From bad4c9db09f1bcb641155beb50dfdd9df274b921 Mon Sep 17 00:00:00 2001 From: DB Tsai Date: Mon, 12 May 2014 19:20:24 -0700 Subject: L-BFGS Documentation Documentation for L-BFGS, and an example of training binary L2 logistic regression using L-BFGS. Author: DB Tsai Closes #702 from dbtsai/dbtsai-lbfgs-doc and squashes the following commits: 0712215 [DB Tsai] Update 38fdfa1 [DB Tsai] Removed extra empty line 5745b64 [DB Tsai] Update again e9e418e [DB Tsai] Update 7381521 [DB Tsai] L-BFGS Documentation (cherry picked from commit 5c2275d6e4639946fd11ff6403338c8a9ade3d1e) Signed-off-by: Reynold Xin --- docs/mllib-optimization.md | 120 +++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 116 insertions(+), 4 deletions(-) (limited to 'docs') diff --git a/docs/mllib-optimization.md b/docs/mllib-optimization.md index bec3912b55..aa0dec2130 100644 --- a/docs/mllib-optimization.md +++ b/docs/mllib-optimization.md @@ -28,7 +28,6 @@ title: MLlib - Optimization ## Mathematical description ### Gradient descent - The simplest method to solve optimization problems of the form `$\min_{\wv \in\R^d} \; f(\wv)$` is [gradient descent](http://en.wikipedia.org/wiki/Gradient_descent). Such first-order optimization methods (including gradient descent and stochastic variants @@ -128,10 +127,19 @@ is sampled, i.e. `$|S|=$ miniBatchFraction $\cdot n = 1$`, then the algorithm is standard SGD. In that case, the step direction depends from the uniformly random sampling of the point. - +### Limited-memory BFGS (L-BFGS) +[L-BFGS](http://en.wikipedia.org/wiki/Limited-memory_BFGS) is an optimization +algorithm in the family of quasi-Newton methods to solve the optimization problems of the form +`$\min_{\wv \in\R^d} \; f(\wv)$`. The L-BFGS method approximates the objective function locally as a +quadratic without evaluating the second partial derivatives of the objective function to construct the +Hessian matrix. The Hessian matrix is approximated by previous gradient evaluations, so there is no +vertical scalability issue (the number of training features) when computing the Hessian matrix +explicitly in Newton's method. As a result, L-BFGS often achieves rapider convergence compared with +other first-order optimization. ## Implementation in MLlib +### Gradient descent and stochastic gradient descent Gradient descent methods including stochastic subgradient descent (SGD) as included as a low-level primitive in `MLlib`, upon which various ML algorithms are developed, see the @@ -142,12 +150,12 @@ The SGD method [GradientDescent.runMiniBatchSGD](api/scala/index.html#org.apache.spark.mllib.optimization.GradientDescent) has the following parameters: -* `gradient` is a class that computes the stochastic gradient of the function +* `Gradient` is a class that computes the stochastic gradient of the function being optimized, i.e., with respect to a single training example, at the current parameter value. MLlib includes gradient classes for common loss functions, e.g., hinge, logistic, least-squares. The gradient class takes as input a training example, its label, and the current parameter value. -* `updater` is a class that performs the actual gradient descent step, i.e. +* `Updater` is a class that performs the actual gradient descent step, i.e. updating the weights in each iteration, for a given gradient of the loss part. The updater is also responsible to perform the update from the regularization part. MLlib includes updaters for cases without regularization, as well as @@ -163,3 +171,107 @@ each iteration, to compute the gradient direction. Available algorithms for gradient descent: * [GradientDescent.runMiniBatchSGD](api/mllib/index.html#org.apache.spark.mllib.optimization.GradientDescent) + +### L-BFGS +L-BFGS is currently only a low-level optimization primitive in `MLlib`. If you want to use L-BFGS in various +ML algorithms such as Linear Regression, and Logistic Regression, you have to pass the gradient of objective +function, and updater into optimizer yourself instead of using the training APIs like +[LogisticRegressionWithSGD](api/mllib/index.html#org.apache.spark.mllib.classification.LogisticRegressionWithSGD). +See