e pgSpar‘I’(\Z

Fast and Expressive Big Data Analytics
with Python

Matei Zaharia Iab

UC Berkeley / MIT spark-project.org

What is Spark?

Fast and expressive cluster computing
system interoperable with Apache Hadoop

Improves efticiency through:
» In-memory computing primitives
» General computation graphs

Improves usability through:

» Rich APls in Scala, Java, Python
» Interactive shell

Project History

Started in 2009, open sourced 2010

17 companies now contributing code
» Yahoo!, Intel, Adobe, Quantifind, Conviva, Bizo, ...

Entered Apache incubator in June

Python APl added in February

An Expanding Stack

Spark is the basis for a wide set of projects in
the Berkeley Data Analytics Stack (BDAS)

Spark MLbase

Streaming (machine

(real-time) learning)

More details: amplab.berkeley.edu

This Talk

[Spark programming model

Examples
Demo
Implementation

Trying it out

Why a New Programming Model?

MapReduce simplitied big data processing,
but users quickly found two problems:

Programmability: tangle of map/red functions

Speed: MapReduce inefficient for apps that

share data across multiple steps
» [terative algorithms, interactive queries

Data Sharing in MapReduce

HDFS HDFS HDFS HDFS
d write read write
A S ——— ——
— — —
iter. '- iter. I- .
Input
result 1
result 2
result 3

[Slow due to data replication and disk I/O]

Wh
at
We'd Like

N

\\\

\\\\\\\\\“\\

N

\\\\\\\\\\\\\\\\\\‘

|
nput

on

e_ .
pro tim
cessnf;

\\\\\\\\\\\\\\\\\\\‘,

s

\\\\\\\\\\\i\\\‘\\“\
o &5

\\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\\‘\
\\\\»\\\\\\\\\\\\\\‘\\‘\\ W

\\\\\\\\\\\\\\\\\\\\\\\

D.
emOSd

10
_’loo
X]ca
ste

- than ne

tWO

rk a

nd di

I5|<

Spark Model

Write programs in terms of transformations
on distributed datasets

Resilient Distributed Datasets (RDDs)

» Collections ot objects that can be stored in
memory or disk across a cluster

» Built via parallel transformations (map, filter, ...)

» Automatically rebuilt on failure

Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(lambda s: s.startswith(“ERROR”))
messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()
messages.filter(lambda s: “bar” in s).count()

Result: scaled to 1 TB data in 7 sec
(vs 180 sec for on-disk data)

Fault Tolerance

RDDs track the transtormations used to build
them (their lineage) to recompute lost data

messages = textFile(...).filter(lambda s: “ERROR” in s)
.map(lambda s: s.split(“\t"”)[2])

HadoopRDD FilteredRDD MappedRDD
path = hdfs://... func=Ilambdas: ... func=lambdas: ...

Example: Logistic Regression

Goal: find line separating two sets of points

random initial line

Example: Logistic Regression

data = spark.textFile(...).map(readPoint).cache()
w = numpy.random.rand(D)

for i in range(iterations):
gradient = data.map(lambda p:
(1 / (1 + exp(-p.y * w.dot(p.x)))) * p.y * p.X
).reduce(lambda x, y: X + y)
w —= gradient

n o
s W

print “Final w: %s

Logistic Regression Performance

—
L

ime

—
(@)

Runnin

4000
3500
3000
2500
2000
1500
1000
500
0

5 10 20
Number of Iterations

110 s / iteration

/

Hadoop
w PySpark

\

first iteration 80 s
further iterations 5 s

30

Demo

Supported Operators

map

filter
groupBy

union

join
leftOuterJoin

rightOuterJoin

reduce
count

fold
reduceByKey
groupByKey
cogroup

flatMap

take

first
partitionBy
pipe
distinct

Ssave

Otnher Engine Features

General operator graphs (not just map-reduce)
Hash-based reduces (faster than Hadoop's sort)

Controlled data partitioning to save communication

PageRank Performance

w 200 171 Hadoop

o I

£ 150

*Z W Basic Spark

o 100 /2

© I

g 50)3 Spark + Controlled

Partitioning

Spark Community

1000+ meetup members
60+ contributors

17 companies contributing

MEEE €4

Alibaba.com

YaHoO! @ A'dﬂ UCgE

celtrao webtrends CIearStorg AdMC)blus
CONVIVA bize TAGGED quantlFmd

This Talk

Spark programming model
Examples

Demo

[Implementation

Trying it out

Overview

Spark core is written in Scala

PySpark calls existing scheduler, cache and
networking layer (2K-line wrapper)

No changes to Python

Your
app @

Spark
client

Spar w

orker g Python chid

Spar w
worker w

Overview

Spark core is written in Scala

PySpark calls existing scheduler, cache and
networking layer (2K-line wrapper)

No changes to Python

—

‘ ‘ Main PySpark author:

3 Josh Rosen

s —

1 cs.berkeley.edu/~joshrosen

Object Marshaling

Uses pickle library for both communication

and cached data
» Much cheaper than Python objects in RAM

Lambda marshaling library by PiCloud

Job Scheduler

Supports general
operator graphs

Automatically
pipelines functions

Aware ot data locality
and partitioning

W = cached data partition

Interoperability

Runs in standard CPython, on Linux / Mac
» Works fine with extensions, e.g. NumPy

Input from local file system, NFS, HDFS, S3

» Only text files for now

Works in IPython, including notebook

Works in doctests — see our tests!

Getting Started

Visit spark-project.org for video tutorials,
online exercises, docs

Easy to run in local mode (multicore),
standalone clusters, or EC2

Training camp at Berkeley in August (free
video): ampcamp.berkeley.edu

Getting Started

Easiest way to learn is the shell:

¢ «/pyspark

>>> nums = sc.parallelize([1,2,3]) # make RDD from array

>>> nums.count ()
3

>>> nums.map(lambda x: 2 * x).collect()
[2, 4, 6]

Writing Standalone Jobs

from pyspark import SparkContext
if _name__ == "__main__":
sc = SparkContext(“local”, “WordCount”)
lines = sc.textFile(“in.txt”)

counts = lines.flatMap(lambda s: s.split()) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda x, y: x + vy)

counts.saveAsTextFile(“out.txt”)

Conclusion

PySpark provides a fast and simple way to
analyze big datasets from Python

Learn more or contribute at spark-project.org

K

r

4)
Look for our training camp

 onAugust29-300 SpQ

My email: matei@berkeley.edu

Behavior with Not Enough RAM

100 -

— 0

28 g ”

GE) T LO -

S0 SR T

S o

2 40 I Q

© I

S 20

0

Cache 25% 50% 75% Fully
disabled cached

% of working set in memory

The Rest of the Stack

Spark is the foundation for wide set of projects
in the Berkeley Data Analytics Stack (BDAS)

Spark MLbase

Streaming (machine

(real-time) learning)

More details: amplab.berkeley.edu

Performance Comparison

xydelo
geydesn

Graph

30
5

(@) LN (@) LN (@)
N N — —

(Ulw) swil| ssuodsay

o
=
>eds -
©
O
| -
4+~
wn
Lo o Lo o LO (@) LO (@)
™M ™ AN (Q\ — —
(epou/s/giN) indybnoay
(isip) 3eys
(Is1p) ejeduwl
Ln o Lo (@) LO -
N (Q\| — —

(s) ewi | asuodsay

