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What is Spark?

Fast and expressive cluster computing
system interoperable with Apache Hadoop

Improves efticiency through:
» In-memory computing primitives
» General computation graphs

Improves usability through:

» Rich APls in Scala, Java, Python
» Interactive shell




Project History

Started in 2009, open sourced 2010

17 companies now contributing code
» Yahoo!, Intel, Adobe, Quantifind, Conviva, Bizo, ...

Entered Apache incubator in June

Python APl added in February



An Expanding Stack

Spark is the basis for a wide set of projects in
the Berkeley Data Analytics Stack (BDAS)

Spark MLbase

Streaming (machine

(real-time) learning)

More details: amplab.berkeley.edu



This Talk

[Spark programming model

Examples
Demo
Implementation

Trying it out



Why a New Programming Model?

MapReduce simplitied big data processing,
but users quickly found two problems:

Programmability: tangle of map/red functions

Speed: MapReduce inefficient for apps that

share data across multiple steps
» [terative algorithms, interactive queries



Data Sharing in MapReduce
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[ Slow due to data replication and disk I/O ]
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Spark Model

Write programs in terms of transformations
on distributed datasets

Resilient Distributed Datasets (RDDs)

» Collections ot objects that can be stored in
memory or disk across a cluster

» Built via parallel transformations (map, filter, ...)

» Automatically rebuilt on failure



Example: Log Mining

Load error messages from a log into memory,
then interactively search for various patterns

lines = spark.textFile(“hdfs://...")
errors = lines.filter(lambda s: s.startswith(“ERROR”))
messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

messages.filter(lambda s: “foo” in s).count()
messages.filter(lambda s: “bar” in s).count()

Result: scaled to 1 TB data in 7 sec
(vs 180 sec for on-disk data)




Fault Tolerance

RDDs track the transtormations used to build
them (their lineage) to recompute lost data

messages = textFile(...).filter(lambda s: “ERROR” in s)
.map(lambda s: s.split(“\t"”)[2])

HadoopRDD FilteredRDD MappedRDD
path = hdfs://... func=Ilambdas: ... func=lambdas: ...




Example: Logistic Regression

Goal: find line separating two sets of points

random initial line




Example: Logistic Regression

data = spark.textFile(...).map(readPoint).cache()
w = numpy.random.rand(D)

for i in range(iterations):
gradient = data.map(lambda p:
(1 / (1 + exp(-p.y * w.dot(p.x)))) * p.y * p.X
).reduce(lambda x, y: X + y)
w —= gradient

n o
s W

print “Final w: %s



Logistic Regression Performance
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Demo



Supported Operators

map

filter
groupBy

union

join
leftOuterJoin

rightOuterJoin

reduce
count

fold
reduceByKey
groupByKey
cogroup

flatMap

take

first
partitionBy
pipe
distinct

Ssave



Otnher Engine Features

General operator graphs (not just map-reduce)
Hash-based reduces (faster than Hadoop's sort)

Controlled data partitioning to save communication

PageRank Performance
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Spark Community

1000+ meetup members
60+ contributors

17 companies contributing

MEEE €4

Alibaba.com
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Overview

Spark core is written in Scala

PySpark calls existing scheduler, cache and
networking layer (2K-line wrapper)

No changes to Python
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Overview

Spark core is written in Scala

PySpark calls existing scheduler, cache and
networking layer (2K-line wrapper)

No changes to Python

—

‘ ‘ Main PySpark author:

3 Josh Rosen

s —

1 cs.berkeley.edu/~joshrosen




Object Marshaling

Uses pickle library for both communication

and cached data
» Much cheaper than Python objects in RAM

Lambda marshaling library by PiCloud



Job Scheduler

Supports general
operator graphs

Automatically
pipelines functions

Aware ot data locality
and partitioning

W = cached data partition



Interoperability

Runs in standard CPython, on Linux / Mac
» Works fine with extensions, e.g. NumPy

Input from local file system, NFS, HDFS, S3

» Only text files for now

Works in IPython, including notebook

Works in doctests — see our tests!



Getting Started

Visit spark-project.org for video tutorials,
online exercises, docs

Easy to run in local mode (multicore),
standalone clusters, or EC2

Training camp at Berkeley in August (free
video): ampcamp.berkeley.edu




Getting Started

Easiest way to learn is the shell:

¢ «/pyspark

>>> nums = sc.parallelize([1,2,3]) # make RDD from array

>>> nums.count ()
3

>>> nums.map(lambda x: 2 * x).collect()
[2, 4, 6]



Writing Standalone Jobs

from pyspark import SparkContext
if _name__ == "__main__":
sc = SparkContext(“local”, “WordCount”)
lines = sc.textFile(“in.txt”)

counts = lines.flatMap(lambda s: s.split()) \
.map(lambda word: (word, 1)) \
.reduceByKey(lambda x, y: x + vy)

counts.saveAsTextFile(“out.txt”)



Conclusion

PySpark provides a fast and simple way to
analyze big datasets from Python

Learn more or contribute at spark-project.org
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My email: matei@berkeley.edu




Behavior with Not Enough RAM
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The Rest of the Stack

Spark is the foundation for wide set of projects
in the Berkeley Data Analytics Stack (BDAS)

Spark MLbase

Streaming (machine

(real-time) learning)

More details: amplab.berkeley.edu




Performance Comparison
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