the example below. It will be addressed in the next release. + +The L1 regularization by using +[L1Updater](api/mllib/index.html#org.apache.spark.mllib.optimization.L1Updater) will not work since the +soft-thresholding logic in L1Updater is designed for gradient descent. See the developer's note. + +The L-BFGS method +[LBFGS.runLBFGS](api/scala/index.html#org.apache.spark.mllib.optimization.LBFGS) +has the following parameters: + +* `Gradient` is a class that computes the gradient of the objective function +being optimized, i.e., with respect to a single training example, at the +current parameter value. MLlib includes gradient classes for common loss +functions, e.g., hinge, logistic, least-squares. The gradient class takes as +input a training example, its label, and the current parameter value. +* `Updater` is a class that computes the gradient and loss of objective function +of the regularization part for L-BFGS. MLlib includes updaters for cases without +regularization, as well as L2 regularizer. +* `numCorrections` is the number of corrections used in the L-BFGS update. 10 is +recommended. +* `maxNumIterations` is the maximal number of iterations that L-BFGS can be run. +* `regParam` is the regularization parameter when using regularization. + +The `return` is a tuple containing two elements. The first element is a column matrix +containing weights for every feature, and the second element is an array containing +the loss computed for every iteration. + +Here is an example to train binary logistic regression with L2 regularization using +L-BFGS optimizer. +{% highlight scala %} +import org.apache.spark.SparkContext +import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.util.MLUtils +import org.apache.spark.mllib.classification.LogisticRegressionModel + +val data = MLUtils.loadLibSVMFile(sc, "mllib/data/sample_libsvm_data.txt") +val numFeatures = data.take(1)(0).features.size + +// Split data into training (60%) and test (40%). +val splits = data.randomSplit(Array(0.6, 0.4), seed = 11L) + +// Append 1 into the training data as intercept. +val training = splits(0).map(x => (x.label, MLUtils.appendBias(x.features))).cache() + +val test = splits(1) + +// Run training algorithm to build the model +val numCorrections = 10 +val convergenceTol = 1e-4 +val maxNumIterations = 20 +val regParam = 0.1 +val initialWeightsWithIntercept = Vectors.dense(new Array[Double](numFeatures + 1)) + +val (weightsWithIntercept, loss) = LBFGS.runLBFGS( + training, + new LogisticGradient(), + new SquaredL2Updater(), + numCorrections, + convergenceTol, + maxNumIterations, + regParam, + initialWeightsWithIntercept) + +val model = new LogisticRegressionModel( + Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)), + weightsWithIntercept(weightsWithIntercept.size - 1)) + +// Clear the default threshold. +model.clearThreshold() + +// Compute raw scores on the test set. +val scoreAndLabels = test.map { point => + val score = model.predict(point.features) + (score, point.label) +} + +// Get evaluation metrics. +val metrics = new BinaryClassificationMetrics(scoreAndLabels) +val auROC = metrics.areaUnderROC() + +println("Loss of each step in training process") +loss.foreach(println) +println("Area under ROC = " + auROC) +{% endhighlight %} + +#### Developer's note +Since the Hessian is constructed approximately from previous gradient evaluations, +the objective function can not be changed during the optimization process. +As a result, Stochastic L-BFGS will not work naively by just using miniBatch; +therefore, we don't provide this until we have better understanding. + +* `Updater` is a class originally designed for gradient decent which computes +the actual gradient descent step. However, we're able to take the gradient and +loss of objective function of regularization for L-BFGS by ignoring the part of logic +only for gradient decent such as adaptive step size stuff. We will refactorize +this into regularizer to replace updater to separate the logic between +regularization and step update later. \ No newline at end of file -- cgit v1.2.3