

Fast and Expressive Big Data Analytics with Python

Matei Zaharia

UC Berkeley / MIT

spark-project.org

What is Spark?

Fast and expressive cluster computing system interoperable with Apache Hadoop

Improves efficiency through:

- » În-memory computing primitives Up to 100× faster
- » General computation graphs

 $(2-10 \times \text{ on disk})$

Often 5× less code

Improves usability through:

- » Rich APIs in Scala, Java, Python
- » Interactive shell

Project History

Started in 2009, open sourced 2010

17 companies now contributing code » Yahoo!, Intel, Adobe, Quantifind, Conviva, Bizo, ...

Entered Apache incubator in June

Python API added in February

An Expanding Stack

Spark is the basis for a wide set of projects in the Berkeley Data Analytics Stack (BDAS)

More details: <u>amplab.berkeley.edu</u>

This Talk

Spark programming model

Examples

Demo

Implementation

Trying it out

Why a New Programming Model?

MapReduce simplified big data processing, but users quickly found two problems:

Programmability: tangle of map/red functions

Speed: MapReduce inefficient for apps that share data across multiple steps

» Iterative algorithms, interactive queries

Data Sharing in MapReduce

Slow due to data replication and disk I/O

What We'd Like

10-100× faster than network and disk

Spark Model

Write programs in terms of transformations on distributed datasets

Resilient Distributed Datasets (RDDs)

- » Collections of objects that can be stored in memory or disk across a cluster
- » Built via parallel transformations (map, filter, ...)
- » Automatically rebuilt on failure

Example: Log Mining

Load error messages from a log into memory, then interactively search for various patterns

```
Cache 1
lines = spark.textFile("hdfs://...")
                                                                   Worker
                                                           results
errors = lines.filter(lambda s: s.startswith("ERROR"))
messages = errors.map(lambda s: s.split("\t")[2])
                                                              tasks
                                                                    Block 1
                                                     Driver
messages cache()
                                                    Action
messages.filter(lambda s: "foo" in s).count()
                                                                       Cache 2
messages.filter(lambda s: "bar" in s).count()
                                                                   Worker
                                                    ✓ Cache 3
                                                  Worker
  Result: scaled to 1 TB data in 7 sec
      (vs 180 sec for on-disk data)
```

Fault Tolerance

RDDs track the transformations used to build them (their *lineage*) to recompute lost data

Example: Logistic Regression

Goal: find line separating two sets of points

Example: Logistic Regression

Logistic Regression Performance

Demo

Supported Operators

map reduce take

filter count first

groupBy fold partitionBy

union reduceByKey pipe

join groupByKey distinct

leftOuterJoin cogroup save

rightOuterJoin flatMap •••

Other Engine Features

General operator graphs (not just map-reduce)

Hash-based reduces (faster than Hadoop's sort)

Controlled data partitioning to save communication

PageRank Performance

Spark Community

1000+ meetup members

60+ contributors

17 companies contributing

This Talk

Spark programming model

Examples

Demo

Implementation

Trying it out

Overview

Spark core is written in Scala

PySpark calls existing scheduler, cache and networking layer (2K-line wrapper)

No changes to Python

Overview

Spark core is written in Scala

PySpark calls existing scheduler, cache and networking layer (2K-line wrapper)

No changes to Python

Main PySpark author: Josh Rosen

cs.berkeley.edu/~joshrosen

Python child

Python child

ython child

Python child

Object Marshaling

Uses pickle library for both communication and cached data

» Much cheaper than Python objects in RAM

Lambda marshaling library by PiCloud

Job Scheduler

Supports general operator graphs

Automatically pipelines functions

Aware of data locality and partitioning

Interoperability

Runs in standard CPython, on Linux / Mac » Works fine with extensions, e.g. NumPy

Input from local file system, NFS, HDFS, S3 » Only text files for now

Works in IPython, including notebook

Works in doctests – see our tests!

Getting Started

Visit <u>spark-project.org</u> for video tutorials, online exercises, docs

Easy to run in local mode (multicore), standalone clusters, or EC2

Training camp at Berkeley in August (free video): ampcamp.berkeley.edu

Getting Started

Easiest way to learn is the shell:

```
$ ./pyspark
>>> nums = sc.parallelize([1,2,3]) # make RDD from array
>>> nums.count()
3
>>> nums.map(lambda x: 2 * x).collect()
[2, 4, 6]
```

Writing Standalone Jobs

Conclusion

PySpark provides a fast and simple way to analyze big datasets from Python

Learn more or contribute at spark-project.org

Look for our training camp on August 29-30!

My email: matei@berkeley.edu

Behavior with Not Enough RAM

The Rest of the Stack

Spark is the foundation for wide set of projects in the Berkeley Data Analytics Stack (BDAS)

More details: <u>amplab.berkeley.edu</u>

Performance Comparison

