tree used in a new or supertype */
    def typedTypeConstructor(tree: Tree, mode: Mode): Tree = {
      val result = typed(tree, mode.forTypeMode | FUNmode, WildcardType)

      // get rid of type aliases for the following check (#1241)
      result.tpe.dealias match {
        case restpe @ TypeRef(pre, _, _) if !phase.erasedTypes && !pre.isStable && !context.unit.isJava =>
          // The isJava exception if OK only because the only type constructors scalac gets
          // to see are those in the signatures. These do not need a unique object as a prefix.
          // The situation is different for new's and super's, but scalac does not look deep
          // enough to see those. See #3938
          ConstructorPrefixError(tree, restpe)
        case _ =>
          // must not normalize: type application must be (bounds-)checked (during RefChecks), see #2208
          // during uncurry (after refchecks), all types are normalized
          result
      }
    }

    def typedTypeConstructor(tree: Tree): Tree = typedTypeConstructor(tree, NOmode)

    def computeType(tree: Tree, pt: Type): Type = {
      // macros employ different logic of `computeType`
      assert(!context.owner.isMacro, context.owner)
      val tree1 = typed(tree, pt)
      transformed(tree) = tree1
      val tpe = packedType(tree1, context.owner)
      checkExistentialsFeature(tree.pos, tpe, "inferred existential type")
      tpe
    }

    def computeMacroDefType(ddef: DefDef, pt: Type): Type = {
      assert(context.owner.isMacro, context.owner)
      assert(ddef.symbol.isMacro, ddef.symbol)

      val rhs1 =
        if (transformed contains ddef.rhs) {
          // macro defs are typechecked in `methodSig` (by calling this method) in order to establish their link to macro implementation asap
          // if a macro def doesn't have explicitly specified return type, this method will be called again by `assignTypeToTree`
          // here we guard against this case
          transformed(ddef.rhs)
        } else {
          val rhs1 = typedMacroBody(this, ddef)
          transformed(ddef.rhs) = rhs1
          rhs1
        }

      val isMacroBodyOkay = !ddef.symbol.isErroneous && !(rhs1 exists (_.isErroneous)) && rhs1 != EmptyTree
      val shouldInheritMacroImplReturnType = ddef.tpt.isEmpty
      if (isMacroBodyOkay && shouldInheritMacroImplReturnType) {
        val commonMessage = "macro defs must have explicitly specified return types"
        def reportFailure() = {
          ddef.symbol.setFlag(IS_ERROR)
          context.error(ddef.pos, commonMessage)
        }
        def reportWarning(inferredType: Type) = {
          val explanation = s"inference of $inferredType from macro impl's c.Expr[$inferredType] is deprecated and is going to stop working in 2.12"
          context.deprecationWarning(ddef.pos, ddef.symbol, s"$commonMessage ($explanation)", "2.12.0")
        }
        computeMacroDefTypeFromMacroImplRef(ddef, rhs1) match {
          case ErrorType => ErrorType
          case NothingTpe => NothingTpe
          case NoType => reportFailure(); AnyTpe
          case tpe => reportWarning(tpe); tpe
        }
      } else AnyTpe
    }

    def transformedOr(tree: Tree, op: => Tree): Tree = transformed remove tree match {
      case Some(tree1) => tree1
      case _           => op
    }

    def transformedOrTyped(tree: Tree, mode: Mode, pt: Type): Tree = transformed remove tree match {
      case Some(tree1) => tree1
      case _           => typed(tree, mode, pt)
    }
  }
}

object TypersStats {
  import scala.reflect.internal.TypesStats._
  val typedIdentCount     = Statistics.newCounter("#typechecked identifiers")
  val typedSelectCount    = Statistics.newCounter("#typechecked selections")
  val typedApplyCount     = Statistics.newCounter("#typechecked applications")
  val rawTypeFailed       = Statistics.newSubCounter ("  of which in failed", rawTypeCount)
  val subtypeFailed       = Statistics.newSubCounter("  of which in failed", subtypeCount)
  val findMemberFailed    = Statistics.newSubCounter("  of which in failed", findMemberCount)
  val failedSilentNanos   = Statistics.newSubTimer("time spent in failed", typerNanos)
  val failedApplyNanos    = Statistics.newSubTimer("  failed apply", typerNanos)
  val failedOpEqNanos     = Statistics.newSubTimer("  failed op=", typerNanos)
  val isReferencedNanos   = Statistics.newSubTimer("time spent ref scanning", typerNanos)
  val visitsByType        = Statistics.newByClass("#visits by tree node", "typer")(Statistics.newCounter(""))
  val byTypeNanos         = Statistics.newByClass("time spent by tree node", "typer")(Statistics.newStackableTimer("", typerNanos))
  val byTypeStack         = Statistics.newTimerStack()
}