/* * Simple Mechanics Simulator (SiMS) * copyright (c) 2009 Jakob Odersky * made available under the MIT License */ package sims.dynamics.joints import sims.geometry._ /** DistanceJoints halten die Bindungspunkte auf ihren Bindungskoerpern bei einem konstanten Abstand. * @param node1 erster Koerper der Verbindung * @param anchor1 Bindungspunkt auf Koerper eins * @param node2 zweiter Koerper der Verbindung * @param anchor2 Bindungspunkt auf Koerper zwei*/ case class DistanceJoint(node1: Body, anchor1: Vector2D, node2: Body, anchor2: Vector2D) extends Joint{ def this(node1: Body, node2: Body) = this(node1, node1.pos, node2, node2.pos) /**Abstand der beiden Bindungspunkte bei initialisierung (der gewollte Abstand).*/ val distance = (anchor2 - anchor1).length private val a1 = anchor1 - node1.pos private val a2 = anchor2 - node2.pos private val initRotation1 = node1.rotation private val initRotation2 = node2.rotation /**Ergibt den Bindungspunkt auf Koerper eins.*/ def connection1 = (a1 rotate (node1.rotation - initRotation1)) + node1.pos /**Ergibt den Bindungspunkt auf Koerper zwei.*/ def connection2 = (a2 rotate (node2.rotation - initRotation2)) + node2.pos /**Relative Position der Bindungspunkte.*/ def x = connection2 - connection1 /**Relative Geschwindigkeit der Bindungspunkte.*/ def v = node2.velocityOfPoint(connection2) - node1.velocityOfPoint(connection1) /* x = connection2 - connection1 * C = ||x|| - L * u = x / ||x|| * v = v2 + w2 cross r2 - v1 - w1 cross r1 * Cdot = u dot v * J = [-u -(r1 cross u) u (r2 cross u)] * 1/m = J * M^-1 * JT * = 1/m1 * u * u + 1/m2 * u * u + 1/I1 * (r1 cross u)^2 + 1/I2 * (r2 cross u)^2*/ override def correctVelocity(h: Double) = { val x = this.x //relativer Abstand val v = this.v //relative Geschwindigkeit val r1 = (connection1 - node1.pos) //Abstand Punkt-Schwerpunkt, Koerper 1 val r2 = (connection2 - node2.pos) //Abstand Punkt-Schwerpunkt, Koerper 2 val cr1 = r1 cross x.unit //Kreuzprodukt val cr2 = r2 cross x.unit //Kreuzprodukt val Cdot = x.unit dot v //Velocity-Constraint val invMass = 1/node1.mass + 1/node1.I * cr1 * cr1 + 1/node2.mass + 1/node2.I * cr2 * cr2 //=J M^-1 JT val m = if (invMass == 0.0) 0.0 else 1/invMass //Test um Nulldivision zu vermeiden val lambda = -m * Cdot //=-JV/JM^-1JT val impulse = x.unit * lambda //P=J lambda node1.applyImpulse(-impulse, connection1) node2.applyImpulse(impulse, connection2) } override def correctPosition(h: Double) = { val C = x.length - distance val cr1 = (connection1 - node1.pos) cross x.unit val cr2 = (connection2 - node2.pos) cross x.unit val invMass = 1/node1.mass + 1/node1.I * cr1 * cr1 + 1/node2.mass + 1/node2.I * cr2 * cr2 val m = if (invMass == 0.0) 0.0 else 1/invMass val impulse = -x.unit * m * C node1.pos -= impulse / node1.mass node2.pos += impulse / node2.mass node1.rotation -= ((connection1 - node1.pos) cross impulse) / node1.I node2.rotation += ((connection2 - node2.pos) cross impulse) / node2.I } }