Spark

Fast, Interactive, Language-Integrated
Cluster Computing

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin,

Scott Shenker, lon Stoica

www.spark-project.org



Project Goals

Extend the MapReduce model to better support
two common classes of analytics apps:
» Iterative algorithms (machine learning, graphs)
» Interactive data mining

Enhance programmability:
» Integrate into Scala programming language
» Allow interactive use from Scala interpreter



Motivation

Most current cluster programming models are
based on acyclic data flow from stable storage
to stable storage

Input — — Output




Motivation

Most current cluster programming models are
based on acyclic data flow from stable storage

to stable storage

Benefits of data flow: runtime can decide
where to run tasks and can automatically
recover from failures



Motivation

Acyclic data flow is inefficient for applications

that repeatedly reuse a working set of data:
» Iterative algorithms (machine learning, graphs)
» Interactive data mining tools (R, Excel, Python)

With current frameworks, apps reload data
from stable storage on each query



Solution: Resilient
Distributed Datasets (RDDs)

Allow apps to keep working sets in memory for
efficient reuse

Retain the attractive properties of MapReduce
» Fault tolerance, data locality, scalability

Support a wide range of applications



Outline

Spark programming model
Implementation
Demo

User applications



Programming Model

Resilient distributed datasets (RDDs)
» Immutable, partitioned collections of objects
» Created through parallel transformations (map, filter,
groupBy, join, ...) on data in stable storage
» Can be cached for efficient reuse

Actions on RDDs
» Count, reduce, collect, save, ...



Example: Log Mining

Load error messages from a log into memory, then
interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(_.startswith(“ERROR"))
messages = errors.map(_.split(‘\t’)(2))
cachedMsgs = messages.cache()

cachedMsgs.filter(_.contains(“foo”)).count

cachedmsgs.filter(_.contains(“bar”)).count

Result: scaled to 1 TB data in 5-7 sec
(vs 170 sec for on-disk data)




RDD Fault Tolerance

RDDs maintain lineage information that can be
used to reconstruct lost partitions

EX: messages = textFile(...).filter(_.startswith(“ERROR"))
.map(_.split(‘\t’)(2))

HDFS File > Filtered RDD > Mapped RDD

filter map
(func = _.contains(...)) (func = _.split(...))



Example: Logistic Regression

Goal: find best line separating two sets of points

random initial line
+*
R

+ N
\ AN
*

AY
\
\




Example: Logistic Regression

val data = spark.textFile(...).map(readPoint).cache()

var w = Vector.random(D)

for (1 <- 1 to ITERATIONS) {
val gradient = data.map(p =>
(1 / (1 + exp(-p.y*(w dot p.x))) - 1) * p.y * p.X
).reduce(_ + _)
w -= gradient

}

printin("Final w: " + w)



Logistic Regression Performance

4500
4000

3500
g 3000
= 2500
2000
1500
1000
500
o)

Running

5 10 20
Number of Iterations

127 s/ iteration

/

Hadoop
W Spark

\

first iteration 174 s

further iterations 6 s
30



Spark Applications

In-memory data mining on Hive data (Conviva)
Predictive analytics (Quantifind)

City traffic prediction (Mobile Millennium)
Twitter spam classification (Monarch)

Collaborative filtering via matrix factorization



Conviva GeoReport

Hive J 20

Spark | o.5

Time (hours)
0 5 10 15 20

Aggregations on many keys w/ same WHERE clause

£4,0%x gain comes from:
» Not re-reading unused columns or filtered records
» Avoiding repeated decompression
» In-memory storage of deserialized objects



Frameworks Built on Spark

Pregel on Spark (Bagel)
» Google message passing
model for graph computation
» 200 lines of code

Hive on Spark (Shark)

» 3000 lines of code
» Compatible with Apache Hive
» ML operators in Scala




Implementation

Runs on Apache Mesos to
share resources with prlelelels
Hadoop & other apps

Can read from any Hadoop

iInput source (e.qg. HDFS) WWWW

No changes to Scala compiler




Spark Scheduler

Dryad-like DAGs

Pipelines functions
within a stage

Cache-aware work
reuse & locality

Partitioning-aware
to avoid shuffles

W = cached data partition



Interactive Spark

Modified Scala interpreter to allow Spark to be
used interactively from the command line

Required two changes:
» Modified wrapper code generation so that each line
typed has references to objects for its dependencies
» Distribute generated classes over the network



Demo



Conclusion

Spark provides a simple, efficient, and powerful
programming model for a wide range of apps

Download our open source release:

www.spark-project.orq

matei@berkeley.edu



Related Work

DryadLINQ, FlumelJava
» Similar “distributed collection” API, but cannot reuse
datasets efficiently across queries

Relational databases
» Lineage/provenance, logical logging, materialized views

GraphLab, Piccolo, BigTable, RAMCloud

» Fine-grained writes similar to distributed shared memory

Iterative MapReduce (e.qg. Twister, HaLoop)
» Implicit data sharing for a fixed computation pattern

Caching systems (e.g. Nectar)
» Store data in files, no explicit control over what is cached



Behavior with Not Enough RAM

100

_ o L

% 80 o S

= : ~

_,z 60 I 3_ ~

o o)

g 4 I : 0

S 20 -

0

Cache 25% 50% 75% Fully
disabled cached

% of working set in memory



Fault Recovery Results

“ No Failure

140 A G .
— H W Failure in the 6th Iteration
N 120
()]
€ 100 ki
=)

c 80 N oY 92 % 5 A I A
.= 60
)
: l
()]
a I R R RRRRRI
0
i 2 3 4 5 6 7 8 9 10

Iteration



Spark Operations

map flatMap
filter union
Transformations sample join
(define a new RDD) groupByKey cogroup
reduceByKey Cross
sortByKey mapValues
collect
Actions reduce
(return a result to count
driver program) save

lookupKey




