From 855d12ac0a9cdade4cd2cc64c4e7209478be6690 Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Sun, 8 Feb 2015 23:40:36 -0800 Subject: [SPARK-5539][MLLIB] LDA guide This is the LDA user guide from jkbradley with Java and Scala code example. Author: Xiangrui Meng Author: Joseph K. Bradley Closes #4465 from mengxr/lda-guide and squashes the following commits: 6dcb7d1 [Xiangrui Meng] update java example in the user guide 76169ff [Xiangrui Meng] update java example 36c3ae2 [Xiangrui Meng] Merge remote-tracking branch 'apache/master' into lda-guide c2a1efe [Joseph K. Bradley] Added LDA programming guide, plus Java example (which is in the guide and probably should be removed). --- docs/mllib-clustering.md | 129 ++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 128 insertions(+), 1 deletion(-) (limited to 'docs') diff --git a/docs/mllib-clustering.md b/docs/mllib-clustering.md index 1e9ef345b7..99ed6b60e3 100644 --- a/docs/mllib-clustering.md +++ b/docs/mllib-clustering.md @@ -55,7 +55,7 @@ has the following parameters: Power iteration clustering is a scalable and efficient algorithm for clustering points given pointwise mutual affinity values. Internally the algorithm: -* accepts a [Graph](https://spark.apache.org/docs/0.9.2/api/graphx/index.html#org.apache.spark.graphx.Graph) that represents a normalized pairwise affinity between all input points. +* accepts a [Graph](api/graphx/index.html#org.apache.spark.graphx.Graph) that represents a normalized pairwise affinity between all input points. * calculates the principal eigenvalue and eigenvector * Clusters each of the input points according to their principal eigenvector component value @@ -71,6 +71,35 @@ Example outputs for a dataset inspired by the paper - but with five clusters ins

+### Latent Dirichlet Allocation (LDA) + +[Latent Dirichlet Allocation (LDA)](http://en.wikipedia.org/wiki/Latent_Dirichlet_allocation) +is a topic model which infers topics from a collection of text documents. +LDA can be thought of as a clustering algorithm as follows: + +* Topics correspond to cluster centers, and documents correspond to examples (rows) in a dataset. +* Topics and documents both exist in a feature space, where feature vectors are vectors of word counts. +* Rather than estimating a clustering using a traditional distance, LDA uses a function based + on a statistical model of how text documents are generated. + +LDA takes in a collection of documents as vectors of word counts. +It learns clustering using [expectation-maximization](http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm) +on the likelihood function. After fitting on the documents, LDA provides: + +* Topics: Inferred topics, each of which is a probability distribution over terms (words). +* Topic distributions for documents: For each document in the training set, LDA gives a probability distribution over topics. + +LDA takes the following parameters: + +* `k`: Number of topics (i.e., cluster centers) +* `maxIterations`: Limit on the number of iterations of EM used for learning +* `docConcentration`: Hyperparameter for prior over documents' distributions over topics. Currently must be > 1, where larger values encourage smoother inferred distributions. +* `topicConcentration`: Hyperparameter for prior over topics' distributions over terms (words). Currently must be > 1, where larger values encourage smoother inferred distributions. +* `checkpointInterval`: If using checkpointing (set in the Spark configuration), this parameter specifies the frequency with which checkpoints will be created. If `maxIterations` is large, using checkpointing can help reduce shuffle file sizes on disk and help with failure recovery. + +*Note*: LDA is a new feature with some missing functionality. In particular, it does not yet +support prediction on new documents, and it does not have a Python API. These will be added in the future. + ### Examples #### k-means @@ -293,6 +322,104 @@ for i in range(2): +#### Latent Dirichlet Allocation (LDA) Example + +In the following example, we load word count vectors representing a corpus of documents. +We then use [LDA](api/scala/index.html#org.apache.spark.mllib.clustering.LDA) +to infer three topics from the documents. The number of desired clusters is passed +to the algorithm. We then output the topics, represented as probability distributions over words. + +
+
+ +{% highlight scala %} +import org.apache.spark.mllib.clustering.LDA +import org.apache.spark.mllib.linalg.Vectors + +// Load and parse the data +val data = sc.textFile("data/mllib/sample_lda_data.txt") +val parsedData = data.map(s => Vectors.dense(s.trim.split(' ').map(_.toDouble))) +// Index documents with unique IDs +val corpus = parsedData.zipWithIndex.map(_.swap).cache() + +// Cluster the documents into three topics using LDA +val ldaModel = new LDA().setK(3).run(corpus) + +// Output topics. Each is a distribution over words (matching word count vectors) +println("Learned topics (as distributions over vocab of " + ldaModel.vocabSize + " words):") +val topics = ldaModel.topicsMatrix +for (topic <- Range(0, 3)) { + print("Topic " + topic + ":") + for (word <- Range(0, ldaModel.vocabSize)) { print(" " + topics(word, topic)); } + println() +} +{% endhighlight %} +
+ +
+{% highlight java %} +import scala.Tuple2; + +import org.apache.spark.api.java.*; +import org.apache.spark.api.java.function.Function; +import org.apache.spark.mllib.clustering.DistributedLDAModel; +import org.apache.spark.mllib.clustering.LDA; +import org.apache.spark.mllib.linalg.Matrix; +import org.apache.spark.mllib.linalg.Vector; +import org.apache.spark.mllib.linalg.Vectors; +import org.apache.spark.SparkConf; + +public class JavaLDAExample { + public static void main(String[] args) { + SparkConf conf = new SparkConf().setAppName("LDA Example"); + JavaSparkContext sc = new JavaSparkContext(conf); + + // Load and parse the data + String path = "data/mllib/sample_lda_data.txt"; + JavaRDD data = sc.textFile(path); + JavaRDD parsedData = data.map( + new Function() { + public Vector call(String s) { + String[] sarray = s.trim().split(" "); + double[] values = new double[sarray.length]; + for (int i = 0; i < sarray.length; i++) + values[i] = Double.parseDouble(sarray[i]); + return Vectors.dense(values); + } + } + ); + // Index documents with unique IDs + JavaPairRDD corpus = JavaPairRDD.fromJavaRDD(parsedData.zipWithIndex().map( + new Function, Tuple2>() { + public Tuple2 call(Tuple2 doc_id) { + return doc_id.swap(); + } + } + )); + corpus.cache(); + + // Cluster the documents into three topics using LDA + DistributedLDAModel ldaModel = new LDA().setK(3).run(corpus); + + // Output topics. Each is a distribution over words (matching word count vectors) + System.out.println("Learned topics (as distributions over vocab of " + ldaModel.vocabSize() + + " words):"); + Matrix topics = ldaModel.topicsMatrix(); + for (int topic = 0; topic < 3; topic++) { + System.out.print("Topic " + topic + ":"); + for (int word = 0; word < ldaModel.vocabSize(); word++) { + System.out.print(" " + topics.apply(word, topic)); + } + System.out.println(); + } + } +} +{% endhighlight %} +
+ +
+ + In order to run the above application, follow the instructions provided in the [Self-Contained Applications](quick-start.html#self-contained-applications) section of the Spark -- cgit v1.2.3